Section 19 – The Product Topology

We will consider these products of topological spaces:

- **The finite Cartesian product** \(X_1 \times X_2 \times \ldots \times X_n \)
- **The infinite Cartesian Product** \(X_1 \times X_2 \times X_3 \times \ldots \)

There are two topologies: the box topology and the product topology.

Basis for the box topology: sets of the form \(U_1 \times U_2 \times \ldots \times U_n \) (resp.)

Sub-Basis for the product topology: sets of the form \(\pi_i^{-1}(U_i) \)

These topologies are the same for the finite products, but they do not agree on the infinite products.

Convention: When considering a product space, we shall assume it is given the product topology unless stated otherwise.

Some Definitions

Let \(J \) be an index set. Given a set \(X \), we define an **\(J \)-tuple of elements of \(X \)** to be a function \(x : J \to X \). We will often write \(x(\alpha) = x_\alpha \); we call it the \(\alpha \) th coordinate of \(x \). The function itself can also be denoted by \((x_\alpha)_{\alpha \in J} \).

The set of all \(J \)-tuples of elements of \(X \) is denoted by \(X^J \).

Let \((A_\alpha)_{\alpha \in J} \) be an indexed family of sets; Let \(X = \bigcup_{\alpha \in J} A_\alpha \). **The Cartesian product** of this indexed family, denoted by \(\prod_{\alpha \in J} A_\alpha \) is defined to the set of all \(J \)-tuples \((x_\alpha)_{\alpha \in J} \) of elements of \(X \) such that \(x_\alpha \in A_\alpha \) for each \(\alpha \in J \).

If the sets \(A_\alpha \) are all equal to \(X \), then the product is just the set \(X^J \) of all \(J \)-tuples of \(X \).

The Box Topology: For the indexed family of topological spaces \(X = \bigcup_{\alpha \in J} A_\alpha \) The basis consisting of all sets of the form \(\prod_{\alpha \in J} U_\alpha \), where \(U_\alpha \) is open in \(X_\alpha \) generates the box topology.
We define the projection map $\pi_\beta : \prod_{\alpha \in J} X_\alpha \to X_\beta$ to be the function assigning to each element of the product space its βth coordinate $\pi_\beta((x_\alpha)_{\alpha \in J}) = x_\beta$.

Theorem 19.1 – Comparison of the box and product topologies.
The box topology on $\prod X_\alpha$ has as a basis all sets of the form $\prod U_\alpha$ where U_α is open in X_α for each α.
The product topology