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Frame potential and finite abelian groups

Brody D. Johnson and Kasso A. Okoudjou

Abstract. This article continues a prior investigation of the authors with the
goal of extending characterization results of convolutional tight frames from

the context of cyclic groups to general finite abelian groups. The collections
studied are formed by translating a number of generators by elements of a

fixed subgroup and it is shown, under certain norm conditions, that tight

frames with this structure are characterized as local minimizers of the frame
potential. Natural analogs to the downsampling and upsampling operators of

finite cyclic groups are studied for arbitrary subgroups of finite abelian groups.

Directions of further study are also proposed.

1. Introduction

In recent years, there has been much activity in the study of frames for finite-
dimensional Hilbert spaces. Topics of interest include the characterization and
construction of frames of various kinds, e.g., equiangular frames [Renes], harmonic
frames [VW2], [compound] geometrically uniform frames [BE], tight frames [BF,
CFKLT], frames with symmetries [VW1], frames resistant to erasures [HP], etc.
Throughout this section, let H denote a finite dimensional real or complex Hilbert
space. Recall that a frame for H is a collection X = {fk}nk=1 ⊆ H for which there
exist real numbers 0 < A ≤ B <∞ such that

A‖f‖2 ≤
n∑
k=1

|〈f, fk〉|2 ≤ B‖f‖2, for all f ∈ H.

If it is possible to choose A = B then X is called a tight frame.
One recent line of research began with the work of Benedetto and Fickus in

[BF], where a characterization of tight frames composed of unit-norm vectors was
given in terms of the frame potential.

Definition 1.1. Let H be a finite dimensional real or complex Hilbert space.
Let X = {fk}Nk=1 ⊆ H, then the frame potential of the collection X is defined as

FP(X) =
N∑
j=1

N∑
k=1

|〈fj , fk〉|2 .
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Following the work of Benedetto and Fickus, Casazza et al. [CFKLT] consid-
ered frames composed of vectors with arbitrary norms and arrived at the following
description of tight frames.

Theorem 1.2 (Theorem 10 of [CFKLT]). Let H be a d-dimensional real or
complex Hilbert space and fix a0 ≥ a1 ≥ · · · ≥ aM−1 > 0, M ≥ d. Denote by m0

the smallest index 0 ≤ m ≤M − 1 for which

(1.1) (d−m)a2
0 ≤

M−1∑
j=m

a2
j

holds. If X = {fj}M−1
j=0 ⊂ H is a local minimizer of the frame potential subject to

the constraint ‖fj‖ = aj, 0 ≤ j ≤M − 1, then X may be divided into two mutually
orthogonal subcollections: {fj}m0−1

j=0 , which consists of mutually orthogonal nonzero
vectors, and {fj}M−1

j=m0
, which is a tight frame for its (d − m0)-dimensional span.

In the event that m0 = 0, X is a tight frame for H.

When m = 0, (1.1) is referred to as the fundamental frame inequality,

(1.2) da2
0 ≤

M−1∑
j=0

a2
j .

In light of Theorem 1.2, it is clear that this inequality provides a sufficient condition
for the existence of a tight-frame having a specified nonincreasing sequence of norms.

Remark 1.3. The following additional facts from [CFKLT] related to Theo-
rem 1.2 and the inequality (1.2) will also be relevant to this work.

(i) The fundamental frame inequality (1.2) is a necessary condition on the
norms associated to any tight frame after rearrangement into decreasing
order.

(ii) Any local minimizer of the frame potential (associated with a fixed se-
quence of norms) must also be a global minimizer.

Another line of research, originated by Vale and Waldron [VW1], deals with an
examination of certain symmetries possessed by tight frames for finite dimensional
Hilbert spaces. Following [VW1], define the symmetry group of a frame X =
{fk}nk=1 for H to be the group

Sym(X) = {U ∈ U(H) : U(X) = X}.

