Quincunx wavelets on \mathbb{T}^2

Brody Dylan Johnson

St. Louis University

4 December 2009

Joint work with Kenneth R. Hoover California State University - Stanislaus

This work examines finite-dimensional wavelet systems in $L^2(\mathbb{T})$ and $L^2(\mathbb{T}^2)$ in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale $j > 0$ these systems will have dimension 2^j .

- This work examines finite-dimensional wavelet systems in $L^2(\mathbb{T})$ and $L^2(\mathbb{T}^2)$ in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale $j > 0$ these systems will have dimension 2^j .
- On the circle:

- This work examines finite-dimensional wavelet systems in $L^2(\mathbb{T})$ and $L^2(\mathbb{T}^2)$ in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale $j > 0$ these systems will have dimension 2^j .
- On the circle:
	- $\widehat{\text{D}}$ Dilation: $\widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}$.

- This work examines finite-dimensional wavelet systems in $L^2(\mathbb{T})$ and $L^2(\mathbb{T}^2)$ in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale $j > 0$ these systems will have dimension 2^j .
- On the circle:
	- $\widehat{\text{D}}$ Dilation: $\widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}$.
	- Translation: T_{α} , where $\alpha \in \Gamma_j = 2^{-j}\mathbb{Z}/\mathbb{Z}$.

 Ω

- This work examines finite-dimensional wavelet systems in $L^2(\mathbb{T})$ and $L^2(\mathbb{T}^2)$ in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale $j > 0$ these systems will have dimension 2^j .
- On the circle:
	- $\widehat{\text{D}}$ Dilation: $\widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}$.
	- Translation: T_{α} , where $\alpha \in \Gamma_j = 2^{-j}\mathbb{Z}/\mathbb{Z}$.
- On the torus:

 Ω

- This work examines finite-dimensional wavelet systems in $L^2(\mathbb{T})$ and $L^2(\mathbb{T}^2)$ in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale $j > 0$ these systems will have dimension 2^j .
- On the circle:
	- $\widehat{\text{D}}$ Dilation: $\widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}$.
	- Translation: T_{α} , where $\alpha \in \Gamma_j = 2^{-j}\mathbb{Z}/\mathbb{Z}$.
- On the torus:
	- Dilation: $\widehat{Df}(k) = \hat{f}(Ak), k \in \mathbb{Z}^2$, where

$$
A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.
$$

nar

- This work examines finite-dimensional wavelet systems in $L^2(\mathbb{T})$ and $L^2(\mathbb{T}^2)$ in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale $j > 0$ these systems will have dimension 2^j .
- On the circle:
	- $\widehat{\text{D}}$ Dilation: $\widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}$.
	- Translation: T_{α} , where $\alpha \in \Gamma_j = 2^{-j}\mathbb{Z}/\mathbb{Z}$.
- On the torus:
	- Dilation: $\widehat{Df}(k) = \hat{f}(Ak), k \in \mathbb{Z}^2$, where

$$
A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.
$$

Translation: T_{α} , where $\alpha \in \Gamma_j = A^{-j}\mathbb{Z}^2/\mathbb{Z}^2$.

nar

Preliminaries on the circle

Part I: The Circle

Part I: The Circle

 \leftarrow \Box \rightarrow

Definition 1

For
$$
f \in L^2(\mathbb{T})
$$
, $\widehat{Df}(k) = \widehat{f}(2k)$, $k \in \mathbb{Z}$.

в

 299

イロトス 伊 トスラトス

Definition 1

For
$$
f \in L^2(\mathbb{T})
$$
, $\widehat{Df}(k) = \widehat{f}(2k)$, $k \in \mathbb{Z}$.

Remark 1

Dilation on the circle performs a *downsampling* of the Fourier coefficients.

4 0 8

Definition 1

For
$$
f \in L^2(\mathbb{T})
$$
, $\widehat{Df}(k) = \widehat{f}(2k)$, $k \in \mathbb{Z}$.

Remark 1

- Dilation on the circle performs a *downsampling* of the Fourier coefficients.
- Dilation on the circle is not invertible, hence MRAs will be one-sided.

 \leftarrow \Box

Definition 1

For
$$
f \in L^2(\mathbb{T})
$$
, $\widehat{Df}(k) = \widehat{f}(2k)$, $k \in \mathbb{Z}$.

Remark 1

- Dilation on the circle performs a *downsampling* of the Fourier coefficients.
- Dilation on the circle is not invertible, hence MRAs will be one-sided. \bullet
- Dilation of a trigonometric polynomial will eventually result in a \bullet constant function, i.e., if *f* is a trigonometric polynomial then $D^if = \hat{f}(0)$ for sufficiently large $j \in \mathbb{N}$.

