1. Does the series converge? Explain why or why not.

(a) \[\sum_{n=0}^{\infty} \frac{2}{n^2 + 1} \]

Solution: This converges by comparison with \[\sum_{n=0}^{\infty} \frac{1}{n^2} \], since \[\frac{2}{n^2 + 1} < \frac{2}{n^2} \] and \[\sum_{n=0}^{\infty} \frac{1}{n^2} \] is a \(p \)-series with \(p > 1 \). You can also see this by the integral test, since \[\int_{0}^{\infty} \frac{2}{x^2 + 1} \, dx = 2 \arctan(x) \bigg|_{0}^{\infty} = \pi < \infty \].

(b) \[\sum_{n=1}^{\infty} \frac{1}{2n} \]

Solution: This diverges since \[\sum_{n=0}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n} \], and the harmonic series diverges.

(c) \[\sum_{n=2}^{\infty} \frac{1}{n^2 \log(n)} \]

Solution: This converges. Compare with \[\sum_{n=2}^{\infty} \frac{1}{n^2} \], since \[\frac{1}{n^2 \log(n)} < \frac{1}{n^2} \].

(d) \[\sum_{n=0}^{\infty} e^n + n \]

Solution: This diverges since the terms \[\frac{e^n + n}{n^2 + 2n} \to 1 \] (not zero!) as \(n \to \infty \).

(e) \[\sum_{n=1}^{\infty} \sqrt{\frac{n^3 - 1}{n^6 + 1}} \]

Solution: This converges. \[\sqrt{\frac{n^3 - 1}{n^6 + 1}} < \sqrt{\frac{n^3}{n^6}} = \frac{1}{n^{3/2}} \]. The series converges by comparison with the convergent series \[\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \].

(f) \[\sum_{n=1}^{\infty} \frac{1}{n^2 - 5n/2} \]

Solution: This converges. First, you want to ignore the \(n = 1 \) and \(n = 2 \) term since they are negative. Then, use the integral test:

\[\int_{3}^{\infty} \frac{dx}{x^2 - 5x/2} = \left[\frac{2}{5} \log \left(\frac{x - 5/2}{x} \right) \right]_{3}^{\infty} = \frac{2}{5} \log 6 < \infty. \]

Alternately, you can use the comparison test. You’d like to compare with \[\sum_{n=1}^{\infty} \frac{1}{n^2} \] but the terms of our series are larger than \[\frac{1}{n^2} \]. The trick is to notice that eventually \(5n/2 < n^2/2 \). This happens for all \(n > 5 \). Then \(n^2 - 5n/2 > n^2 - n^2/2 = n^2/2 \) so that \[\frac{1}{n^2 - 5n/2} < \frac{2}{n^2} \]. The series converges since \[\sum_{n=1}^{\infty} \frac{2}{n^2} \] converges.