Here, U(H) denotes the group of unitary linear transformations on H under compo-
sition. This motivates a natural question: Under what conditions, if any, can tight
frames with specified symmetries be characterized as local minimizers of the frame
potential?

Example 1.4. Let ω = e2πi/3 and define A to be the 2× 2 matrix

A =
[
ω 0
0 ω2

]
.

Given u ∈ C2 with ‖u‖ = 1, consider the collection X = {Aju}2j=0. It will be
shown that the local minimizers of the frame potential of X (under the constraint
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that ‖u‖ = 1) are precisely the tight frames of this form. By symmetry,

FP(X) = 3
2∑
k=0

∣∣〈Aku, u〉∣∣2 ,
so letting u = (u1, u2) one seeks to minimize (after an elementary computation)

f(u1, u2) = 3
(
1 + 2|u1|4 − 2|u1|2|u2|2 + 2|u2|4

)
subject to the constraint that g(u1, u2) = |u1|2+|u2|2 = 1. The method of Lagrange
multipliers reveals that the minima occur when |u1|2 = |u2|2, i.e., u is of the form
(α/
√

2, β/
√

2), where α, β ∈ C satisfy |α| = |β| = 1. In any case, this leads to a
3
2 -tight frame for C2. Hence, each local minimizer of FP(X) leads to a tight frame.
Moreover, if there were another choice for u which led to a tight frame it would
achieve the same minimum value for f and, therefore, would be among the solutions
found through Lagrange multipliers. This shows that the tight frames of the form
{Aju}2j=0 are precisely the local minimizers of the frame potential.

The present work seeks an answer to the preceding question for certain symme-
try groups in association with the group algebra `(G), the real or complex Hilbert
space of functions defined on a finite abelian group G. Notice that each element
g ∈ G leads to a natural translation operator on `(G),

Tg : `(G)→ `(G), (Tgf)(g′) = f(g′g−1).

Therefore, given a subgroup H of G, any frame of the form

(1.3) XH = {Thfk : h ∈ H, fk ∈ `(G), 0 ≤ k ≤ n− 1}
satisfies H ≤ Sym(XH). Moreover, such frames bear a close relationship with the
convolution structure of `(G), which leads to efficient implementation in applica-
tions by way of the fast Fourier transform. In this sense, this work continues an
investigation of the authors’ from [FJKO] in which tight frames generated by trans-
lations in `(Z/dZ) were characterized as the local minimizers of the frame potential
under certain norm conditions related to (1.1).

2. Preliminaries

Throughout this section G will denote a finite abelian group. Recall that the
inner product on `(G) is given by

〈f1, f2〉 =
∑
g∈G

f1(g)f2(g), f1, f2 ∈ `(G).

The convolution of f1, f2 ∈ `(G), denoted f1 ∗ f2 ∈ `(G), is given by

f1 ∗ f2(g) =
∑
x∈G

f1(x)f2(g−1x), g ∈ G.

This work is concerned with the study of collections of filters, X = {fm}n−1
m=0 ∈

`(G), which will be used to analyze and synthesize general elements of `(G) via
convolution. It is natural to sample such convolutions over a subgroup H, which
may be loosely interpreted as a downsampling operation with respect to the quotient
group G/H. With this motivation, define the sampling operator over H, SH :
`(G)→ `(H), by

(SHf)(h) = f(h), h ∈ H.



4 BRODY D. JOHNSON AND KASSO A. OKOUDJOU

Similarly, define the upsampling operator over H, S∗H : `(H)→ `(G), by

(S∗Hf)(g) =

{
f(g), g ∈ H
0, g /∈ H,

g ∈ G.

Figure 1 depicts a typical filterbank, composed of analysis and synthesis stages
that make use of convolution (represented by rectangular elements) as well as the
sampling and upsampling operators (represented by circular elements). The anal-
ysis stage implements the involution of each filter, an operation on `(G) given by
f̃(g) = f(g−1).

f f̃0 ����SH (Lf)0 ����S∗H f0

f̃1 ����SH (Lf)1 ����S∗H f1

...
...

