MT 315-01 091 TEST 3

Name: ____________________________

(1) (15 pts) Define the linear transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) by the following rule: \(T(X) \) is the result of first rotating \(X \) counterclockwise by an angle of \(\pi/4 \) radians, and then multiplying by

\[
A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}
\]

Find a matrix \(B \) such that \(T(X) = BX \).

(2) (10 pts) Let \(S, T : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R}) \) be the functions defined by

\[
S(f) = \int_0^1 f(x)dx, \quad \text{and} \quad T(f) = f + 1.
\]

Which one of these functions is linear and which one is not? Justify your answer.
(3) (15 pts) For the given matrix A, find a non-zero 3×2 matrix B such that $AB = 0$. Prove that any such matrix B must have rank 1. (Hint: the columns of B belong to the nullspace of A.)

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}. $$

(4) (10 pts) Let A be a 2×2 non-singular matrix and let $B = \{X_1, X_2, X_3\}$ be a subset of \mathbb{R}^2 that spans \mathbb{R}^2. Prove that $\{AX_1, AX_2, AX_3\}$ also spans \mathbb{R}^2.
(5) (15 pts) Let A be any $m \times m$ invertable matrix and B any $m \times n$ matrix. Prove that $\text{rank}(AB) = \text{rank}(B)$. Explain why this shows that B is invertable if and only if AB is invertable.

(6) (10 pts) Given the matrix A and an eigenbasis \mathcal{B}, find the matrix for T_A relative to the basis \mathcal{B}.

$$A = \begin{bmatrix} -7 & 3 \\ -18 & 8 \end{bmatrix} \quad \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}.$$
(7) (15 pts) Let V and W be vector spaces and let $T : V \rightarrow W$ be a linear function. Suppose that \mathcal{B} is a linearly independent subset of V. Prove that if $\text{nullspace}(T) = \{0\}$, then $T(\mathcal{B})$ is linearly independent. (Recall that $\text{nullspace}(T) = \{X \in V : T(X) = 0\}$.)

(8) (10 pts) Let \mathcal{P}_2 be the vector space of polynomials of degree no more than 2. Find a basis for the subspace of \mathcal{P}_2 spanned by the set

$$\{1 - 2x, 3x + 2x^2, 3 + 4x^2, 2 - x + 2x^2\}.$$

Express the other polynomials in this set as linear combinations of the basis elements.