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Overview

Abstract

This work examines finite-dimensional wavelet systems inL2(T) and
L2(T2) in which dilation is achieved by a dyadic downsampling of the
Fourier transform. At scalej > 0 these systems will have dimension 2j .
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Preliminaries on the circle
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Dilation

Definition 1

For f ∈ L2(T), D̂f (k) = f̂ (2k), k ∈ Z.

Remark 1

Dilation on the circle performs adownsamplingof the Fourier
coefficients.

Dilation on the circle is not invertible, hence MRAs will be one-sided.

Dilation of a trigonometric polynomial will eventually result in a
constant function, i.e., iff is a trigonometric polynomial thenDjf = f̂ (0)
for sufficiently largej ∈ N.
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Preliminaries on the circle

Shift-Invariant Spaces

Definition 2

Theprincipal shift-invariant space of order2j generated byφ ∈ L2(T) is the
finite-dimensional spaceVj(φ) = spanXj(φ), where

Xj(φ) = {Tn
2−jφ : 0 ≤ n ≤ 2j − 1}.
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Theprincipal shift-invariant space of order2j generated byφ ∈ L2(T) is the
finite-dimensional spaceVj(φ) = spanXj(φ), where

Xj(φ) = {Tn
2−jφ : 0 ≤ n ≤ 2j − 1}.

Definition 3

Thebracket product of order2j of two functionsf ,g ∈ L2(T) is the vector
[f̂ , ĝ]j ∈ ℓ(Z2j ) defined by

[f̂ , ĝ]j(n) = 2j
∑

k∈Z

f̂ (n + k2j) ĝ(n + k2j), 0 ≤ n ≤ 2j − 1.

Here,ℓ(Z2j ) is the finite-dimensional space of functions defined onZ/2j
Z.
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Preliminaries on the circle

Shift-Invariant Spaces

Proposition 1

For all f ,g ∈ L2(T),

F2j

(
{〈f ,Tn

2−j g〉}2j−1
n=0

)
= 2−

j
2 [f̂ , ĝ]j ,

whereF2j is the Fourier transform onℓ(Z2j ).
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Preliminaries on the circle

Shift-Invariant Spaces

Proposition 1

For all f ,g ∈ L2(T),

F2j

(
{〈f ,Tn

2−j g〉}2j−1
n=0

)
= 2−

j
2 [f̂ , ĝ]j ,

whereF2j is the Fourier transform onℓ(Z2j ).

Proposition 2

The collection Xj(φ) forms an orthonormal basis for Vj(Φ) if and only if

[φ̂, φ̂]j(n) = 1, n ∈ Z2j .
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Preliminaries on the circle

Refinable Functions

Definition 4

A functionφ ∈ L2(T) is said to berefinable of order2j if there exists amask
c ∈ ℓ(Z2j ) such that

Dφ =
∑

n∈Z2j

c(n)Tn
2−jφ. (1)
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A functionφ ∈ L2(T) is said to berefinable of order2j if there exists amask
c ∈ ℓ(Z2j ) such that

Dφ =
∑

n∈Z2j

c(n)Tn
2−jφ. (1)

Lemma 1

Suppose thatφ ∈ L2(T) is refinable of order2j , then there exists m∈ ℓ(Z2j )
such that

φ̂(2k) = m(k)φ̂(k), k ∈ Z. (2)
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Preliminaries on the circle

Refinability of Dilates

Remark 2

If φ ∈ L2(T) is refinable of order 2j with filter m∈ ℓ(Z2j ) then

D2φ =
∑

n∈Z2j−1




∑

ℓ∈{0,1}

c(n + ℓ2j−1)



 Tn
2j−1Dφ,

i.e.,Dφ is refinable of order 2j−1.
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Preliminaries on the circle

Refinability of Dilates

Remark 2

If φ ∈ L2(T) is refinable of order 2j with filter m∈ ℓ(Z2j ) then

D2φ =
∑

n∈Z2j−1




∑

ℓ∈{0,1}

c(n + ℓ2j−1)



 Tn
2j−1Dφ,

i.e.,Dφ is refinable of order 2j−1. It is not difficult to show thatm(2·) is a
filter for Dϕ.