 Ω

Definition 2

The *principal shift-invariant space of order* 2^j generated by $\phi \in L^2(\mathbb{T})$ is the finite-dimensional space $V_i(\phi) = \text{span} X_i(\phi)$, where

$$
X_j(\phi) = \{T_{2^{-j}}^n \phi: \ 0 \leq n \leq 2^j-1\}.
$$

Definition 2

The *principal shift-invariant space of order* 2^j generated by $\phi \in L^2(\mathbb{T})$ is the finite-dimensional space $V_i(\phi) = \text{span} X_i(\phi)$, where

$$
X_j(\phi) = \{T^n_{2^{-j}}\phi: \ 0 \leq n \leq 2^j-1\}.
$$

Definition 3

The *bracket product of order* 2^j of two functions $f, g \in L^2(\mathbb{T})$ is the vector $[\hat{f}, \hat{g}]_j \in \ell(\mathbb{Z}_{2^j})$ defined by

$$
[\hat{f}, \hat{g}]_j(n) = 2^j \sum_{k \in \mathbb{Z}} \hat{f}(n + k2^j) \overline{\hat{g}(n + k2^j)}, \quad 0 \le n \le 2^j - 1.
$$

Here, $\ell(\mathbb{Z}_{2^j})$ is the finite-dimensional space of functions defined on $\mathbb{Z}/2^j\mathbb{Z}$.

 299

キロメ 不得 トイラ トイラト

Proposition 1

For all $f, g \in L^2(\mathbb{T})$ *,*

$$
\mathcal{F}_{2^j}\left(\{\langle f, T_{2^{-j}}^n g \rangle\}_{n=0}^{2^j-1}\right) = 2^{-\frac{j}{2}}[\hat{f}, \hat{g}]_j,
$$

where \mathcal{F}_{2j} is the Fourier transform on $\ell(\mathbb{Z}_{2^j})$.

4 0 3

Proposition 1

For all $f, g \in L^2(\mathbb{T})$ *,*

$$
\mathcal{F}_{2^j}\left(\{\langle f, T_{2^{-j}}^n g \rangle\}_{n=0}^{2^j-1}\right) = 2^{-\frac{j}{2}}[\hat{f}, \hat{g}]_j,
$$

where \mathcal{F}_{2j} is the Fourier transform on $\ell(\mathbb{Z}_{2^j})$.

Proposition 2

The collection $X_i(\phi)$ *forms an orthonormal basis for* $V_i(\Phi)$ *if and only if*

$$
[\hat{\phi},\hat{\phi}]_j(n)=1,\quad n\in\mathbb{Z}_{2^j}.
$$

Refinable Functions

Definition 4

A function $\phi \in L^2(\mathbb{T})$ is said to be *refinable of order* 2^j if there exists a *mask* $c \in \ell(\mathbb{Z}_{2^j})$ such that

$$
D\phi = \sum_{n \in \mathbb{Z}_{2^j}} c(n) T_{2^{-j}}^n \phi.
$$
 (1)

Refinable Functions

Definition 4

A function $\phi \in L^2(\mathbb{T})$ is said to be *refinable of order* 2^j if there exists a *mask* $c \in \ell(\mathbb{Z}_{2^j})$ such that

$$
D\phi = \sum_{n \in \mathbb{Z}_{2^j}} c(n) T_{2^{-j}}^n \phi.
$$
 (1)

Lemma 1

Suppose that $\phi \in L^2(\mathbb{T})$ *is refinable of order* 2^j *, then there exists* $m \in \ell(\mathbb{Z}_{2^j})$ *such that*

$$
\hat{\phi}(2k) = m(k)\hat{\phi}(k), \quad k \in \mathbb{Z}.
$$
 (2)

Refinability of Dilates

Remark 2

If $\phi \in L^2(\mathbb{T})$ is refinable of order 2^j with filter $m \in \ell(\mathbb{Z}_{2^j})$ then

$$
D^2 \phi = \sum_{n \in \mathbb{Z}_{2^{j-1}}} \left(\sum_{\ell \in \{0,1\}} c(n + \ell 2^{j-1}) \right) T_{2^{j-1}}^n D\phi,
$$

i.e., *D* ϕ is refinable of order 2^{j-1} .

Refinability of Dilates

Remark 2

If $\phi \in L^2(\mathbb{T})$ is refinable of order 2^j with filter $m \in \ell(\mathbb{Z}_{2^j})$ then

$$
D^2 \phi = \sum_{n \in \mathbb{Z}_{2^{j-1}}} \left(\sum_{\ell \in \{0,1\}} c(n + \ell 2^{j-1}) \right) T_{2^{j-1}}^n D\phi,
$$

i.e., *D* ϕ is refinable of order 2^{j-1} . It is not difficult to show that *m*(2·) is a filter for $D\varphi$.

Refinability of Dilates

Remark 2

If $\phi \in L^2(\mathbb{T})$ is refinable of order 2^j with filter $m \in \ell(\mathbb{Z}_{2^j})$ then

$$
D^2 \phi = \sum_{n \in \mathbb{Z}_{2^{j-1}}} \left(\sum_{\ell \in \{0,1\}} c(n + \ell 2^{j-1}) \right) T_{2^{j-1}}^n D\phi,
$$

i.e., *D* ϕ is refinable of order 2^{j-1} . It is not difficult to show that *m*(2·) is a filter for $D\varphi$.

Remark 3

Notice that $\hat{D}\varphi(0) = m(0)\hat{\varphi}(0)$. Hence, if φ is refinable with $\hat{\varphi}(0) \neq 0$, it follows that $m(0) = 1$.

