## Quincunx wavelets on $\mathbb{T}^2$

### Brody Dylan Johnson

St. Louis University

4 December 2009

Joint work with Kenneth R. Hoover California State University - Stanislaus This work examines finite-dimensional wavelet systems in L<sup>2</sup>(T) and L<sup>2</sup>(T<sup>2</sup>) in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale j > 0 these systems will have dimension 2<sup>j</sup>.

- This work examines finite-dimensional wavelet systems in  $L^2(\mathbb{T})$  and  $L^2(\mathbb{T}^2)$  in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale j > 0 these systems will have dimension  $2^j$ .
- On the circle:

- This work examines finite-dimensional wavelet systems in L<sup>2</sup>(T) and L<sup>2</sup>(T<sup>2</sup>) in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale *j* > 0 these systems will have dimension 2<sup>*j*</sup>.
- On the circle:
  - Dilation:  $\widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}$ .

- This work examines finite-dimensional wavelet systems in  $L^2(\mathbb{T})$  and  $L^2(\mathbb{T}^2)$  in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale j > 0 these systems will have dimension  $2^j$ .
- On the circle:
  - Dilation:  $\widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}$ .
  - Translation:  $T_{\alpha}$ , where  $\alpha \in \Gamma_j = 2^{-j}\mathbb{Z}/\mathbb{Z}$ .

- This work examines finite-dimensional wavelet systems in  $L^2(\mathbb{T})$  and  $L^2(\mathbb{T}^2)$  in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale j > 0 these systems will have dimension  $2^j$ .
- On the circle:
  - Dilation:  $\widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}$ .
  - Translation:  $T_{\alpha}$ , where  $\alpha \in \Gamma_j = 2^{-j}\mathbb{Z}/\mathbb{Z}$ .
- On the torus:

- This work examines finite-dimensional wavelet systems in  $L^2(\mathbb{T})$  and  $L^2(\mathbb{T}^2)$  in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale j > 0 these systems will have dimension  $2^j$ .
- On the circle:
  - Dilation:  $\widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}$ .
  - Translation:  $T_{\alpha}$ , where  $\alpha \in \Gamma_j = 2^{-j}\mathbb{Z}/\mathbb{Z}$ .
- On the torus:
  - Dilation:  $\widehat{Df}(k) = \widehat{f}(Ak), k \in \mathbb{Z}^2$ , where

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

- This work examines finite-dimensional wavelet systems in  $L^2(\mathbb{T})$  and  $L^2(\mathbb{T}^2)$  in which dilation is achieved by a dyadic downsampling of the Fourier transform. At scale j > 0 these systems will have dimension  $2^j$ .
- On the circle:
  - Dilation:  $\widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}$ .
  - Translation:  $T_{\alpha}$ , where  $\alpha \in \Gamma_j = 2^{-j}\mathbb{Z}/\mathbb{Z}$ .
- On the torus:
  - Dilation:  $\widehat{Df}(k) = \widehat{f}(Ak), k \in \mathbb{Z}^2$ , where

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

• Translation:  $T_{\alpha}$ , where  $\alpha \in \Gamma_j = A^{-j} \mathbb{Z}^2 / \mathbb{Z}^2$ .

Preliminaries on the circle

## Part I: The Circle

# Part I: The Circle

### Definition 1

For 
$$f \in L^2(\mathbb{T})$$
,  $\widehat{Df}(k) = \widehat{f}(2k)$ ,  $k \in \mathbb{Z}$ .

Image: A matrix and a matrix

-

### Definition 1

For 
$$f \in L^2(\mathbb{T})$$
,  $\widehat{Df}(k) = \widehat{f}(2k)$ ,  $k \in \mathbb{Z}$ .

#### Remark 1

• Dilation on the circle performs a *downsampling* of the Fourier coefficients.

#### Definition 1

For 
$$f \in L^2(\mathbb{T})$$
,  $\widehat{Df}(k) = \widehat{f}(2k)$ ,  $k \in \mathbb{Z}$ .