Remark 3

Notice thatD̂ϕ(0) = m(0)ϕ̂(0). Hence, ifϕ is refinable withϕ̂(0) 6= 0, it
follows thatm(0) = 1.

Brody Dylan Johnson (St. Louis University) Quincunx wavelets on T
2 4 December 2009 8 / 48



Multiresolution Analysis on the circle

Multiresolution Analysis

Definition 5

A multiresolution analysis (MRA) of order2j is a collection of closed
subspaces ofL2(T), {Vk}j

k=0, satisfying
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ii) For 1≤ k ≤ j − 1, f ∈ Vk if and only if Df ∈ Vk−1;

iii) V0 is the subspace of constant functions;

iv) There exists ascaling functionϕ ∈ Vj such thatXk(2
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Multiresolution Analysis on the circle

Multiresolution Analysis

Definition 5

A multiresolution analysis (MRA) of order2j is a collection of closed
subspaces ofL2(T), {Vk}j

k=0, satisfying

i) For 1≤ k ≤ j, Vk−1 ⊆ Vk;

ii) For 1≤ k ≤ j − 1, f ∈ Vk if and only if Df ∈ Vk−1;

iii) V0 is the subspace of constant functions;

iv) There exists ascaling functionϕ ∈ Vj such thatXk(2
j−k

2 Dj−kϕ) is an
orthonormal basis forVk.

Remark 4

Notice that MRA properties i, ii, and iv imply that a scaling functionϕ is
necessarily refinable of order 2j . Moreover, it follows from MRA properties
iii and iv thatDjϕ must be constant and nonzero, implying thatϕ̂(0) 6= 0.
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Multiresolution Analysis on the circle

Characterization of Scaling Functions

Theorem 1

Supposeϕ ∈ L2(T) is a refinable function of order2j with ϕ̂(0) 6= 0. Thenϕ
is the scaling function of an MRA of order2j if and only if

|m0(n)|2 + |m0(n + 2j−1)|2 = 1, n ∈ Z2j , (3)

and
[ϕ̂, ϕ̂]j(n) = 1, n ∈ Z2j . (4)
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Multiresolution Analysis on the circle

Characterization of Scaling Functions

Theorem 1

Supposeϕ ∈ L2(T) is a refinable function of order2j with ϕ̂(0) 6= 0. Thenϕ
is the scaling function of an MRA of order2j if and only if

|m0(n)|2 + |m0(n + 2j−1)|2 = 1, n ∈ Z2j , (3)

and
[ϕ̂, ϕ̂]j(n) = 1, n ∈ Z2j . (4)

Remark 5

Equation (3) will be referred to as theSmith-Barnwell equationfor the filter.
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Multiresolution Analysis on the circle

Existence of Scaling Functions

Theorem 2

Suppose m0 ∈ ℓ(Z2j ) satisfies(3) with m0(0) = 1. Then m0 is the low-pass
filter of a trigonometric polynomial scaling function of order 2j .
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Theorem 2

Suppose m0 ∈ ℓ(Z2j ) satisfies(3) with m0(0) = 1. Then m0 is the low-pass
filter of a trigonometric polynomial scaling function of order 2j .

The construction:

1. Let ϕ̂(0) = 2−
j
2 .

Brody Dylan Johnson (St. Louis University) Quincunx wavelets on T
2 4 December 2009 11 / 48



Multiresolution Analysis on the circle

Existence of Scaling Functions

Theorem 2

Suppose m0 ∈ ℓ(Z2j ) satisfies(3) with m0(0) = 1. Then m0 is the low-pass
filter of a trigonometric polynomial scaling function of order 2j .

