1. Use cofactor expansion to find the determinant of the matrix

\[A = \begin{pmatrix} 4 & -2 & 3 \\ 1 & -2 & 2 \\ 0 & 1 & 5 \end{pmatrix} \]

(Don’t use the formula you may have learned in Calculus or another class - use cofactor expansion!)

2. Find the determinant of \(A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \)

\[\det(A) = \]

Predict the determinant of the following matrices by noting how they are related to \(A \), and then check by computing the determinants.

\[B = \begin{pmatrix} 4 & -2 \\ 1 & 3 \end{pmatrix} \]

Prediction for \(\det(B) \): \[\]

Compute: \(\det(B) = \)

\[C = \begin{pmatrix} 4 & -2 \\ 2 & 6 \end{pmatrix} \]

Prediction for \(\det(C) \): \[\]

Compute: \(\det(C) = \)

Let \(D = \begin{pmatrix} 2 & -1 \\ 2 & -3 \end{pmatrix} \). Compute: \(\det(D) = \)

Let \(E = \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} \). Prediction for \(\det(E) \): \[\]

Compute: \(\det(E) = \)

(How is \(E \) related to \(A \) and \(D \)?)

3. \[\det \begin{pmatrix} 1 & 2 & 7 & 8 & 9 \\ 0 & 3 & 10 & -15 & 64 \\ 0 & 0 & 5 & -6 & 12 \\ 0 & 0 & 0 & 6 & 101 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} = \]

\[\]

= \[\]