...
...

...
...

f̃n−1 ����SH (Lf)n−1 ����S∗H fn−1

j+ Ff

j+
...

︸ ︷︷ ︸
Analysis

︸ ︷︷ ︸
Synthesis

Figure 1. Block diagram of an n-channel filterbank on `(G).

Associated with the filterbank of Figure 1 are several important operators. The
filterbank analysis operator, L : `(G)→

⊕n−1
m=0 `(H), is given by

Lf = (Lf)0 ⊕ · · · ⊕ (Lf)n−1,

where (Lf)m = SH(f ∗ f̃m). The adjoint of the filterbank analysis operator, L∗ :
⊕n−1
m=0`(H)→ `(G), is called the filterbank synthesis operator and is described by

L∗
(
⊕n−1
m=0ym

)
=

n−1∑
m=0

(S∗Hym) ∗ fm.

The composition of the filterbank synthesis and analysis operators, L∗L, is called
the filterbank frame operator for the filterbank and is denoted by F : `(G)→ `(G).
The frame operator is described explicitly by

Ff =
n−1∑
m=0

[
S∗HSH(f ∗ f̃m)

]
∗ fm.

The reader should note that the filterbank frame operator associated with X is
precisely the ordinary frame operator associated with the collection XH , as defined
by (1.3). Of particular interest are collections of filters for which the associated
filterbank frame operator is a scalar multiple of the identity, i.e., filters which give
rise to tight frames for `(G). With this in mind, the main goal of this work is to
provide a characterization of filterbanks which give rise to tight frames in terms of
the frame potential. Although neither of the works [BF, CFKLT] includes the use
of filterbanks, one could interpret their results in terms of a filterbank for `(G) with
sampling over the trivial subgroup. (In this case, the group structure of G plays no
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role in the analysis.) As noted in Section 1, the results of [FJKO] correspond to a
non-trivial filterbank with G = Zd and H a cyclic subgroup of G.

The methods of [FJKO] rely on a block diagonalization of L∗ called the mod-
ulated filter representation, from which it follows that the frame characteristics of a
filterbank for `(Zd) are equivalent to the combined frame characteristics of a series
of d/N trivial filterbanks (downsampled over the trivial subgroup) for `(ZN ). The
characterization of tight frames for the latter case is described by the following
theorem.

Theorem 2.1 (Theorem 12 of [FJKO]). Let {am}n−1
m=0 ⊂ R be such that a0 ≥

a1 ≥ · · · ≥ an−1 > 0. Let d and N be positive integers such that N | d and N ≤ n.
Denote by m0 the smallest index 0 ≤ m ≤ N − 1 such that

(2.1) (N −m)a2
m ≤

n−1∑
j=m

a2
j .

If the collections Yj := {ym,j}n−1
m=0 ⊂ `(ZN ) form a local minimizer of the combined

frame potential,
∑ d

N−1
j=0 FP(Yj), under the constraint that

d
N−1∑
j=0

‖ym,j‖2 =
d

N
a2
m, 0 ≤ m ≤ n− 1,

then each collection Yj may be divided into two mutually orthogonal subcollections
of `(ZN ): {ym,j}m0−1

m=0 , which consists of mutually orthogonal, nonzero vectors, and
{ym,j}n−1

m=m0
, which is a tight frame for its (N −m0)-dimensional span. Moreover,

for each j the norms of the vectors of Yj must satisfy ‖ym,j‖ = am for 0 ≤ m ≤
m0−1 and

∑n−1
m=m0

‖ym,j‖2 =
∑n−1
m=m0

a2
m. In the event that m0 = 0 each collection

Yj, 0 ≤ j ≤ d
N − 1, is a tight frame for `(ZN ) with a common frame bound.