The construction:

1. Let ϕ̂(0) = 2−
j
2 .

2. For−2j−2 ≤ k ≤ 2j−2 − 1, let ϕ̂(2k + 1) = 2−
j
2 .
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Multiresolution Analysis on the circle

Existence of Scaling Functions

Theorem 2

Suppose m0 ∈ ℓ(Z2j ) satisfies(3) with m0(0) = 1. Then m0 is the low-pass
filter of a trigonometric polynomial scaling function of order 2j .

The construction:

1. Let ϕ̂(0) = 2−
j
2 .

2. For−2j−2 ≤ k ≤ 2j−2 − 1, let ϕ̂(2k + 1) = 2−
j
2 .

3. For−2j−2 ≤ k ≤ 2j−2 − 1 and 1≤ n ≤ j − 1, defineϕ̂(2n(2k + 1))
according to (1), i.e.,

ϕ̂(2n(2k + 1)) = m0(2
n−1(2k + 1)) ϕ̂(2n−1(2k + 1)).
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MRA wavelets on the circle

Orthonormal Wavelets

Definition 6

Let {Vk}j
k=0 be an MRA of order 2j . A functionψ ∈ Vj is awaveletfor the

MRA if the collection

{2
j−k

2 Tn
2−kDj−(k+1)ψ : 0 ≤ k ≤ j − 1, n ∈ Z2k}

is an orthonormal basis forVj ⊖ V0.
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Orthonormal Wavelets

Definition 6

Let {Vk}j
k=0 be an MRA of order 2j . A functionψ ∈ Vj is awaveletfor the

MRA if the collection

{2
j−k

2 Tn
2−kDj−(k+1)ψ : 0 ≤ k ≤ j − 1, n ∈ Z2k}

is an orthonormal basis forVj ⊖ V0.

This construction rests on a decompositionVk = Vk−1 ⊕ Wk−1, 1≤ k ≤ j,
whereWk is of the form

Wk = Vk(D
j−(k+1)ψ).
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MRA wavelets on the circle

The High-Pass Filter

Theorem 3

Suppose thatϕ is the scaling function of an MRA of order2j and define
ψ ∈ Vj by

ψ̂(k) = m1(k)ϕ̂(k), k ∈ Z,

where m1 ∈ ℓ(Z2j ) is chosen as

m1(n) = m0(n + 2j−1) e−2πi2−jn, n ∈ Z2j . (5)

Thenψ is a wavelet for the MRA.
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MRA wavelets on the circle

Borrowing from the Line

Proposition 3

Suppose c∈ ℓ2(Z) is an absolutely summable sequence whose Fourier
transform m= ĉ satisfies

|m(ξ)|2 + |m(ξ + 2−1)|2 = 1, ξ ∈ T,

If c0 ∈ ℓ(Z2j ) is defined by

c0(n) = 2
j
2

∑

k∈Z

c(n + k2j), n ∈ Z2j ,

then m0 = 2
j
2 ĉ0 satisfies the Smith-Barnwell equation(3).
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MRA wavelets on the circle

The Haar Scaling Function

A low-dimensional example will be good for illustrating theconstruction ofϕ.
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MRA wavelets on the circle

The Haar Scaling Function

A low-dimensional example will be good for illustrating theconstruction ofϕ.

Example 1 (Haar Filter)

Fix j = 3 and letc ∈ ℓ(Z8) be given byc(0) = c(1) = 1
2 with c(n) = 0 for

n 6= 0,1. The low-pass filterm0 ∈ ℓ(Z8) is given by

m0(n) = e−πin/8 cos(nπ/8), n ∈ Z8.