#### Remark 1

- Dilation on the circle performs a *downsampling* of the Fourier coefficients.
- Dilation on the circle is not invertible, hence MRAs will be one-sided.

#### Definition 1

For 
$$f \in L^2(\mathbb{T}), \widehat{Df}(k) = \widehat{f}(2k), k \in \mathbb{Z}.$$

#### Remark 1

- Dilation on the circle performs a *downsampling* of the Fourier coefficients.
- Dilation on the circle is not invertible, hence MRAs will be one-sided.
- Dilation of a trigonometric polynomial will eventually result in a constant function, i.e., if *f* is a trigonometric polynomial then  $D^{i}f = \hat{f}(0)$  for sufficiently large  $j \in \mathbb{N}$ .

### Definition 2

The *principal shift-invariant space of order*  $2^j$  generated by  $\phi \in L^2(\mathbb{T})$  is the finite-dimensional space  $V_j(\phi) = \operatorname{span} X_j(\phi)$ , where

$$X_j(\phi) = \{T_{2^{-j}}^n \phi : 0 \le n \le 2^j - 1\}.$$

### Definition 2

The *principal shift-invariant space of order*  $2^j$  generated by  $\phi \in L^2(\mathbb{T})$  is the finite-dimensional space  $V_j(\phi) = \operatorname{span} X_j(\phi)$ , where

$$X_j(\phi) = \{T_{2^{-j}}^n \phi: \ 0 \le n \le 2^j - 1\}.$$

#### **Definition 3**

The *bracket product of order*  $2^j$  of two functions  $f, g \in L^2(\mathbb{T})$  is the vector  $[\hat{f}, \hat{g}]_j \in \ell(\mathbb{Z}_{2^j})$  defined by

$$[\widehat{f}, \widehat{g}]_j(n) = 2^j \sum_{k \in \mathbb{Z}} \widehat{f}(n+k2^j) \overline{\widehat{g}(n+k2^j)}, \quad 0 \le n \le 2^j-1.$$

Here,  $\ell(\mathbb{Z}_{2^j})$  is the finite-dimensional space of functions defined on  $\mathbb{Z}/2^j\mathbb{Z}$ .

< ロ > < 同 > < 回 > < 回 >

### Proposition 1

For all  $f, g \in L^2(\mathbb{T})$ ,

$$\mathcal{F}_{2^{j}}\left(\{\langle f, T_{2^{-j}}^{n}g\rangle\}_{n=0}^{2^{j}-1}\right) = 2^{-\frac{j}{2}}[\hat{f}, \hat{g}]_{j},$$

where  $\mathcal{F}_{2^j}$  is the Fourier transform on  $\ell(\mathbb{Z}_{2^j})$ .

### Proposition 1

For all  $f, g \in L^2(\mathbb{T})$ ,

$$\mathcal{F}_{2^{j}}\left(\{\langle f, T_{2^{-j}}^{n}g\rangle\}_{n=0}^{2^{j}-1}\right) = 2^{-\frac{j}{2}}[\hat{f}, \hat{g}]_{j},$$

where  $\mathcal{F}_{2j}$  is the Fourier transform on  $\ell(\mathbb{Z}_{2j})$ .

#### Proposition 2

The collection  $X_j(\phi)$  forms an orthonormal basis for  $V_j(\Phi)$  if and only if

$$[\hat{\phi},\hat{\phi}]_j(n)=1, \quad n\in\mathbb{Z}_{2^j}.$$

## **Refinable Functions**

### Definition 4

A function  $\phi \in L^2(\mathbb{T})$  is said to be *refinable of order*  $2^j$  if there exists a *mask*  $c \in \ell(\mathbb{Z}_{2^j})$  such that

$$D\phi = \sum_{n \in \mathbb{Z}_{2^j}} c(n) T_{2^{-j}}^n \phi.$$
<sup>(1)</sup>

## **Refinable Functions**

#### Definition 4

A function  $\phi \in L^2(\mathbb{T})$  is said to be *refinable of order*  $2^j$  if there exists a *mask*  $c \in \ell(\mathbb{Z}_{2^j})$  such that