The reader should note the similarity of (2.1) to (1.1). It is apparent from
the statement of Theorem 2.1 that this result is somewhat technical, yet it will
play an important role in the analysis of filterbanks with sampling over arbitrary
subgroups H. Before such an analysis can be made, however, the behavior of SH
and S∗H under the discrete Fourier transform will be examined.

3. The discrete Fourier transform

Throughout this section G will represent a finite abelian group. Recall that
a character of G is a group homomorphism χ : `(G) → T, where T represents
the multiplicative group of unimodular complex numbers. The dual group to G is
denoted by Ĝ and consists of all characters of G under pointwise multiplication.
By the duality theorem of Pontryagin Ĝ is, in fact, isomorphic to G, a result which
can be obtained here as an easy consequence of the fundamental theorem of finite
abelian groups.

Indeed, G is isomorphic to a direct sum of cyclic groups, i.e.,

G ' (Z/m1Z)⊕ · · · ⊕ (Z/mrZ),
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with mj | mj+1, 1 ≤ j ≤ r− 1. To each a = (a1, . . . , ar) ∈ G there is an associated
character, χa, given by

(3.1) χa(x) =
r∏
j=1

χaj (xj), x = (x1, . . . , xr) ∈ G,

where χaj (xj) = exp (2πiajxj/mj). For a, b ∈ G, therefore, it is evident that
χaχb = χab. The fact that the characters given by (3.1) exhaust Ĝ is a consequence
of the following lemma.

Lemma 3.1 ([Terras]). Let χ, ψ ∈ Ĝ, then

〈χ, ψ〉 =

{
|G|, χ = ψ,

0, otherwise.

The preceding discussion illustrates the fact that the characters of G form
an orthogonal basis of `(G) and, consequently, that any f ∈ `(G) is uniquely
determined by its inner products with the characters. This notion is the foundation
for the discrete Fourier transform on G.

Definition 3.2. The discrete Fourier transform (DFT) of f ∈ `(G) is defined
by

Ff(χ) = f̂(χ) =
∑
x∈G

f(x)χ(x), χ ∈ Ĝ.

The following lemma summarizes the basic properties of the DFT on a finite
abelian group, G.

Lemma 3.3 ([Terras]). Basic Properties of the DFT.

(i) F : `(G)→ `(Ĝ) is a bijective linear map.
(ii) For f1, f2 ∈ `(G), the convolution,

(f1 ∗ f2)(x) =
∑
y∈G

f1(y)f2(x− y), x ∈ G,

satisfies

F(f1 ∗ f2)(χ) = Ff1(χ)Ff2(χ), χ ∈ Ĝ.

(iii) For f ∈ `(G),

f(x) =
1
|G|

∑
χ∈Ĝ

Ff(χ)χ(x), x ∈ G.

(iv) For f1, f2 ∈ `(G),

〈f1, f2〉 =
1
|G|
〈Ff1,Ff2〉.

Another important aspect of Fourier analysis on finite abelian groups, particu-
larly for the problems considered in this work, lies in the relationship between the
dual groups of G and a subgroup H ≤ G. The following proposition is adapted
from Proposition 6.1 of [Serre].
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Proposition 3.4. Suppose H ≤ G, let x ∈ G \ H, and denote by Hx the
subgroup of G generated by H and x. Let mx = min {n ∈ N : xn ∈ H}. Then each
χ ∈ Ĥ extends to mx orthogonal characters in Ĥx, {χj}mx−1

j=0 , and

Ĥx = {χj : χj |H = χ, χ ∈ Ĥ, 0 ≤ j ≤ mx − 1}.

Proof. Fix x ∈ G \H and let m := mx. Observe that Hx is given by

Hx = {xkh : 0 ≤ k ≤ m− 1, h ∈ H}.
If xkh1 = x`h2 for some 0 ≤ k, ` < m and h1, h2 ∈ H (without loss, assume k ≥ `),
then xk−` ∈ H with 0 ≤ k − ` < m, a contradiction. It follows that [Hx : H] = m.

