Math 1520 – Sample Final Exam

You may use a graphing calculator (TI-83, 84, for example) on this exam, but not one that can perform symbolic integration (TI-89, for example).

There are 15 questions, worth a total of 150 points.

(10) 1. Find the solution to the separable differential equation \(\frac{dy}{dx} = x\sqrt{y} \) with initial condition \(y = 4 \) when \(x = 0 \).

Solution: \(y = \left(\frac{x^2}{4} + 2 \right)^2 \)

(10) 2. The slope field for the differential equation \(\frac{dy}{dx} = x - y \) is shown below.

(a) Sketch the two solutions which have initial conditions \((-3, 3)\) and \((0, -3)\).

(b) Guess one linear solution to the differential equation and check that it works.

Solution: \(y = x - 1 \).

(10) 3. The Pioneer 10 spacecraft is powered by plutonium radio-thermal generators. The power produced depends directly on the amount of plutonium remaining. The amount of plutonium, \(P \), decays according to the differential equation \(\frac{dP}{dt} = -rP \).

(a) Find \(r \), the decay coefficient, given that the half-life of plutonium is 87.72 years.

Solution: \(r = \frac{\log(2)}{87.72} \approx 0.0079 \)
(b) At launch, the power generated was 2580 Watts. How much power was being generated when it sent its last signal in 2003, 31 years after launch?

Solution: Power after 31 years is $2580e^{-r \cdot 31} \approx 2019$ Watts.

(10) 4. The (infinite) region bounded by the curve $y = e^{-x}$, the positive y-axis and the positive x-axis is revolved around the x-axis. Find the volume of this solid of revolution.

Solution:

$$
\int_0^\infty \pi (e^{-x})^2 \, dx = -\frac{1}{2} \pi e^{-2x} \bigg|_0^\infty = \frac{\pi}{2}
$$

(10) 5. Integrate $\int \frac{dx}{x^2 + 2x}$

Solution: $\frac{1}{2} \log |\frac{x}{x+2}| + C$

(10) 6. Integrate $\int \frac{dx}{x^2 + 2x + 1}$

Solution: $\frac{-1}{x+1} + C$

(10) 7. Integrate $\int \frac{dx}{x^2 + 2x + 2}$

Solution: $\arctan(x + 1) + C$

(10) 8. $2e$ or not $2e$? For each, decide if the value is $2e$ or not $2e$.

(a) $\sum_{n=0}^{\infty} \frac{2}{n!}$

(b) $\lim_{n \to \infty} 2 \left(1 + \frac{1}{n}\right)^n$

(c) $\int_{2}^{\infty} \frac{dx}{x}$

(d) $\sum_{n=0}^{\infty} \frac{e}{2^n}$

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2e$</td>
<td>$2e$</td>
<td>Not $2e$</td>
<td>$2e$</td>
</tr>
</tbody>
</table>
Solution: For all of these, a good approach is to try computing the values for a few
n, say n = 2, 5, 10, 100. For e, f, and maybe b, that’s the only approach you would
be expected to do.

(a) \(\sum_{n=0}^{\infty} \frac{2}{n!} = 2 \sum_{n=0}^{\infty} \frac{1}{n!} = 2e^1 = 2e\)

(b) \(\lim_{n \to \infty} \log \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} n \log \left(1 + \frac{1}{n}\right) = \lim_{x \to 0} \log(1+x) = 1\). Here, we set

\(x = \frac{1}{n}\) and used L’Hopital’s rule in the final step. From this, \(\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e\)
and \(\lim_{n \to \infty} 2 \left(1 + \frac{1}{n}\right)^n = 2e\).

(c) \(\int_2^{\infty} \frac{dx}{x} = \log(x)|_2^\infty = \infty\).

(d) \(\sum_{n=0}^{\infty} \frac{e}{2^n} = e \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = e \frac{1}{1 - \frac{1}{2}} = 2e\), from the geometric series.

(e) This requires the theory of continued fractions. See, for example http://
people.math.binghamton.edu/dikran/478/Ch7.pdf, formula (7.14).

