1. Provide a proof if the statement is true and a counterexample if it is false.

(a) Suppose that \(A \) is an \(n \times n \) invertible matrix and \(B \) is any \(m \times n \) matrix. Then
\[
\text{rank}(B) = \text{rank}(BA).
\]

(b) Suppose that \(A \) is an \(n \times n \) invertible matrix and \(B \) is any \(m \times n \) matrix. Then \(B \) and \(BA \) have exactly the same nullspace.

2. Let \(V \) and \(W \) be two vector spaces, and let \(T : V \rightarrow W \) be a linear function. Define the nullspace of \(T \) by
\[
\text{nullspace}(T) = \{ X \in V : T(X) = 0 \}.
\]

(a) Prove that \(\text{nullspace}(T) \) is a subspace of \(V \).

(b) Prove that the following statements are equivalent.
 (i) \(\text{nullspace}(T) = \{ 0 \} \).
 (ii) \(T \) is injective (i.e., one-to-one.)
 (iii) If \(\mathcal{B} \) is a linearly independent subset of \(V \), then its image \(T(\mathcal{B}) \) is a linearly independent subset of \(W \).

(c) Suppose that \(T \) is a bijection, and let \(\mathcal{B} \) be any basis of \(V \). Prove that the image \(T(\mathcal{B}) \) is a basis of \(W \).

Note: a linear transformation that is a bijection is called an isomorphism.