Fix χ ∈ Ĥ and let ω = χ(xm). Define αj , 0 ≤ j ≤ m − 1, as the distinct
solutions of

αmj = ω.

Note that the collection {αj}m−1
j=0 consists of a constant multiple of the mth roots

of unity. Now define χj , 0 ≤ j ≤ m − 1, by χj(xkh) = αkjχ(h). It is routine to
verify that these elements of `(Hx) are characters. Moreover, it follows that

〈χj1 , χj2〉Hx =
∑
h∈H

|χ(h)|2
m−1∑
k=0

αkj1 α
k
j2
.

Hence, the orthogonality of {χj}m−1
j=0 follows from the orthogonality of the charac-

ters of Z/mZ. Thus, each character of Ĥ extends to m orthogonal characters of
Ĥx.

If χ, ψ ∈ Ĥ then

〈χj1 , ψj2〉Hx =
∑
h∈H

χ(h)ψ(h)
m−1∑
k=0

αkj1 α̃
k
j2

and the orthogonality follows from the orthogonality of characters in Ĥ. Dimen-
sional considerations reveal that Ĥx consists precisely of the character extensions
claimed in the statement of the proposition. �

Let H ≤ G. Given χ ∈ Ĥ, let Ĝχ consist of all the characters in Ĝ whose
restrictions to H coincide with χ, i.e.,

Ĝχ = {ψ ∈ Ĝ : ψ|H = χ}.

Corollary 3.5. Let H ≤ G and χ ∈ Ĥ. Then |Ĝχ| = [G : H].

Proof. Let x1, x2, . . . , xn ∈ G such that x1 /∈ H and xk /∈ Hk−1, 1 ≤ k ≤ n,
where H0 = H, Hn = G, and Hk is the subgroup generated by Hk−1 and xk. Such
elements exist because G is a finite group.

The result will be demonstrated by induction. The proof of Proposition 3.4
shows for χ ∈ Ĥ that |(Ĥ1)χ| = [H1 : H]. Assume that |(Ĥk)χ| = [Hk : H], with
1 ≤ k ≤ n− 1. Appealing again to the proof of Proposition 3.4 it is clear that for
any ψ ∈ (Ĥk)χ,

|(Ĥk+1)ψ| = [Hk+1 : Hk].

But each element of (Ĥk+1)ψ, ψ ∈ (Ĥk)χ, is an element of (Ĥk+1)χ, so

|(Ĥk+1)χ| = [Hk+1 : Hk] [Hk : H] = [Hk+1 : H].
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The k = n instance of the induction statement is the conclusion of the proposition.
�

Corollary 3.6. Let H ≤ G and χ ∈ Ĥ. Then,∑
ψ∈Ĝχ

ψ(g) =

{
[G : H]χ(g), g ∈ H,
0, otherwise.

Proof. By the definition of Ĝχ, ψ(g) = χ(g) whenever g ∈ H. Hence, the
claimed formula for g ∈ H follows from Corollary 3.5. It is, therefore, sufficient to
prove that if g /∈ H, then

∑
ψ∈Ĝχ ψ(g) = 0. Let {xk}nk=1 and Hk, 0 ≤ k ≤ n, be

as in the proof of Corollary 3.5. Recall from the proof of Proposition 3.4 that each
extension of ϕ ∈ Ĥk to an element ψj of Hk+1 is defined by

ψj(x`k+1h) = α`jϕ(h),

where h ∈ Hk and, letting m = [Hk+1 : Hk], αj is an mth root of ϕ(xmk+1). (Note
that xmk+1 ∈ Hk.) It follows that∑

ψ∈(Ĥk+1)ϕ

ψ(g) = ϕ(h)
m−1∑
j=0

α`j ,

where g = x`h, for some h ∈ Hk and 0 ≤ ` < m. If ` 6= 0, i.e., g /∈ Hk, the sum
is zero because {αj}m−1

0 consists of a constant multiple of the mth roots of unity.
The result follows by an induction argument similar to that of Corollary 3.5. �

The preceding corollaries set the stage for descriptions of sampling and upsam-
pling over a subgroup H ≤ G in terms of the DFT.

