MATH143-01 Exam One Spring 2009

You may keep this page of questions. Turn in your answers with all of your work on the colored paper.

NO CALCULATORS ARE ALLOWED FOR THIS EXAM.

(1) 10 Points. Write down the abstract partial fractions decomposition for

\[
f(x) = \frac{5x^7 - x^6 + 8x^3 - 19\pi}{(x - 2)(x + 7)^3(x^2 + 17)(x^2 - 6x + 61)^2}.
\]

Evaluate the following antiderivatives.

(2) 12 Points. \(\int x^5 \ln x \, dx\).

(3) 12 Points. \(\int \sin^3 \theta \cos^3 \theta \, d\theta\).

(4) 18 Points. \(\int \frac{x^2 - 18x + 25}{(x + 2)(x^2 + 9)} \, dx\).

(5) 16 Points. \(\int x^3 \cos(kx) \, dx\). Assume that \(k \neq 0\).

(6) 18 Points. Find the exact area of the region in the \(xy\)-plane that is bounded by \(y = \frac{1}{(x^2 + 4)^2}\), \(y = 0\), \(x = 0\) and \(x = \sqrt{5}\).

(7) 14 Points. Using the table for \(f(x)\) below, find the numerical approximations \(R_4, L_4, T_4, M_4\) and \(S_4\) for the integral \(\int_3^5 f(x) \, dx\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>3.00</th>
<th>3.25</th>
<th>3.50</th>
<th>3.75</th>
<th>4.00</th>
<th>4.25</th>
<th>4.50</th>
<th>4.75</th>
<th>5.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>