We refer here to Ross, Section 13, Example 2. Let
\[\mathbb{R}^k = \{ x = (x_1, x_2, \ldots, x_k) : x_j \in \mathbb{R} \}. \]
For \(x, y \in \mathbb{R}^k \) define the scalar product on \(\mathbb{R}^k \) by
\[\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \cdots + x_k y_k \]
and the norm on \(\mathbb{R}^k \) by
\[\| x \| = \sqrt{\langle x, x \rangle} = \left(\sum_{j=1}^{k} x_j^2 \right)^{1/2}. \]
Observe that the scalar product is bilinear: \(\langle x + ty, z \rangle = \langle x, z \rangle + t \langle y, z \rangle \) and \(\langle x, y + tz \rangle = \langle x, y \rangle + t \langle x, z \rangle \).

1. Prove the Cauchy-Schwartz inequality by following the indicated steps.

Lemma 1 (Cauchy-Schwartz inequality). For all \(x, y \in \mathbb{R}^k \), one has
\[|\langle x, y \rangle| \leq \| x \| \| y \|. \]
(a) Show that the function \(p(t) = \langle x + ty, x + ty \rangle \) is a quadratic function of \(t \) that is non-negative for all \(t \).
(b) Explain why the lemma is true if \(y = 0 \). Suppose \(y \neq 0 \). Substitute \(t_0 = -\langle x, y \rangle / \langle y, y \rangle \) into \(p(t) \), simplify, and combine with (a) to get the result.

2. Use (1) to prove that the norm satisfies the triangle inequality \(\| x + y \| \leq \| x \| + \| y \| \).

3. Prove that \(D(x, y) = \| x - y \| \) defines a metric function on \(\mathbb{R}^k \).

4. Do Exercises 1(a) and 2 at the end of Section 4.2 in Kaplansky.