(1) (15 pts) Define the linear transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by the following rule: $T(X)$ is the result of first rotating X counterclockwise by an angle of $\pi/2$ radians, and then multiplying by

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Find a matrix B such that $T(X) = BX$.

(2) (10 pts) Let A and B be $n \times n$ matrices and suppose that AB is invertable. Prove that A and B are invertable. (Suggestion: consider the ranks of A, B, and AB.)
(3) (15 pts) Find a matrix A such that multiplication by A transforms the parallelogram with vertices $(0,0), (2,0), (1,1), (3,1)$ onto the unit square.

(4) (10 pts) Let A be a 2×2 non-singular matrix and let $\mathcal{B} = \{X_1, X_2\}$ be any basis of \mathbb{R}^2. Using any results from class or assignments, explain how you know that $\{AX_1, AX_2\}$ is also a basis of \mathbb{R}^2.
(5) (20 pts) Let \mathcal{B} be the ordered basis of \mathbb{R}^3 defined by

$$
\mathcal{B} = \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}
$$

(a) Find $P_\mathcal{B}$ and $C_\mathcal{B}$.

(b) Find the \mathcal{B}-coordinate vector for $X = [1, 2, 3]^t$.

(c) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $T(X) = AX$ where

$$
A = \begin{bmatrix}
0 & -1 & 2 \\
1 & 2 & 2 \\
0 & 0 & 3
\end{bmatrix}.
$$

Find the matrix of T relative to the basis \mathcal{B}.
(6) (20 pts) Let $L : \mathcal{P}_2 \rightarrow \mathcal{P}_2$ be defined by

$$L(f) = x^2 f'' + f'.$$

(a) Prove that L is a linear function.

(b) Find the matrix of L relative to the standard basis of \mathcal{P}_2.

(7) (10 pts) Let \mathcal{V} and \mathcal{W} be vector spaces and let $T : \mathcal{V} \rightarrow \mathcal{W}$ be a linear function. Define

$$\text{null}(T) = \{X \in \mathcal{V} : T(X) = 0\}.$$

Prove that $\text{null}(T)$ is a subspace of \mathcal{V}.