Section 4.4

1. Tracing factorial(n) for n=4:
 \(\text{factorial}(4) = 4 \) \(\text{factorial}(3) = 4.3 \) \(\text{factorial}(2) = 4.3.2 \) \(\text{factorial}(1) = 4.3.2.1 \) \(\text{factorial}(0) = 4.3.2.1.1 \)

5. Tracing the robot walking algorithm for n = 4
 \(\text{walk}(4) = \text{walk}(3) + \text{walk}(2) = [\text{walk}(2) + \text{walk}(1)] + 2 = 2 + 1 + 2 = 5 \)

7. Showing the robot walking algorithm is correct:
The algorithm is mean to compute the walk(n) function as defined at the top of the algorithm.
 If \(n = 1 \), then at the first if statement the algorithm will return 1 and we exit the algorithm.
 If \(n = 2 \), then at the first if statement the algorithm will return 2 and we exit the algorithm.
 If \(n \geq 3 \) the algorithm will return walk(n-1) + walk(n-2) as required. This will call on the same algorithm to find walk(n-1) and walk(n-2).
 Hence for all \(n \geq 1 \) the algorithm returns the correct value.

9. \(\text{sum}(s,n) \) {
 if \(s == 1 \) return \(\text{sum}(1) = 1 \)
 return \(\text{sum}(n) = \text{sum}(n - 1) + n \}

Proof: base case – if \(n = 1 \) \(\text{sum}(1) = 1 \)
General case – suppose \(\text{sum}(k) = 1 + 2 + \ldots + k \)
Then the algorithm computes \(\text{sum}(k+1) = \text{sum}(k) + 2(k+1) = 1 + 2 + \ldots + k + (k+1) \).
Hence the algorithm returns the correct value.

10. \(\text{sum}(s,n) \) {
 if \(s == 1 \) return \(\text{sum}(1) = 2 \)
 return \(\text{sum}(n) = \text{sum}(n - 1) + 2n \}

Proof: base case – if \(n = 1 \) \(\text{sum}(1) = 2 \)
General case – suppose \(\text{sum}(k) = 2 + 4 + \ldots + 2k \)
Then the algorithm computes \(\text{sum}(k+1) = \text{sum}(k) + 2(k+1) = 2 + 4 + \ldots + 2k + 2(k+1) \).
Hence the algorithm returns the correct value.

11. We discussed this in class. See notes for details.
 \(\text{walk}(n) = \begin{cases}
 1 & \text{if } n = 1 \\
 2 & \text{if } n = 2 \\
 4 & \text{if } n = 3 \\
 \text{walk}(n - 1) + \text{walk}(n - 2) + \text{walk}(n - 3) & \text{if } n \geq 4
 \end{cases} \)

We need to write an algorithm that computes this function.
walk(n) {
 if (n == 1 || n == 2)
 return n
 if (n == 3)
 return 4
 return walk(n - 1) + walk(n - 2) + walk(n - 3)
}

The proof is similar to the proof of the original walk algorithm.