1. Find the limit of each sequence, if it exists.

(a) \(a_n = \frac{n^2 + 1}{2n^2 + 1} \)

Solution: 0.5

(b) \(b_n = \cos \left(\frac{1}{n} \right) \)

Solution: 1

(c) \(c_n = \cos \left(\frac{\pi n}{2} \right) \)

Solution: Limit does not exist.

(d) \(d_n = \frac{n!}{4^n} \)

Solution: Limit does not exist (it diverges to \(\infty \)).

(e) \(e_1 = 1 \) and \(e_n = \cos(e_{n-1}) \)

Solution: \(\approx 0.7390851 \ldots \)

(f) \(f_n = n \sin \left(\frac{1}{n} \right) \)

Solution: 1

(g) \(g_n = \frac{1}{\sin(n)} \)

Solution: Limit does not exist.

(h) \(h_1 = 2 \) and \(h_{n+1} = \frac{h_n^2 + 2}{2h_n} \)

Solution: \(\sqrt{2} \)

(i) \(k_n = n! \sin(\pi n) \)

Solution: 0

(j) \(\gamma_n = \int_1^n \frac{1}{x} \, dx - \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n} \right) \)

Solution: This limit, known as the Euler-Mascheroni constant is approximately 0.57721.