$$D\phi = \sum_{n \in \mathbb{Z}_{2^j}} c(n) T_{2^{-j}}^n \phi.$$
<sup>(1)</sup>

#### Lemma 1

Suppose that  $\phi \in L^2(\mathbb{T})$  is refinable of order  $2^j$ , then there exists  $m \in \ell(\mathbb{Z}_{2^j})$  such that

$$\hat{\phi}(2k) = m(k)\hat{\phi}(k), \quad k \in \mathbb{Z}.$$
 (2)

## Refinability of Dilates

#### Remark 2

If  $\phi \in L^2(\mathbb{T})$  is refinable of order  $2^j$  with filter  $m \in \ell(\mathbb{Z}_{2^j})$  then

$$D^2\phi = \sum_{n\in\mathbb{Z}_{2^{j-1}}}\left(\sum_{\ell\in\{0,1\}}c(n+\ell2^{j-1})
ight)T_{2^{j-1}}^nD\phi,$$

i.e.,  $D\phi$  is refinable of order  $2^{j-1}$ .

## Refinability of Dilates

### Remark 2

If  $\phi \in L^2(\mathbb{T})$  is refinable of order  $2^j$  with filter  $m \in \ell(\mathbb{Z}_{2^j})$  then

$$D^2\phi = \sum_{n \in \mathbb{Z}_{2^{j-1}}} \left( \sum_{\ell \in \{0,1\}} c(n+\ell 2^{j-1}) \right) T_{2^{j-1}}^n D\phi,$$

i.e.,  $D\phi$  is refinable of order  $2^{j-1}$ . It is not difficult to show that  $m(2 \cdot)$  is a filter for  $D\varphi$ .

## Refinability of Dilates

### Remark 2

If  $\phi \in L^2(\mathbb{T})$  is refinable of order  $2^j$  with filter  $m \in \ell(\mathbb{Z}_{2^j})$  then

$$D^2\phi = \sum_{n \in \mathbb{Z}_{2^{j-1}}} \left( \sum_{\ell \in \{0,1\}} c(n+\ell 2^{j-1}) \right) T_{2^{j-1}}^n D\phi,$$

i.e.,  $D\phi$  is refinable of order  $2^{j-1}$ . It is not difficult to show that  $m(2\cdot)$  is a filter for  $D\varphi$ .

#### Remark 3

Notice that  $\widehat{D\varphi}(0) = m(0)\hat{\varphi}(0)$ . Hence, if  $\varphi$  is refinable with  $\hat{\varphi}(0) \neq 0$ , it follows that m(0) = 1.

## Multiresolution Analysis

### Definition 5

### **Definition 5**

A multiresolution analysis (MRA) of order  $2^j$  is a collection of closed subspaces of  $L^2(\mathbb{T})$ ,  $\{V_k\}_{k=0}^j$ , satisfying

i) For  $1 \leq k \leq j$ ,  $V_{k-1} \subseteq V_k$ ;

### **Definition 5**

- i) For  $1 \le k \le j$ ,  $V_{k-1} \subseteq V_k$ ;
- ii) For  $1 \le k \le j 1, f \in V_k$  if and only if  $Df \in V_{k-1}$ ;

### **Definition 5**

- i) For  $1 \leq k \leq j$ ,  $V_{k-1} \subseteq V_k$ ;
- ii) For  $1 \le k \le j-1, f \in V_k$  if and only if  $Df \in V_{k-1}$ ;
- iii)  $V_0$  is the subspace of constant functions;

### **Definition 5**

- i) For  $1 \leq k \leq j$ ,  $V_{k-1} \subseteq V_k$ ;
- ii) For  $1 \le k \le j-1, f \in V_k$  if and only if  $Df \in V_{k-1}$ ;
- iii)  $V_0$  is the subspace of constant functions;
- iv) There exists a *scaling function*  $\varphi \in V_j$  such that  $X_k(2^{\frac{j-k}{2}}D^{j-k}\varphi)$  is an orthonormal basis for  $V_k$ .