Definition 5

A *multiresolution analysis (MRA) of order* 2 *j* is a collection of closed subspaces of $L^2(\mathbb{T})$, $\{V_k\}_{k=1}^j$ $\zeta_{k=0}$, satisfying

Definition 5

A *multiresolution analysis (MRA) of order* 2 *j* is a collection of closed subspaces of $L^2(\mathbb{T})$, $\{V_k\}_{k=1}^j$ $\zeta_{k=0}$, satisfying

i) For $1 \leq k \leq j$, $V_{k-1} \subseteq V_k$;

Definition 5

A *multiresolution analysis (MRA) of order* 2 *j* is a collection of closed subspaces of $L^2(\mathbb{T})$, $\{V_k\}_{k=1}^j$ $\zeta_{k=0}$, satisfying

- *i*) For $1 \leq k \leq j$, $V_{k-1} \subseteq V_k$;
- ii) For $1 \leq k \leq j-1$, $f \in V_k$ if and only if *Df* ∈ V_{k-1} ;

Definition 5

A *multiresolution analysis (MRA) of order* 2 *j* is a collection of closed subspaces of $L^2(\mathbb{T})$, $\{V_k\}_{k=1}^j$ $\zeta_{k=0}$, satisfying

- *i*) For $1 \leq k \leq j$, $V_{k-1} \subseteq V_k$;
- ii) For $1 \leq k \leq j-1, f \in V_k$ if and only if *Df* ∈ V_{k-1} ;
- \overline{iii}) V_0 is the subspace of constant functions;

Definition 5

A *multiresolution analysis (MRA) of order* 2 *j* is a collection of closed subspaces of $L^2(\mathbb{T})$, $\{V_k\}_{k=1}^j$ $\zeta_{k=0}$, satisfying

- *i*) For $1 \leq k \leq j$, $V_{k-1} \subset V_k$;
- ii) For $1 \leq k \leq j-1, f \in V_k$ if and only if *Df* ∈ V_{k-1} ;
- $iii)$ V_0 is the subspace of constant functions;
- iv) There exists a *scaling function* $\varphi \in V_j$ such that $X_k(2^{\frac{j-k}{2}}D^{j-k}\varphi)$ is an orthonormal basis for *Vk*.

Definition 5

A *multiresolution analysis (MRA) of order* 2 *j* is a collection of closed subspaces of $L^2(\mathbb{T})$, $\{V_k\}_{k=1}^j$ $\zeta_{k=0}$, satisfying

- *i*) For $1 \leq k \leq j$, $V_{k-1} \subset V_k$;
- ii) For $1 \leq k \leq j-1$, $f \in V_k$ if and only if *Df* ∈ V_{k-1} ;
- $iii)$ V_0 is the subspace of constant functions;
- iv) There exists a *scaling function* $\varphi \in V_j$ such that $X_k(2^{\frac{j-k}{2}}D^{j-k}\varphi)$ is an orthonormal basis for *Vk*.

Remark 4

Notice that MRA properties i, ii, and iv imply that a scaling function φ is necessarily refinable of order 2*^j* . Moreover, it follows from MRA properties iii and iv that $D^j \varphi$ must be constant and nonzero, implying that $\hat{\varphi}(0) \neq 0$.

Characterization of Scaling Functions

Theorem 1

Suppose $\varphi \in L^2(\mathbb{T})$ *is a refinable function of order* 2^j *with* $\hat{\varphi}(0) \neq 0$ *. Then* φ *is the scaling function of an MRA of order* 2 *j if and only if*

$$
|m_0(n)|^2 + |m_0(n+2^{j-1})|^2 = 1, \quad n \in \mathbb{Z}_{2^j}, \tag{3}
$$

and

$$
[\hat{\varphi}, \hat{\varphi}]_j(n) = 1, \quad n \in \mathbb{Z}_{2^j}.
$$
 (4)

Characterization of Scaling Functions

Theorem 1

Suppose $\varphi \in L^2(\mathbb{T})$ *is a refinable function of order* 2^j *with* $\hat{\varphi}(0) \neq 0$ *. Then* φ *is the scaling function of an MRA of order* 2 *j if and only if*

$$
|m_0(n)|^2 + |m_0(n+2^{j-1})|^2 = 1, \quad n \in \mathbb{Z}_{2^j}, \tag{3}
$$

and

$$
[\hat{\varphi}, \hat{\varphi}]_j(n) = 1, \quad n \in \mathbb{Z}_{2^j}.
$$
 (4)

Remark 5

Equation [\(3\)](#page-28-0) will be referred to as the *Smith-Barnwell equation* for the filter.

Theorem 2

Suppose $m_0 \in \ell(\mathbb{Z}_2)$ *satisfies* [\(3\)](#page-28-0) *with* $m_0(0) = 1$ *. Then* m_0 *is the low-pass* filter of a trigonometric polynomial scaling function of order 2^j .

Theorem 2

Suppose $m_0 \in \ell(\mathbb{Z}_2)$ *satisfies* [\(3\)](#page-28-0) *with* $m_0(0) = 1$ *. Then* m_0 *is the low-pass* filter of a trigonometric polynomial scaling function of order 2^j .

The construction:

1. Let
$$
\hat{\varphi}(0) = 2^{-\frac{j}{2}}
$$
.

Theorem 2

Suppose $m_0 \in \ell(\mathbb{Z}_2)$ *satisfies* [\(3\)](#page-28-0) *with* $m_0(0) = 1$ *. Then* m_0 *is the low-pass* filter of a trigonometric polynomial scaling function of order 2^j .

The construction:

- 1. Let $\hat{\varphi}(0) = 2^{-\frac{j}{2}}$.
- 2. For $-2^{j-2} \le k \le 2^{j-2} 1$, let $\hat{\varphi}(2k+1) = 2^{-\frac{j}{2}}$.