It is easy to verify the Smith-Barnwell equation (3).
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MRA wavelets on the circle

The Haar Scaling Function

ϕ̂(−3) =
1√
8

−→ ϕ̂(−6) = ϕ̂(−3)m0(5) −→ ϕ̂(−12) = ϕ̂(−6)m0(5)m0(2),

ϕ̂(−1) =
1√
8

−→ ϕ̂(−2) = ϕ̂(−1)m0(7) −→ ϕ̂(−4) = ϕ̂(−2)m0(7)m0(6),

ϕ̂(0) =
1√
8
,

ϕ̂(1) =
1√
8

−→ ϕ̂(2) = ϕ̂(1)m0(1) −→ ϕ̂(4) = ϕ̂(1)m0(1)m0(2),

ϕ̂(3) =
1√
8

−→ ϕ̂(6) = ϕ̂(3)m0(3) −→ ϕ̂(12) = ϕ̂(6)m0(3)m0(6).

Each “strand” terminates because the next computation would include
m0(4) = 0.
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MRA wavelets on the circle

The Haar Scaling Function (j = 3)
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MRA wavelets on the circle

The Haar Wavelet (j = 3)
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MRA wavelets on the circle

Approximation Error

The error of approximation will be studied for trigonometric monomials.
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MRA wavelets on the circle

Approximation Error

The error of approximation will be studied for trigonometric monomials.

Definition 7

The error of approximation, denotedE2j (k), is defined as

E2j (k) =
[
1− 2j |ϕ̂(k)|2

] 1
2 , k ∈ Z.

An elementary calculation shows thatE2j (k) is the approximation error
‖Pf − f‖ wheref = e2πikx andP is the orthogonal projection ontoVj(ϕ).
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MRA wavelets on the circle

An Approximation Result

If m(ξ) is a continuous function on the circle withm(0) = 1 and satisfying the
Smith-Barnwell equation (3), one can define a scaling function associated to
mof order 2j .
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MRA wavelets on the circle

An Approximation Result

If m(ξ) is a continuous function on the circle withm(0) = 1 and satisfying the
Smith-Barnwell equation (3), one can define a scaling function associated to
mof order 2j .

Proposition 4

Fix r ∈ N andε > 0. Then there exists j> 0 such that E2j (k) < ε for |k| < r,
whereϕ is constructed as in Theorem 2.
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MRA wavelets on the circle

An Approximation Result

If m(ξ) is a continuous function on the circle withm(0) = 1 and satisfying the
Smith-Barnwell equation (3), one can define a scaling function associated to
mof order 2j .

Proposition 4

Fix r ∈ N andε > 0. Then there exists j> 0 such that E2j (k) < ε for |k| < r,
whereϕ is constructed as in Theorem 2.

Remark 6

Notice that this discussion does not apply to the classical Shannon filter or
scaling function. The next example seeks to remedy this situation.
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MRA wavelets on the circle

The Shannon Scaling Function

Example 2 (Shannon Filter)

Let m0 ∈ ℓ(Z2j ) be defined forj > 2 by

m0(n) =






1, n< 1
42j or n> 3

42j ,
1√
2
, n = 1

22j or n = 3
42j ,

0, otherwise,

n ∈ Z2j ,
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MRA wavelets on the circle

The Shannon Scaling Function

Example 2 (Shannon Filter)

Let m0 ∈ ℓ(Z2j ) be defined forj > 2 by

m0(n) =






1, n< 1
42j or n> 3

42j ,
1√
2
, n = 1

22j or n = 3
42j ,

0, otherwise,

n ∈ Z2j ,

If ϕ is constructed as in Theorem 2, thenϕ̂(k) = 2−
j
2 whenever|k| < 2j−1.
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MRA wavelets on the circle

The Shannon Scaling Function (j = 6)
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MRA wavelets on the circle

The Shannon Wavelet (j = 6)
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Preliminaries on the torus

Part II: The Torus

Part II: The Torus
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Preliminaries on the torus

Matrices & Lattices

The matrices:

A =

(
1 −1
1 1

)
B = A∗ =

(
1 1
−1 1

)
.
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The lattices:
Thelattice of order2j generated by A:

Γj = A−j
Z

2/Z2.

