1. In this exercise we graph a relation and its inverse.
 First graph the relation defined parametrically by \(x = t, y = t^2 - 4 \) for \(-3 \leq t \leq 1\).
 Use the viewing window \([-10, 10] \times [-10, 10]\), with \(t \in [-3, 1] \) and TSTEP = 0.1.
 Trace the curve to see some points in the relation.

 Now give the parametric equations for the inverse relation:
 \(x = \ldots, y = \ldots, -3 \leq t \leq 1 \)

 Now graph the inverse (use \(X_2T \) and \(Y_2T \) so you can see both relations graphed at once). Trace this curve too. What is the geometric relationship between the two graphs?

2. Consider the relation \(R : y = x^2 - x \). This relation is actually a function; is the inverse relation of \(R \) a function?

 Now, let’s graph the inverse relation.

 The inverse relation \(R^{-1} \) has equation \(x = \ldots \).

 Solve this equation for \(y \):

 \(y = \ldots \)

 Is this a function?

 How many functions should we graph to get a graph of \(R^{-1} \)? \(\ldots \)

 Graph \(R : Y_1 = x^2 - x \) and

 \(Y_2 = \ldots \)

 \(R^{-1} : \)

 \(Y_3 = \ldots \)

 (Use the ZDECIMAL window - use FUNCTION mode!)