 Ω

Theorem 2

Suppose $m_0 \in \ell(\mathbb{Z}_2)$ *satisfies* [\(3\)](#page-28-0) *with* $m_0(0) = 1$ *. Then* m_0 *is the low-pass* filter of a trigonometric polynomial scaling function of order 2^j .

The construction:

- 1. Let $\hat{\varphi}(0) = 2^{-\frac{j}{2}}$.
- 2. For $-2^{j-2} \le k \le 2^{j-2} 1$, let $\hat{\varphi}(2k+1) = 2^{-\frac{j}{2}}$.
- 3. For $-2^{j-2} \le k \le 2^{j-2} 1$ and $1 \le n \le j 1$, define $\hat{\varphi}(2^n(2k+1))$ according to (1), i.e.,

$$
\hat{\varphi}(2^n(2k+1)) = m_0(2^{n-1}(2k+1)) \hat{\varphi}(2^{n-1}(2k+1)).
$$

Orthonormal Wavelets

Definition 6

Let $\{V_k\}_{k=1}^j$ $\psi_{k=0}$ be an MRA of order 2^{*j*}. A function $\psi \in V_j$ is a *wavelet* for the MRA if the collection

$$
\{2^{\frac{j-k}{2}}T_{2^{-k}}^nD^{j-(k+1)}\psi:0\leq k\leq j-1,\;n\in\mathbb{Z}_{2^k}\}
$$

is an orthonormal basis for $V_i \oplus V_0$.

Orthonormal Wavelets

Definition 6

Let $\{V_k\}_{k=1}^j$ $\psi_{k=0}$ be an MRA of order 2^{*j*}. A function $\psi \in V_j$ is a *wavelet* for the MRA if the collection

$$
\{2^{\frac{j-k}{2}}T_{2^{-k}}^nD^{j-(k+1)}\psi:0\leq k\leq j-1,\;n\in\mathbb{Z}_{2^k}\}
$$

is an orthonormal basis for $V_i \oplus V_0$.

This construction rests on a decomposition $V_k = V_{k-1} \oplus W_{k-1}$, $1 \leq k \leq j$, where W_k is of the form

$$
W_k = V_k(D^{j-(k+1)}\psi).
$$
The High-Pass Filter

Theorem 3

Suppose that φ is the scaling function of an MRA of order 2^j and define $\psi \in V_i$ *by*

$$
\hat{\psi}(k)=m_1(k)\hat{\varphi}(k),\quad k\in\mathbb{Z},
$$

where $m_1 \in \ell(\mathbb{Z}_{2^j})$ *is chosen as*

$$
m_1(n) = \overline{m_0(n+2^{j-1})} e^{-2\pi i 2^{-j}n}, \quad n \in \mathbb{Z}_{2^j}.
$$

Then ψ *is a wavelet for the MRA.*

 (5)

Borrowing from the Line

Proposition 3

Suppose $c \in \ell^2(\mathbb{Z})$ *is an absolutely summable sequence whose Fourier transform m* = ˆ*c satisfies*

$$
|m(\xi)|^2 + |m(\xi + 2^{-1})|^2 = 1, \quad \xi \in \mathbb{T},
$$

If $c_0 \in \ell(\mathbb{Z}_{2^j})$ *is defined by*

$$
c_0(n)=2^{\frac{j}{2}}\sum_{k\in\mathbb{Z}}c(n+k2^j),\quad n\in\mathbb{Z}_{2^j},
$$

then $m_0 = 2^{\frac{j}{2}} \hat{c}_0$ *satisfies the Smith-Barnwell equation* [\(3\)](#page-28-0).

The Haar Scaling Function

A low-dimensional example will be good for illustrating the construction of φ .

 \leftarrow

The Haar Scaling Function

A low-dimensional example will be good for illustrating the construction of φ .

Example 1 (Haar Filter)

Fix *j* = 3 and let $c \in \ell(\mathbb{Z}_8)$ be given by $c(0) = c(1) = \frac{1}{2}$ with $c(n) = 0$ for $n \neq 0, 1$. The low-pass filter $m_0 \in \ell(\mathbb{Z}_8)$ is given by

$$
m_0(n)=e^{-\pi in/8}\cos\left(n\pi/8\right),\quad n\in\mathbb{Z}_8.
$$

It is easy to verify the Smith-Barnwell equation [\(3\)](#page-28-0).

つくい

The Haar Scaling Function

$$
\hat{\varphi}(-3) = \frac{1}{\sqrt{8}} \longrightarrow \hat{\varphi}(-6) = \hat{\varphi}(-3)m_0(5) \longrightarrow \hat{\varphi}(-12) = \hat{\varphi}(-6)m_0(5)m_0(2),
$$

$$
\hat{\varphi}(-1) = \frac{1}{\sqrt{8}} \longrightarrow \hat{\varphi}(-2) = \hat{\varphi}(-1)m_0(7) \longrightarrow \hat{\varphi}(-4) = \hat{\varphi}(-2)m_0(7)m_0(6),
$$

$$
\hat{\varphi}(0) = \frac{1}{\sqrt{8}},
$$

$$
\hat{\varphi}(1) = \frac{1}{\sqrt{8}} \longrightarrow \hat{\varphi}(2) = \hat{\varphi}(1)m_0(1) \longrightarrow \hat{\varphi}(4) = \hat{\varphi}(1)m_0(1)m_0(2),
$$

$$
\hat{\varphi}(3) = \frac{1}{\sqrt{8}} \longrightarrow \hat{\varphi}(6) = \hat{\varphi}(3)m_0(3) \longrightarrow \hat{\varphi}(12) = \hat{\varphi}(6)m_0(3)m_0(6).
$$

Each "strand" terminates because the next computation would include $m_0(4) = 0.$

MRA wavelets on the circle

The Haar Scaling Function $(j = 3)$

MRA wavelets on the circle

The Haar Wavelet $(j = 3)$

∢⊡

Approximation Error

The error of approximation will be studied for trigonometric monomials.