### Definition 5

A multiresolution analysis (MRA) of order  $2^j$  is a collection of closed subspaces of  $L^2(\mathbb{T})$ ,  $\{V_k\}_{k=0}^j$ , satisfying

- i) For  $1 \leq k \leq j$ ,  $V_{k-1} \subseteq V_k$ ;
- ii) For  $1 \le k \le j-1, f \in V_k$  if and only if  $Df \in V_{k-1}$ ;
- iii)  $V_0$  is the subspace of constant functions;
- iv) There exists a *scaling function*  $\varphi \in V_j$  such that  $X_k(2^{\frac{j-k}{2}}D^{j-k}\varphi)$  is an orthonormal basis for  $V_k$ .

#### Remark 4

Notice that MRA properties i, ii, and iv imply that a scaling function  $\varphi$  is necessarily refinable of order  $2^j$ . Moreover, it follows from MRA properties iii and iv that  $D^j \varphi$  must be constant and nonzero, implying that  $\hat{\varphi}(0) \neq 0$ .

## Characterization of Scaling Functions

#### Theorem 1

Suppose  $\varphi \in L^2(\mathbb{T})$  is a refinable function of order  $2^j$  with  $\hat{\varphi}(0) \neq 0$ . Then  $\varphi$  is the scaling function of an MRA of order  $2^j$  if and only if

$$|m_0(n)|^2 + |m_0(n+2^{j-1})|^2 = 1, \quad n \in \mathbb{Z}_{2^j},$$
 (3)

and

$$[\hat{\varphi}, \hat{\varphi}]_j(n) = 1, \quad n \in \mathbb{Z}_{2^j}.$$
(4)

## **Characterization of Scaling Functions**

#### Theorem 1

Suppose  $\varphi \in L^2(\mathbb{T})$  is a refinable function of order  $2^j$  with  $\hat{\varphi}(0) \neq 0$ . Then  $\varphi$  is the scaling function of an MRA of order  $2^j$  if and only if

$$|m_0(n)|^2 + |m_0(n+2^{j-1})|^2 = 1, \quad n \in \mathbb{Z}_{2^j},$$
 (3)

and

$$[\hat{\varphi},\hat{\varphi}]_{j}(n)=1, \quad n\in\mathbb{Z}_{2^{j}}.$$
(4)

#### Remark 5

Equation (3) will be referred to as the Smith-Barnwell equation for the filter.

### **Existence of Scaling Functions**

#### Theorem 2

Suppose  $m_0 \in \ell(\mathbb{Z}_{2^j})$  satisfies (3) with  $m_0(0) = 1$ . Then  $m_0$  is the low-pass filter of a trigonometric polynomial scaling function of order  $2^j$ .

## **Existence of Scaling Functions**

### Theorem 2

Suppose  $m_0 \in \ell(\mathbb{Z}_{2^j})$  satisfies (3) with  $m_0(0) = 1$ . Then  $m_0$  is the low-pass filter of a trigonometric polynomial scaling function of order  $2^j$ .

The construction:

1. Let 
$$\hat{\varphi}(0) = 2^{-\frac{j}{2}}$$
.

## **Existence of Scaling Functions**

### Theorem 2

Suppose  $m_0 \in \ell(\mathbb{Z}_{2^j})$  satisfies (3) with  $m_0(0) = 1$ . Then  $m_0$  is the low-pass filter of a trigonometric polynomial scaling function of order  $2^j$ .

The construction:

- 1. Let  $\hat{\varphi}(0) = 2^{-\frac{j}{2}}$ .
- 2. For  $-2^{j-2} \le k \le 2^{j-2} 1$ , let  $\hat{\varphi}(2k+1) = 2^{-\frac{j}{2}}$ .

