The alternating harmonic series is

\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots \]

1. Does the alternating harmonic series converge? Why or why not?

2. Use your calculator to work out the 10th partial sum of the alternating harmonic series.

3. For which \(x \) does the series \(1 - x + x^2 - x^3 + \cdots \) converge?

4. What does the series \(1 - x + x^2 - x^3 + \cdots \) converge to? (Hint: it’s a geometric series).
 Call this function \(f(x) \).

5. Integrate each term of the series \(1 - x + x^2 - x^3 + \cdots \) to get a new series.
 For which \(x \) does this new series converge?

6. Integrate \(f(x) \) to get a new function.

7. Plug in \(x = 1 \) to your series and to \(f(x) \).
 What does the alternating harmonic series converge to?