4 0 8

Approximation Error

The error of approximation will be studied for trigonometric monomials.

Definition 7

The error of approximation, denoted $E_2(k)$, is defined as

$$
E_{2^j}(k)=\left[1-2^j|\hat{\varphi}(k)|^2\right]^{\frac{1}{2}},\quad k\in\mathbb{Z}.
$$

An elementary calculation shows that $E_2(k)$ is the approximation error $||Pf - f||$ where *f* = $e^{2\pi i kx}$ and *P* is the orthogonal projection onto *V*_{*j*}(φ).

 $2Q$

An Approximation Result

If $m(\xi)$ is a continuous function on the circle with $m(0) = 1$ and satisfying the Smith-Barnwell equation [\(3\)](#page-28-0), one can define a scaling function associated to *m* of order 2*^j* .

An Approximation Result

If $m(\xi)$ is a continuous function on the circle with $m(0) = 1$ and satisfying the Smith-Barnwell equation [\(3\)](#page-28-0), one can define a scaling function associated to *m* of order 2*^j* .

Proposition 4

Fix $r \in \mathbb{N}$ *and* $\varepsilon > 0$ *. Then there exists j* > 0 *such that* $E_{2j}(k) < \varepsilon$ *for* $|k| < r$ *, where* φ *is constructed as in Theorem [2.](#page-30-0)*

nar

An Approximation Result

If $m(\xi)$ is a continuous function on the circle with $m(0) = 1$ and satisfying the Smith-Barnwell equation [\(3\)](#page-28-0), one can define a scaling function associated to *m* of order 2*^j* .

Proposition 4

Fix $r \in \mathbb{N}$ *and* $\varepsilon > 0$ *. Then there exists j* > 0 *such that* $E_{2j}(k) < \varepsilon$ *for* $|k| < r$ *, where* φ *is constructed as in Theorem [2.](#page-30-0)*

Remark 6

Notice that this discussion does not apply to the classical Shannon filter or scaling function. The next example seeks to remedy this situation.

The Shannon Scaling Function

Example 2 (Shannon Filter)

Let $m_0 \in \ell(\mathbb{Z}_{2^j})$ be defined for $j > 2$ by

$$
m_0(n) = \begin{cases} 1, & n < \frac{1}{4}2^j \text{ or } n > \frac{3}{4}2^j, \\ \frac{1}{\sqrt{2}}, & n = \frac{1}{2}2^j \text{ or } n = \frac{3}{4}2^j, & n \in \mathbb{Z}_{2^j}, \\ 0, & \text{otherwise}, \end{cases}
$$

The Shannon Scaling Function

Example 2 (Shannon Filter)

Let $m_0 \in \ell(\mathbb{Z}_{2^j})$ be defined for $j > 2$ by

$$
m_0(n) = \begin{cases} 1, & n < \frac{1}{4}2^j \text{ or } n > \frac{3}{4}2^j, \\ \frac{1}{\sqrt{2}}, & n = \frac{1}{2}2^j \text{ or } n = \frac{3}{4}2^j, & n \in \mathbb{Z}_{2^j}, \\ 0, & \text{otherwise}, \end{cases}
$$

If φ is constructed as in Theorem [2,](#page-30-0) then $\hat{\varphi}(k) = 2^{-\frac{j}{2}}$ whenever $|k| < 2^{j-1}$.

MRA wavelets on the circle

The Shannon Scaling Function $(j = 6)$

 \leftarrow

MRA wavelets on the circle

The Shannon Wavelet $(j = 6)$

つへへ

Preliminaries on the torus

Part II: The Torus

Part II: The Torus

4 0 8

• The matrices:

$$
A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = A^* = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.
$$

4 0 8 4

A

э

 \triangleright 4 \equiv \triangleright 4

• The matrices:

$$
A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = A^* = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.
$$

• The lattices:

4 0 8 4

ミッ $\mathbf{F} = \mathbf{A}$

• The matrices:

$$
A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = A^* = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.
$$

- The lattices:
	- The *lattice of order* 2 *^j generated by A*:

$$
\Gamma_j = A^{-j}\mathbb{Z}^2/\mathbb{Z}^2.
$$

 \leftarrow

Convention: Each $\alpha \in \Gamma_i$ should lie in [0, 1) × [0, 1).

• The matrices:

$$
A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = A^* = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.
$$

- The lattices:
	- The *lattice of order* 2 *^j generated by A*:

$$
\Gamma_j = A^{-j}\mathbb{Z}^2/\mathbb{Z}^2.
$$

Convention: Each $\alpha \in \Gamma_i$ should lie in [0, 1) × [0, 1).