Convention: Eachα ∈ Γj should lie in[0, 1) × [0, 1).
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The matrices:

A =

(
1 −1
1 1

)
B = A∗ =

(
1 1
−1 1

)
.

The lattices:
Thelattice of order2j generated by A:

Γj = A−j
Z

2/Z2.

Convention: Eachα ∈ Γj should lie in[0, 1) × [0, 1).
Thedual lattice of order2j generated by A:

Γ∗
j = Z

2/Bj
Z

2

Convention:Γ∗
j = BjR∩ Z2, whereR = (− 1

2,
1
2] × (− 1

2,
1
2].
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Preliminaries on the torus

The Dual LatticesΓ∗
j

−3 −2 −1 0 1 2 3
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1
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−4 −3 −2 −1 0 1 2 3 4
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−2

−1

0

1
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4
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Γ∗3 Γ∗4 Γ∗5
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Preliminaries on the torus

Dilation & Translation

Recall:

Dilation, D : L2(T2) → L2(T2), is defined by

D̂f (k) = f̂ (Ak), k ∈ Z
2.
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Preliminaries on the torus

Dilation & Translation

Recall:

Dilation, D : L2(T2) → L2(T2), is defined by

D̂f (k) = f̂ (Ak), k ∈ Z
2.

Translation,Tα : L2(T2) → L2(T2), α ∈ Γj , is defined by

Tαf (x) = f (x− α), x ∈ T
2.

Interplay ofD andT:

DTαf = TBαDf , α ∈ Γj .

Note thatBα ∈ Γj for all α ∈ Γj .
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Preliminaries on the torus

Shift-Invariant Spaces

Definition 8

Let φ ∈ L2(T2). Theprincipal A-shift-invariant space of order2j generated
byφ, denotedVj(φ), is the finite-dimensional subspace ofL2(T2) spanned by
the collection

Xj(φ) = {Tαφ : α ∈ Γj}. (6)
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Shift-Invariant Spaces

Definition 8

Let φ ∈ L2(T2). Theprincipal A-shift-invariant space of order2j generated
byφ, denotedVj(φ), is the finite-dimensional subspace ofL2(T2) spanned by
the collection

Xj(φ) = {Tαφ : α ∈ Γj}. (6)

Definition 9

Let f ,g ∈ L2(T2). TheA-bracket product of f and g of order2j is the element
of ℓ(Γ∗j ) defined by

[f̂ , ĝ]Aj (β) = 2j
∑

k∈BjZ2

f̂ (β + k)ĝ(β + k), β ∈ Γ∗j .

Here,ℓ(Γ∗j ) is the space ofC-valued functions onΓ∗j .
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Preliminaries on the torus

Shift-Invariant Spaces

Lemma 2

Define ej,α ∈ ℓ(Γ∗j ), j > 0, α ∈ Γj, by

ej,α(β) = exp(2πi〈α, β〉), β ∈ Γ∗j .

The collection{2−
j
2 ej,α}α∈Γj is an orthonormal basis forℓ(Γ∗j ).
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Shift-Invariant Spaces

Lemma 2

Define ej,α ∈ ℓ(Γ∗j ), j > 0, α ∈ Γj, by

ej,α(β) = exp(2πi〈α, β〉), β ∈ Γ∗j .

The collection{2−
j
2 ej,α}α∈Γj is an orthonormal basis forℓ(Γ∗j ).

