1. Mark each function as even, odd, or neither:
 (a) $\sin(x)$
 (b) e^x
 (c) $|x - 1|$
 (d) x^5
 (e) $x^3 \sin(x)$

2. Let $f(x)$ be the function on $[-3, 3]$ which is graphed below. Find the constant term in the Fourier series for f.

 Solution: The constant term is $5/2$, the average value of f. The term $a_0 = 5$.

3. The function f (shown below) is defined on the interval $[-2, 2]$. What value does the Fourier series for f converge to:
 (a) When $x = -1$?
 (b) When $x = 0$?
 (c) When $x = 1$?
 (d) When $x = 2$?

 (a) $1/2$
 (b) 1
 (c) 4
 (d) $3/2$
4. Let \(f(x) = |x| \) for \(-2 \leq x \leq 2\), and let \(g(x) = 4|x| + 3 \) for \(-2 \leq x \leq 2\). The Fourier series for \(f \) is given by

\[
f(x) = 1 - \frac{8}{\pi^2} \left(\cos \left(\frac{\pi x}{2} \right) + \frac{1}{9} \cos \left(\frac{3\pi x}{2} \right) + \frac{1}{25} \cos \left(\frac{5\pi x}{2} \right) + \cdots \right)
\]

What is the Fourier series for \(g \)?

\[
g(x) = 4f(x) + 3 = 7 - \frac{32}{\pi^2} \left(\cos \left(\frac{\pi x}{2} \right) + \frac{1}{9} \cos \left(\frac{3\pi x}{2} \right) + \frac{1}{25} \cos \left(\frac{5\pi x}{2} \right) + \cdots \right)
\]

5. Let \(f(x) = \begin{cases}
0 & \text{for } -\pi \leq x < -\pi/2 \\
1 & \text{for } -\pi/2 \leq x < \pi/2 \\
0 & \text{for } \pi/2 < x \leq \pi
\end{cases} \).

Find the Fourier series for \(f \) on the interval \([-\pi, \pi]\).

Give at least four terms in the series or write it as a summation.

\[
\frac{1}{2} + \frac{2 \cos(x)}{\pi} - \frac{2 \cos(3x)}{3\pi} + \frac{2 \cos(5x)}{5\pi} - \cdots
\]