The *dual lattice of order* 2 *^j generated by A*:

$$
\Gamma_j^*=\mathbb{Z}^2/B^j\mathbb{Z}^2
$$

Convention:
$$
\Gamma_j^* = B^j R \cap \mathbb{Z}^2
$$
, where $R = \left(-\frac{1}{2}, \frac{1}{2}\right] \times \left(-\frac{1}{2}, \frac{1}{2}\right]$.

つくい

Preliminaries on the torus

The Dual Lattices Γ ∗ *j*

4 **E** >

Dilation & Translation

Recall:

• Dilation,
$$
D: L^2(\mathbb{T}^2) \to L^2(\mathbb{T}^2)
$$
, is defined by

$$
\widehat{Df}(k) = \widehat{f}(Ak), \quad k \in \mathbb{Z}^2.
$$

4 0 8 4

э

⊞ ≽ k

 \rightarrow

Dilation & Translation

Recall:

• Dilation,
$$
D: L^2(\mathbb{T}^2) \to L^2(\mathbb{T}^2)
$$
, is defined by

$$
\widehat{Df}(k) = \widehat{f}(Ak), \quad k \in \mathbb{Z}^2.
$$

Translation, $T_{\alpha}: L^2(\mathbb{T}^2) \to L^2(\mathbb{T}^2)$, $\alpha \in \Gamma_j$, is defined by

$$
T_{\alpha}f(x) = f(x - \alpha), \quad x \in \mathbb{T}^2.
$$

4 **D** F

Dilation & Translation

Recall:

• Dilation,
$$
D: L^2(\mathbb{T}^2) \to L^2(\mathbb{T}^2)
$$
, is defined by

$$
\widehat{Df}(k) = \widehat{f}(Ak), \quad k \in \mathbb{Z}^2.
$$

Translation, $T_{\alpha}: L^2(\mathbb{T}^2) \to L^2(\mathbb{T}^2)$, $\alpha \in \Gamma_j$, is defined by

$$
T_{\alpha}f(x) = f(x - \alpha), \quad x \in \mathbb{T}^2.
$$

Interplay of *D* and *T*:

$$
DT_{\alpha}f=T_{B\alpha}Df,\quad \alpha\in\Gamma_j.
$$

Note that $B\alpha \in \Gamma_j$ for all $\alpha \in \Gamma_j$.

Definition 8

Let $\phi \in L^2(\mathbb{T}^2)$. The *principal A-shift-invariant space of order* 2^j *generated* by ϕ , denoted $V_j(\phi)$, is the finite-dimensional subspace of $L^2(\mathbb{T}^2)$ spanned by the collection

$$
X_j(\phi) = \{T_\alpha \phi : \alpha \in \Gamma_j\}.
$$
 (6)

つくい

Definition 8

Let $\phi \in L^2(\mathbb{T}^2)$. The *principal A-shift-invariant space of order* 2^j *generated* by ϕ , denoted $V_j(\phi)$, is the finite-dimensional subspace of $L^2(\mathbb{T}^2)$ spanned by the collection

$$
X_j(\phi) = \{T_\alpha \phi : \alpha \in \Gamma_j\}.
$$
 (6)

Definition 9

Let $f, g \in L^2(\mathbb{T}^2)$. The *A-bracket product of f and g of order* 2^j is the element of $\ell(\mathsf{\Gamma}^*_j)$ defined by

$$
[\hat{f}, \hat{g}]_{A^j}(\beta) = 2^j \sum_{k \in B^j \mathbb{Z}^2} \hat{f}(\beta + k) \overline{\hat{g}(\beta + k)}, \quad \beta \in \Gamma_j^*.
$$

Here, $\ell(\Gamma_j^*)$ is the space of \mathbb{C} -valued functions on Γ_j^* .

つくい

Lemma 2

 $Define \ e_{j,\alpha} \in \ell(\Gamma_j^*), j > 0, \ \alpha \in \Gamma_j, \ by$

$$
e_{j,\alpha}(\beta) = \exp(2\pi i \langle \alpha, \beta \rangle), \quad \beta \in \Gamma_j^*.
$$

The collection $\{2^{-\frac{j}{2}}e_{j,\alpha}\}_{{\alpha}\in\Gamma_j}$ *is an orthonormal basis for* $\ell(\Gamma_j^*)$ *.*

Lemma 2

 $Define \ e_{j,\alpha} \in \ell(\Gamma_j^*), j > 0, \ \alpha \in \Gamma_j, \ by$

$$
e_{j,\alpha}(\beta) = \exp(2\pi i \langle \alpha, \beta \rangle), \quad \beta \in \Gamma_j^*.
$$

The collection $\{2^{-\frac{j}{2}}e_{j,\alpha}\}_{{\alpha}\in\Gamma_j}$ *is an orthonormal basis for* $\ell(\Gamma_j^*)$ *.*

Proposition 5

The collection $X_i(\phi)$ *forms an orthonormal basis for* $V_i(\phi)$ *if and only if*

$$
[\hat{\phi}, \hat{\phi}]_{A^j}(\beta) = 1, \quad \beta \in \Gamma_j^*.
$$

 200

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Refinable Functions

Definition 10

A function $\phi \in L^2(\mathbb{T}^2)$ is *A-refinable of order* 2^j if there exists a mask $c \in \ell(\Gamma_i)$ such that

$$
D\phi = \sum_{\alpha \in \Gamma_j} c(\alpha) T_\alpha \phi.
$$
 (7)