Proposition 5

The collection Xj(φ) forms an orthonormal basis for Vj(φ) if and only if

[φ̂, φ̂]Aj (β) = 1, β ∈ Γ∗j .
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Preliminaries on the torus

Refinable Functions

Definition 10

A functionφ ∈ L2(T2) is A-refinable of order2j if there exists a mask
c ∈ ℓ(Γj) such that

Dφ =
∑

α∈Γj

c(α) Tαφ. (7)
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Preliminaries on the torus

Refinable Functions

Definition 10

A functionφ ∈ L2(T2) is A-refinable of order2j if there exists a mask
c ∈ ℓ(Γj) such that

Dφ =
∑

α∈Γj

c(α) Tαφ. (7)

Lemma 3

If φ is refinable of order2j , then

φ̂(Ak) = m(k)φ̂(k), k ∈ Z
2, (8)

where m∈ ℓ(Γ∗j ) is given by

m(β) =
∑

α∈Γj

c(α)ej,α(·), β ∈ Γ∗j .
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Preliminaries on the torus

Refinability of Dilates

Lemma 4

If φ is refinable of order2j with filter m∈ ℓ(Γ∗j ), then Dφ is refinable of order
2j−1 with filter m(A·) ∈ ℓ(Γ∗j−1).
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Multiresolution Analysis on the Torus

Multiresolution Analysis

Definition 11

A multiresolution analysis (MRA) of order2j (j ∈ N) is a collection of closed
subspaces ofL2(T2), {Vk}j

k=0, satisfying
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A multiresolution analysis (MRA) of order2j (j ∈ N) is a collection of closed
subspaces ofL2(T2), {Vk}j

k=0, satisfying

i) For 1≤ k ≤ j, Vk−1 ⊆ Vk;

ii) For 1≤ k ≤ j, f ∈ Vk if and only if Df ∈ Vk−1;

iii) V0 is the subspace of constant functions;
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Multiresolution Analysis on the Torus

Multiresolution Analysis

Definition 11

A multiresolution analysis (MRA) of order2j (j ∈ N) is a collection of closed
subspaces ofL2(T2), {Vk}j

k=0, satisfying

i) For 1≤ k ≤ j, Vk−1 ⊆ Vk;

ii) For 1≤ k ≤ j, f ∈ Vk if and only if Df ∈ Vk−1;

iii) V0 is the subspace of constant functions;

iv) There exists ascaling functionϕ ∈ Vj such thatXk(2
j−k

2 Dj−kϕ) is an
orthonormal basis forVk, 0 ≤ k ≤ j.
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Multiresolution Analysis on the Torus

Main Results

Theorem 4

Suppose thatϕ ∈ L2(T2) is refinable of order2j (j ∈ N) with ϕ̂(0) 6= 0. Then
ϕ is the scaling function of an MRA of order2j if and only if

|m0(β)|2 + |m0(β + Bj−1β1)|2 = 1, β ∈ Γ∗j−1, (9)

and
[ϕ̂, ϕ̂]Aj (β) = 1, β ∈ Γ∗j , (10)

whereβ1 is the nonzero element ofΓ∗1.
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Main Results

Theorem 4

Suppose thatϕ ∈ L2(T2) is refinable of order2j (j ∈ N) with ϕ̂(0) 6= 0. Then
ϕ is the scaling function of an MRA of order2j if and only if

|m0(β)|2 + |m0(β + Bj−1β1)|2 = 1, β ∈ Γ∗j−1, (9)

and
[ϕ̂, ϕ̂]Aj (β) = 1, β ∈ Γ∗j , (10)

whereβ1 is the nonzero element ofΓ∗1.

Theorem 5

Fix j > 0 and let m0 ∈ ℓ(Γ∗j ) be a candidate low-pass filter satisfying(3) and
m0(0) = 1. Then m0 is the low-pass filter of a trigonometric polynomial
scaling function of order2j .
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MRA Wavelets on the Torus

Orthonormal MRA Wavelets

Definition 12

Let {Vk}j
k=0 be an MRA of order 2j . A functionψ ∈ Vj is awaveletfor the

MRA if the collection
{

2
j−k

2 TαDj−(k+1)ψ : 0 ≤ k ≤ j − 1, α ∈ Γk

}

is an orthonormal basis forVj ⊖ V0.
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MRA Wavelets on the Torus