(f) Proving this formula requires Stirling’s formula, \(\log(n!) = n \log(n) - n + O(\log(n))\)
where “big O” means that part grows no faster than \(\log(n)\). Stirling’s formula
is proven by relating \(\log(n!)=\sum_{x=1}^{n} \log(x)\) to the trapezoid rule approximation
to the integral \(\int_1^n \log(x)dx\). See https://en.wikipedia.org/wiki/Stirling’s
approximation for details. With Stirling’s approximation:

\[\log \left(\frac{2n}{\sqrt{n!}}\right) = \log(2) + \log(n) - \frac{\log(n!)}{n} = \log(2) + \log(n) - \log(n) + 1 - O(\log(n))/n\]
so \(\lim_{n \to \infty} \log \frac{2n}{\sqrt{n!}} = \log(2) + 1 \). Taking exp of both sides gives \(\lim_{n \to \infty} \frac{2n}{\sqrt{n!}} = e^{\log(2)+1} = 2e \.

\[(g) \sum_{n=0}^{\infty} \frac{n+1}{n!} = \sum_{n=0}^{\infty} \frac{n}{n!} + \sum_{n=0}^{\infty} \frac{1}{n!} = \left(\sum_{n=1}^{\infty} \frac{1}{(n-1)!} \right) + e = \left(\sum_{n=0}^{\infty} \frac{1}{n!} \right) + e = 2e \.]

9. Find the sum of the geometric series \(\frac{5}{3} + \frac{5}{9} + \frac{5}{27} + \frac{5}{81} + \frac{5}{243} + \cdots \).

Solution:

\[
\frac{5}{3} \cdot \frac{1}{1 - \frac{1}{3}} = \frac{5}{2}
\]

10. Define a sequence by \(a_0 = 1, a_n = \frac{1+a_{n-1}}{2+a_{n-1}} \). Write out the first five terms of this sequence. Bonus: What can you say about the limit of this sequence?

Solution: \(1, \frac{3}{5}, \frac{5}{8}, \frac{13}{21}, \frac{34}{55}, \ldots \) The sequence is decreasing and bounded below (by 0), so it has a limit. The limit satisfies \(L = \frac{1+L}{2+L} \), so \(L = \frac{\sqrt{5}-1}{2} = 0.618\ldots \)

11. Match the description to the series:

- (a) \(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \)
- (b) \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots \)
- (c) \(1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} - \cdots \)
- (d) \(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \)
- (e) Giants beat Rangers in 5 games.

Solution: (a) is geometric, (b) is harmonic, (c) is alternating, (d) is a power series, (e) was the 2010 World Series.

12. The Fourier series for \(f(x) = x \) on the interval \([-\pi, \pi]\) is given by

\[
f(x) = \sum_{n=1}^{\infty} b_n \sin(nx).
\]
where

\[b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) \, dx. \]

Compute the coefficients \(b_n \) and write the first five terms of the Fourier series for \(f \).

Solution: \[b_n = \frac{-2 \cos(n\pi)}{n}, \] so

\[f(x) = 2 \sin(x) - \sin(2x) + \frac{2}{3} \sin(3x) - \frac{1}{2} \sin(4x) + \frac{2}{5} \sin(5x) + \cdots \]

(10) 13. Find the Taylor series for \(f(x) = e^x \) at the point \(x = 1 \). Write using summation notation or show at least five terms.

Solution:

\[f(x) = \sum_{n=0}^{\infty} \frac{e}{n!} (x - 1)^n = e + e(x - 1) + \frac{e}{2} (x - 1)^2 + \frac{e}{6} (x - 1)^3 + \frac{e}{24} (x - 1)^4 + \cdots \]

(10) 14. Find the fifth derivative of \(f(x) = \frac{x}{1 - x^2} \) at \(x = 0 \).

Solution:

\[f(x) = \frac{x}{1 - x^2} = x(1 + x^2 + x^4 + x^6 + \cdots) = x + x^3 + x^5 + x^7 + \cdots \]

so \(f^{(5)}(0) = 5! = 120. \)

(10) 15. Give an example of a power series centered at 3 with radius of convergence equal to 5. Does your series converge at \(x = 0 \)? Does it converge at \(x = 8 \)?

Solution:

\[\sum_{n=0}^{\infty} \frac{(x - 3)^n}{5^n} \]

This series does converge at \(x = 0 \) but not at \(x = 8 \).