つくい

Refinable Functions

Definition 10

A function $\phi \in L^2(\mathbb{T}^2)$ is *A-refinable of order* 2^j if there exists a mask $c \in \ell(\Gamma_i)$ such that

$$
D\phi = \sum_{\alpha \in \Gamma_j} c(\alpha) T_\alpha \phi.
$$
 (7)

Lemma 3

If φ *is refinable of order* 2 *j , then*

$$
\hat{\phi}(Ak) = m(k)\hat{\phi}(k), \quad k \in \mathbb{Z}^2,
$$
\n(8)

where $m \in \ell(\Gamma_j^*)$ is given by

$$
m(\beta) = \sum_{\alpha \in \Gamma_j} c(\alpha) \overline{e_{j,\alpha}(\cdot)}, \quad \beta \in \Gamma_j^*.
$$

Refinability of Dilates

Lemma 4

If ϕ *is refinable of order* 2^j *with filter m* $\in \ell(\Gamma^*_j)$ *, then D* ϕ *is refinable of order* 2^{j-1} *with filter* $m(A) \in \ell(\Gamma_{j-1}^*)$ *.*

Definition 11

A *multiresolution analysis (MRA) of order* 2^j ($j \in \mathbb{N}$) is a collection of closed subspaces of $L^2(\mathbb{T}^2)$, $\{V_k\}^j_i$ $\zeta_{k=0}$, satisfying

Definition 11

A *multiresolution analysis (MRA) of order* 2^j ($j \in \mathbb{N}$) is a collection of closed subspaces of $L^2(\mathbb{T}^2)$, $\{V_k\}^j_i$ $\zeta_{k=0}$, satisfying

i) For $1 \leq k \leq j$, $V_{k-1} \subseteq V_k$;

Definition 11

A *multiresolution analysis (MRA) of order* 2^j ($j \in \mathbb{N}$) is a collection of closed subspaces of $L^2(\mathbb{T}^2)$, $\{V_k\}^j_i$ $\zeta_{k=0}$, satisfying

- *i*) For $1 \leq k \leq j$, $V_{k-1} \subseteq V_k$;
- ii) For $1 \leq k \leq j$, $f \in V_k$ if and only if *Df* ∈ V_{k-1} ;

Definition 11

A *multiresolution analysis (MRA) of order* 2^j ($j \in \mathbb{N}$) is a collection of closed subspaces of $L^2(\mathbb{T}^2)$, $\{V_k\}^j_i$ $\zeta_{k=0}$, satisfying

- *i*) For $1 \leq k \leq j$, $V_{k-1} \subseteq V_k$;
- ii) For $1 \leq k \leq j$, $f \in V_k$ if and only if *Df* ∈ V_{k-1} ;
- \overline{iii}) V_0 is the subspace of constant functions;
Multiresolution Analysis

Definition 11

A *multiresolution analysis (MRA) of order* 2^j ($j \in \mathbb{N}$) is a collection of closed subspaces of $L^2(\mathbb{T}^2)$, $\{V_k\}^j_i$ $\zeta_{k=0}$, satisfying

- *i*) For $1 \leq k \leq i$, $V_{k-1} \subseteq V_k$;
- ii) For $1 \leq k \leq j$, $f \in V_k$ if and only if *Df* ∈ V_{k-1} ;
- \overline{iii}) V_0 is the subspace of constant functions;
- iv) There exists a *scaling function* $\varphi \in V_j$ such that $X_k(2^{\frac{j-k}{2}}D^{j-k}\varphi)$ is an orthonormal basis for V_k , $0 \leq k \leq j$.

Main Results

Theorem 4

Suppose that $\varphi \in L^2(\mathbb{T}^2)$ *is refinable of order* 2^j ($j \in \mathbb{N}$) with $\hat{\varphi}(0) \neq 0$ *. Then* φ is the scaling function of an MRA of order 2^j if and only if

$$
|m_0(\beta)|^2 + |m_0(\beta + B^{j-1}\beta_1)|^2 = 1, \quad \beta \in \Gamma_{j-1}^*,
$$
 (9)

and

$$
[\hat{\varphi}, \hat{\varphi}]_{A^j}(\beta) = 1, \quad \beta \in \Gamma_j^*, \tag{10}
$$

where β_1 is the nonzero element of $\mathsf{\Gamma}^*_1$.

Main Results

Theorem 4

Suppose that $\varphi \in L^2(\mathbb{T}^2)$ *is refinable of order* 2^j ($j \in \mathbb{N}$) with $\hat{\varphi}(0) \neq 0$ *. Then* φ is the scaling function of an MRA of order 2^j if and only if

$$
|m_0(\beta)|^2 + |m_0(\beta + B^{j-1}\beta_1)|^2 = 1, \quad \beta \in \Gamma_{j-1}^*,
$$
 (9)

and

$$
[\hat{\varphi}, \hat{\varphi}]_{A^j}(\beta) = 1, \quad \beta \in \Gamma_j^*, \tag{10}
$$

where β_1 is the nonzero element of $\mathsf{\Gamma}^*_1$.