Proposition 3.7. Let G be a finite abelian group with subgroup H. Then
(i) For f ∈ `(H),

Ŝ∗Hf(χ) = f̂(χ|H), χ ∈ Ĝ.
(ii) For f ∈ `(G),

ŜHf(χ) =
1

[G : H]

∑
ψ∈Ĝχ

f̂(ψ), χ ∈ Ĥ.

Proof. Let f ∈ `(H) and observe that

Ŝ∗Hf(χ) =
∑
g∈G

(S∗Hf)(g)χ(g) =
∑
h∈H

f(h)χ(h) = f̂(χ|H).

Given f ∈ `(G), then

ŜHf(χ) =
∑
h∈H

f(h)χ(h)

=
∑
g∈G

f(g)
1

[G : H]

∑
ψ∈Ĝχ

ψ(g)

=
1

[G : H]

∑
ψ∈Ĝχ

f̂(ψ),

where the second equality follows from Corollary 3.6. �
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4. Convolutional systems for `(G)

The results of the previous section make it possible to apply the approach of
[FJKO] for the study of convolutional systems in `(Z/dZ) to convolutional systems
in `(G), where G is an arbitrary finite abelian group. The major tools required
are the modulated filter representation (which rests on the sampling formulas of
Proposition 3.7) and Theorem 2.1. The formal definition of a convolutional system
for `(G) follows.

Definition 4.1. Let {fm}n−1
m=0 ⊂ `(G), where G is a finite abelian group. Given

a subgroup H of G, the collection

XH

(
{fm}n−1

m=0

)
= {Thfm : h ∈ H, 0 ≤ m ≤ n− 1}

will be referred to as the convolutional system generated by {fm}n−1
m=0 with sampling

over H.

Note that the frame operator of such a system coincides with the filterbank frame
operator described in Section 2 and depicted in Figure 1.

4.1. The modulated filter representation. The purpose of the modulated
filter representation is to generate a factorization of the filterbank synthesis oper-
ator, L∗, which will lead to a new system with equivalent frame properties whose
synthesis operator possesses a block diagonal representation.

Towards this end, consider y = y0 ⊕ · · · ⊕ yn−1 ∈
⊕n−1

m=0 `(H) under the action
of L∗. Applying FG to L∗y yields

(FGL∗y)(ψ) =
n−1∑
m=0

f̂m(ψ) ŷm(ψ|H), ψ ∈ Ĝ,

by Proposition 3.7. Alternatively, given χ ∈ Ĥ,

(4.1) (FGL∗y)(ψ) =
n−1∑
m=0

f̂m(ψ) ŷm(χ), ψ ∈ Ĝχ.

Notice that the value of FGL∗y for each ψ ∈ Ĝχ, χ ∈ Ĥ, depends only on the
Fourier transform of the components of y at χ. There is no implicit ordering for
the elements of Ĝ and Ĥ, but, for the sake of a more explicit matrix represenation of
the filterbank analysis operator, let the elements of Ĥ be enumerated as Ĥ = {χ` :
1 ≤ ` ≤ |H|} and those of Ĝ in terms of Ĝχ` = {ψ`,j : 1 ≤ j ≤ [G : H]}. (Notice
that the latter enumeration is justified by Corollary 3.5.) Under these conventions,
(4.1) may be formulated as the matrix product

(4.2)
1√
|G|

 FGL∗y(ψ`,1)
...

FGL∗y(ψ`,[G:H])

 = H∗mod(`)
1√
|H|

 ŷ0(χ`)
...

ŷn−1(χ`)

 , 1 ≤ ` ≤ |H|,

where H∗mod(`) is a [G : H]× n matrix whose (j,m) entry is given by

[H∗mod(`)](j,m) =
1√

[G : H]
f̂m(ψ`,j).