## **Existence of Scaling Functions**

### Theorem 2

Suppose  $m_0 \in \ell(\mathbb{Z}_{2^j})$  satisfies (3) with  $m_0(0) = 1$ . Then  $m_0$  is the low-pass filter of a trigonometric polynomial scaling function of order  $2^j$ .

The construction:

1. Let  $\hat{\varphi}(0) = 2^{-\frac{j}{2}}$ . 2. For  $-2^{j-2} \le k \le 2^{j-2} - 1$ , let  $\hat{\varphi}(2k+1) = 2^{-\frac{j}{2}}$ . 3. For  $-2^{j-2} \le k \le 2^{j-2} - 1$  and  $1 \le n \le j - 1$ , define  $\hat{\varphi}(2^n(2k+1))$ 

according to (1), i.e.,

$$\hat{\varphi}(2^n(2k+1)) = m_0(2^{n-1}(2k+1))\hat{\varphi}(2^{n-1}(2k+1)).$$

## Orthonormal Wavelets

### Definition 6

Let  $\{V_k\}_{k=0}^j$  be an MRA of order  $2^j$ . A function  $\psi \in V_j$  is a *wavelet* for the MRA if the collection

$$\{2^{\frac{j-k}{2}}T_{2^{-k}}^nD^{j-(k+1)}\psi: 0 \le k \le j-1, \ n \in \mathbb{Z}_{2^k}\}$$

is an orthonormal basis for  $V_j \ominus V_0$ .

## Orthonormal Wavelets

### Definition 6

Let  $\{V_k\}_{k=0}^j$  be an MRA of order  $2^j$ . A function  $\psi \in V_j$  is a *wavelet* for the MRA if the collection

$$\{2^{\frac{j-k}{2}}T_{2^{-k}}^nD^{j-(k+1)}\psi: 0 \le k \le j-1, \ n \in \mathbb{Z}_{2^k}\}$$

is an orthonormal basis for  $V_j \ominus V_0$ .

This construction rests on a decomposition  $V_k = V_{k-1} \oplus W_{k-1}$ ,  $1 \le k \le j$ , where  $W_k$  is of the form

$$W_k = V_k(D^{j-(k+1)}\psi).$$
# The High-Pass Filter

#### Theorem 3

Suppose that  $\varphi$  is the scaling function of an MRA of order  $2^j$  and define  $\psi \in V_j$  by

$$\hat{\psi}(k)=m_1(k)\hat{arphi}(k),\quad k\in\mathbb{Z},$$

where  $m_1 \in \ell(\mathbb{Z}_{2^j})$  is chosen as

$$m_1(n) = \overline{m_0(n+2^{j-1})} e^{-2\pi i 2^{-j}n}, \quad n \in \mathbb{Z}_{2^j}.$$

Then  $\psi$  is a wavelet for the MRA.

(5)

### Borrowing from the Line

#### Proposition 3

Suppose  $c \in \ell^2(\mathbb{Z})$  is an absolutely summable sequence whose Fourier transform  $m = \hat{c}$  satisfies

$$|m(\xi)|^2 + |m(\xi + 2^{-1})|^2 = 1, \quad \xi \in \mathbb{T},$$

If  $c_0 \in \ell(\mathbb{Z}_{2^j})$  is defined by

$$c_0(n)=2^{rac{j}{2}}\sum_{k\in\mathbb{Z}}c(n+k2^j),\quad n\in\mathbb{Z}_{2^j},$$

then  $m_0 = 2^{\frac{1}{2}} \hat{c_0}$  satisfies the Smith-Barnwell equation (3).

### The Haar Scaling Function

#### A low-dimensional example will be good for illustrating the construction of $\varphi$ .

### The Haar Scaling Function

A low-dimensional example will be good for illustrating the construction of  $\varphi$ .