Theorem 5

 $Fix j > 0$ and let $m_0 \in \ell(\mathsf{\Gamma}^*_j)$ be a candidate low-pass filter satisfying [\(3\)](#page-28-0) and $m_0(0) = 1$. Then m_0 *is the low-pass filter of a trigonometric polynomial scaling function of order* 2 *j .*

Orthonormal MRA Wavelets

Definition 12

Let ${V_k}_k^j$ *k*₌₀ be an MRA of order 2^{*j*}. A function $\psi \in V_j$ is a *wavelet* for the MRA if the collection

$$
\left\{2^{\frac{j-k}{2}}T_\alpha D^{j-(k+1)}\psi: 0 \le k \le j-1, \ \alpha \in \Gamma_k\right\}
$$

is an orthonormal basis for $V_i \oplus V_0$.

The High-Pass Filter

Theorem 6

Let φ be the scaling function of an MRA of order 2^j . Define ψ by

 $\hat{\psi}(k) = m_1(k)\hat{\varphi}(k), \quad k \in \mathbb{Z}^2,$

 $where m_1 \in \ell(\Gamma_j^*)$ *is defined by*

$$
m_1(\beta) = \overline{m_0(\beta + B^{j-1}\beta_1)} \exp(2\pi i \langle A^{-(j-1)}\alpha_1, \beta \rangle).
$$
 (11)

Then, ψ *is an orthonormal wavelet for the MRA.*

Real-Valued Scaling Functions

Proposition 6

Let $m_0 \in \ell(\Gamma_j^*)$ be a low-pass filter satisfying [\(3\)](#page-28-0) and such that $m_0(0) = 1$ and $m_0(-\beta) = m_0(\beta)$, $\beta \in \Gamma_j^*$ *. Then there is a real-valued scaling function* φ which is refinable with respect to m_0 giving rise to an MRA of order 2^j .

つくい

Construction of Real-Valued Scaling Functions

Let
$$
\beta = \Gamma_j^* \setminus A\mathbb{Z}^2
$$
. Define φ by
\n1) Let $\hat{\varphi}(0) = 2^{-\frac{j}{2}}$.
\n2) If $\beta, -\beta \in \mathcal{B}$, let $\hat{\varphi}(\beta) = 2^{-\frac{j}{2}}$ and define
\n
$$
\hat{\varphi}(A^k \beta) = \hat{\varphi}(\beta) \prod_{\ell=0}^{k-1} m_0(A^{\ell}\beta), \quad 1 \le k \le j-1.
$$

3) If $\beta \in \mathcal{B}$, but $-\beta \notin \mathcal{B}$, let $\hat{\varphi}(\pm \beta) = 2^{-\frac{j+1}{2}}$ and define

$$
\hat{\varphi}(\pm A^k \beta) = \hat{\varphi}(\pm \beta) \prod_{\ell=0}^{k-1} m_0(\pm A^{\ell} \beta), \quad 1 \leq k \leq j-1.
$$

4) The remaining Fourier coefficients will be zero.

つくい

Shannon Filter

Proposition 7 (Shannon Filter)

Fix j \geq 2 *and let* $S_j = \{ \beta \in \Gamma_j^* : \beta, -\beta \in \Gamma_{j-1}^* \}$ *. The low-pass filter* $m_0 \in \ell(\Gamma_j^*)$ *defined by*

$$
m_0(\beta) = \begin{cases} 1 & \beta \in S_j \\ \frac{1}{\sqrt{2}} & \beta \in \Gamma_{j-1}^* \setminus S_j \\ \sqrt{1 - |m_0(\beta - B^{j-1}\beta_1)|^2} & otherwise, \end{cases} \quad \beta \in \Gamma_j^*,
$$

satisfies [\(3\)](#page-28-0) *and is symmetric in the sense that* $m_0(-\beta) = m_0(\beta)$, $\beta \in \Gamma_j^*$.

Shannon Filter

MRA Wavelets on the Torus

Shannon Scaling Function

Shannon Wavelet

Approximation with the Shannon Wavelet

Proposition 8

Let φ *be the scaling function corresponding to the low-pass filter of Proposition* [7](#page-79-0) given by Proposition [6.](#page-77-0) If $j \ge 6 + \log_2 r^2$, then $E_j(k) = 0$ for all $k \in \{k = (k_1, k_2) : \max\{|k_1|, |k_2|\} \leq r\}.$

Haar Filter

Proposition 9 (Haar Filter)

 $Fix j \geq 2$ *. Define* $m_0 \in \ell(\Gamma_j^*)$ by

$$
m_0(\beta) = \frac{1}{2} \left(1 + \exp \left(-2\pi i \langle A^{-(j-1)} \alpha_1, \beta \rangle \right) \right),
$$

where α_1 *is the nonzero element of* Γ_1 *. Then* m_0 *satisfies* [\(3\)](#page-28-0) *with* $m_0(0) = 1$ and is conjugate-symmetric, i.e., $m_0(-\beta) = m_0(\beta)$, $\beta \in \Gamma_f^*$.

Haar Filter

MRA Wavelets on the Torus

Haar Scaling Function

Haar Wavelet

Approximation with the Haar Wavelet

Proposition 10

Let φ *be the scaling function corresponding to the low-pass filter of Proposition* [9](#page-84-0) given by Proposition [6.](#page-77-0) Then for any $r \in \mathbb{Z}^2$,

> lim *j*→∞ $E_j(r) = 0.$

MRA Wavelets on the Torus

The Last Slide

The End.

4 0 8 4

٠