The additional constants present in (4.2) account for the fact that FG and FH ,
as defined in Section 3, are not unitary. Collecting the |H| equations represented



10 BRODY D. JOHNSON AND KASSO A. OKOUDJOU

by (4.2) into a single matrix equation reveals the block diagonal nature of the
modulated filter representation,

1√
|G|



FGL
∗y(ϕ1,1)

...

FGL
∗y(ϕ1,[G:H]})

FGL
∗y(ϕ2,1)

...

FGL
∗y(ϕ2,[G:H]})

...

FGL
∗y(ϕ|H|,1)

...

FGL
∗y(ϕ|H|,[G:H]})



=
1√
|H|


H∗mod(χ1) . . . 0

...
. . .

...

0 . . . H∗mod(χ|H|)





FHy0(χ1)
...

FHyn−1(χ1)

FHy0(χ2)
...

FHyn−1(χ2)

...

FHy0(χ|H|)
.
..

FHyn−1(χ|H|)



.

The block matrix on the right-hand side of the last equality is called the block
adjoint modulated filter matrix and will be denoted by H∗mod. Notice that U1 =
|G|−1/2FG ∈ U(`(G)) and U2 = |H|−1/2FH ∈ U(`(H)), which implies

(4.3) L∗ = U−1
1 H∗mod(⊕`U2).

It should be noted that given another ordering of the elements comprising Ĝ or
Ĥ one could introduce additional permutation matrices to achieve the above block
diagonalization. Equation (4.3) motivates the definition of the [G : H] collections,

Y` = {ym,`}n−1
m=0 ⊂ `(Z/[G : H]Z), 1 ≤ ` ≤ |H|,

where ym,`(j) = [G : H]−1/2f̂m(ψ`,j). As a result of this definition, H∗mod(`) is the
synthesis operator corresponding to Y`. Moreover, since L∗L and H∗modHmod are
unitarily equivalent, it follows that:

(1) the frame bounds for XH({fm}n−1
m=0) are the minimum of the lower frame

bounds and the maximum of the frame bounds for the collections Y`;
(2) the frame potential of XH({fm}n−1

m=0) is equal to the sum of the frame
potential of the collections Y`, 1 ≤ ` ≤ |H|.

The arguments used to justify these facts can be found in [FJKO] and, therefore,
will not be repeated here.

4.2. The main result.

Theorem 4.2. Let {am}n−1
m=0 ⊂ R be such that a0 ≥ a1 ≥ · · · ≥ an−1 > 0. Let

G be a finite abelian group and H a subgroup of G with n ≥ [G : H]. Denote by m0

the smallest index 0 ≤ m ≤ [G : H]− 1 such that

(4.4) ([G : H]−m)a2
m ≤

n−1∑
j=m

a2
j .

If XH({fm}n−1
m=0) ⊂ `(G) is a local minimizer of the frame potential under the

constraint that ‖fm‖ = am, 0 ≤ m ≤ n − 1, then XH({fm}n−1
m=0) may be divided

into two mutually orthogonal subcollections of `(G): XH({fm}m0−1
m=0 ), which consists

of mutually orthogonal, nonzero vectors, and XH({xm}n−1
m=m0

), which is a tight
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frame for its |H|([G : H] −m0)-dimensional span. In particular, if m0 = 0 then
XH({fm}n−1

m=0) is a tight frame for `(G).

Proof. Consider the collections Y`, 1 ≤ ` ≤ |H|, defined in the previous
section and observe that, up to a constant multiple, the Fourier coefficients of a
given filter fm are distributed as the values of the elements ym,`(j), 1 ≤ ` ≤ |H|,
1 ≤ j ≤ [G : H]. Hence, the constraint ‖fm‖ = am can be restated as

|H|∑
`=1

‖ym,`‖2 = |H|a2
m, 0 ≤ m ≤ n− 1.