The High-Pass Filter

Theorem 6

Letϕ be the scaling function of an MRA of order2j . Defineψ by

ψ̂(k) = m1(k)ϕ̂(k), k ∈ Z
2,

where m1 ∈ ℓ(Γ∗j ) is defined by

m1(β) = m0(β + Bj−1β1) exp(2πi〈A−(j−1)α1, β〉). (11)

Then,ψ is an orthonormal wavelet for the MRA.
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MRA Wavelets on the Torus

Real-Valued Scaling Functions

Proposition 6

Let m0 ∈ ℓ(Γ∗j ) be a low-pass filter satisfying(3) and such that m0(0) = 1 and

m0(−β) = m0(β), β ∈ Γ∗j . Then there is a real-valued scaling functionϕ
which is refinable with respect to m0 giving rise to an MRA of order2j .
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MRA Wavelets on the Torus

Construction of Real-Valued Scaling Functions

LetB = Γ∗j \ AZ
2. Defineϕ by

1) Let ϕ̂(0) = 2−
j
2 .

2) If β,−β ∈ B, let ϕ̂(β) = 2−
j
2 and define

ϕ̂(Akβ) = ϕ̂(β)
k−1∏

ℓ=0

m0(A
ℓβ), 1 ≤ k ≤ j − 1.

3) If β ∈ B, but−β /∈ B, let ϕ̂(±β) = 2−
j+1
2 and define

ϕ̂(±Akβ) = ϕ̂(±β)

k−1∏

ℓ=0

m0(±Aℓβ), 1 ≤ k ≤ j − 1.

4) The remaining Fourier coefficients will be zero.
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MRA Wavelets on the Torus

Shannon Filter

Proposition 7 (Shannon Filter)

Fix j ≥ 2 and let Sj = {β ∈ Γ∗j : β,−β ∈ Γ∗j−1}. The low-pass filter
m0 ∈ ℓ(Γ∗j ) defined by

m0(β) =






1 β ∈ Sj
1√
2

β ∈ Γ∗j−1 \ Sj√
1− |m0(β − Bj−1β1)|2 otherwise,

β ∈ Γ∗j ,

satisfies(3) and is symmetric in the sense that m0(−β) = m0(β), β ∈ Γ∗j .
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MRA Wavelets on the Torus

Shannon Filter
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MRA Wavelets on the Torus

Shannon Scaling Function

Shannon Scaling Functionϕ for j = 5
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MRA Wavelets on the Torus

Shannon Wavelet

Shannon Waveletψ for j = 5
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MRA Wavelets on the Torus

Approximation with the Shannon Wavelet

Proposition 8

Letϕ be the scaling function corresponding to the low-pass filterof
Proposition 7 given by Proposition 6. If j≥ 6 + log2 r2, then Ej(k) = 0 for all
k ∈ {k = (k1, k2) : max{|k1|, |k2|} ≤ r}.
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MRA Wavelets on the Torus

Haar Filter

Proposition 9 (Haar Filter)

Fix j ≥ 2. Define m0 ∈ ℓ(Γ∗j ) by

m0(β) =
1
2

(
1 + exp(−2πi〈A−(j−1)α1, β〉)

)
,

whereα1 is the nonzero element ofΓ1. Then m0 satisfies(3) with m0(0) = 1
and is conjugate-symmetric, i.e., m0(−β) = m0(β), β ∈ Γ∗j .
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MRA Wavelets on the Torus

Haar Filter
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MRA Wavelets on the Torus

Haar Scaling Function

Haar Scaling Functionϕ for j = 5
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MRA Wavelets on the Torus

Haar Wavelet

Haar Waveletψ for j = 5
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MRA Wavelets on the Torus

Approximation with the Haar Wavelet

Proposition 10

Letϕ be the scaling function corresponding to the low-pass filterof
Proposition 9 given by Proposition 6. Then for any r∈ Z

2,

lim
j→∞

Ej(r) = 0.
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MRA Wavelets on the Torus

The Last Slide

The End.
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