Referring to Theorem 2.1 with N = [G : H] it is not difficult to see that if the
hypotheses of Theorem 4.2 are satisfied, then those of Theorem 2.1 will be satis-
fied with the same m0. Theorem 2.1 thus provides a decomposition of each Y`,
1 ≤ ` ≤ |H|, into mutually orthogonal subcollections {ym,`}m0−1

m=0 and {ym,`}n−1
m=m0

,
the former collection consisting of mutually orthogonal vectors and the latter com-
prising a tight frame for its span. In particular, for each 1 ≤ ` ≤ |H|, ‖ym,`‖2 = a2

m

for m < m0 and

(4.5)
n−1∑
m=m0

‖ym,`‖2 =
n−1∑
m=m0

a2
m, m0 ≤ m ≤ n− 1.

Let FY` denote the frame operator of Y` on `(Z/[G : H]Z) and FY = H∗modHmod the
frame operator induced by H∗mod on `(G). It follows from the above decomposition
that each ym,` is an eigenvector of FY` and that the eigenvalue is independent of `.
If m < m0, then the eigenvalue is a2

m, while if m ≥ m0, the eigenvalue is given by
(4.5). As a result, ⊕`ym,` is an eigenvector of FY with the corresponding eigenvalue.
By construction, ⊕`ym,` is equal to

√
|H|U1fm and

FY = H∗modHmod = U1L
∗LU−1

1 = U1FU
−1
1 ,

where F is the frame operator of the collection XH . Since U1fm is an eigenvector
of FY , it follows that fm is an eigenvector of F . Moreover, the eigenvalue of fm
for F must equal that of ⊕`ym,` for FY , while the symmetry of the collection XH

forces each translate Thfm, h ∈ H, to be an eigenvector with the same eigenvalue.
Finally, note that the claimed orthogonality of the subcollections XH({fm}m0−1

m=0 )
and XH({xm}n−1

m=m0
) (along with the mutual orthogonality of the vectors in the

former subcollection) is inherited from the above decomposition of Y`, since the
frame operators FY and F are unitarily equivalent. This completes the proof. �

The final result of this section examines underdetermined systems and follows
from an argument analogous to that used in [FJKO].

Corollary 4.3. Let {am}n−1
m=0 ⊂ R be such that a0 ≥ a1 ≥ · · · ≥ an−1 >

0. Let G be a finite abelian group and H a subgroup of G with n ≤ [G : H].
If XH({fm}n−1

m=0) ⊂ `(G) is a local minimizer of the frame potential under the
constraint that ‖fm‖ = am, 0 ≤ m ≤ n − 1, then XH({fm}n−1

m=0) is an orthogonal
sequence in `(G).

5. Directions for further study

Recall that one consequence of the characterization results of Theorems 1.2
and 4.2 is the existence of tight frames with a certain structure. In the case of
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Theorem 1.2 the structure imposed is limited to the norms of the frame elements,
while in Theorem 4.2 the frames studied are required to consist of the translates
of elements of prescribed norms over a subgroup. In each case, the fundamental
frame inequality describes when the imposed structure permits tight frames. It is
natural to wonder what other structures lead to similar descriptions of tight frames
and whether some version of the fundamental frame inequality will always appear
in the characterization. The following specific questions are motivated by this idea.

(1) Is it possible to extend the characterization of tight frames in terms of the
frame potential to convolutional systems for `(G), where G is an arbitrary
finite group?

(2) What other symmetries or structures of systems in a finite dimensional
Hilbert space lead to similar characterizations of tight frames in terms of
the frame potential?

In a certain sense, the frame potential measures the orthogonality of a given col-
lection of vectors and, as such, minimizers of the frame potential can be thought to
represent maximally orthogonal collections. Recent interest in equiangular frames
seems to take a step away from this concept; however, it is reasonable to ask
whether potential methods can be adapted sufficiently to produce existence results
for equiangular frames.
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