#### Example 1 (Haar Filter)

Fix j = 3 and let  $c \in \ell(\mathbb{Z}_8)$  be given by  $c(0) = c(1) = \frac{1}{2}$  with c(n) = 0 for  $n \neq 0, 1$ . The low-pass filter  $m_0 \in \ell(\mathbb{Z}_8)$  is given by

$$m_0(n) = e^{-\pi i n/8} \cos{(n\pi/8)}, \quad n \in \mathbb{Z}_8.$$

It is easy to verify the Smith-Barnwell equation (3).

## The Haar Scaling Function

$$\begin{aligned} \hat{\varphi}(-3) &= \frac{1}{\sqrt{8}} \longrightarrow \hat{\varphi}(-6) = \hat{\varphi}(-3)m_0(5) \longrightarrow \hat{\varphi}(-12) = \hat{\varphi}(-6)m_0(5)m_0(2), \\ \hat{\varphi}(-1) &= \frac{1}{\sqrt{8}} \longrightarrow \hat{\varphi}(-2) = \hat{\varphi}(-1)m_0(7) \longrightarrow \hat{\varphi}(-4) = \hat{\varphi}(-2)m_0(7)m_0(6), \\ \hat{\varphi}(0) &= \frac{1}{\sqrt{8}}, \\ \hat{\varphi}(1) &= \frac{1}{\sqrt{8}} \longrightarrow \hat{\varphi}(2) = \hat{\varphi}(1)m_0(1) \longrightarrow \hat{\varphi}(4) = \hat{\varphi}(1)m_0(1)m_0(2), \\ \hat{\varphi}(3) &= \frac{1}{\sqrt{8}} \longrightarrow \hat{\varphi}(6) = \hat{\varphi}(3)m_0(3) \longrightarrow \hat{\varphi}(12) = \hat{\varphi}(6)m_0(3)m_0(6). \end{aligned}$$

Each "strand" terminates because the next computation would include  $m_0(4) = 0$ .

### The Haar Scaling Function (j = 3)



### The Haar Wavelet (j = 3)



# **Approximation Error**

#### The error of approximation will be studied for trigonometric monomials.

# **Approximation Error**

The error of approximation will be studied for trigonometric monomials.

#### **Definition** 7

The error of approximation, denoted  $E_{2i}(k)$ , is defined as

$$E_{2^{j}}(k) = \left[1 - 2^{j} |\hat{\varphi}(k)|^{2}\right]^{\frac{1}{2}}, \quad k \in \mathbb{Z}.$$

An elementary calculation shows that  $E_{2i}(k)$  is the approximation error ||Pf - f|| where  $f = e^{2\pi i k x}$  and P is the orthogonal projection onto  $V_j(\varphi)$ .

### An Approximation Result

If  $m(\xi)$  is a continuous function on the circle with m(0) = 1 and satisfying the Smith-Barnwell equation (3), one can define a scaling function associated to m of order  $2^{j}$ .

### An Approximation Result

If  $m(\xi)$  is a continuous function on the circle with m(0) = 1 and satisfying the Smith-Barnwell equation (3), one can define a scaling function associated to m of order  $2^{j}$ .

#### **Proposition 4**

Fix  $r \in \mathbb{N}$  and  $\varepsilon > 0$ . Then there exists j > 0 such that  $E_{2j}(k) < \varepsilon$  for |k| < r, where  $\varphi$  is constructed as in Theorem 2.

### An Approximation Result

If  $m(\xi)$  is a continuous function on the circle with m(0) = 1 and satisfying the Smith-Barnwell equation (3), one can define a scaling function associated to *m* of order  $2^{j}$ .

#### Proposition 4

Fix  $r \in \mathbb{N}$  and  $\varepsilon > 0$ . Then there exists j > 0 such that  $E_{2j}(k) < \varepsilon$  for |k| < r, where  $\varphi$  is constructed as in Theorem 2.

#### Remark 6

Notice that this discussion does not apply to the classical Shannon filter or scaling function. The next example seeks to remedy this situation.

### The Shannon Scaling Function

#### Example 2 (Shannon Filter)

Let  $m_0 \in \ell(\mathbb{Z}_{2^j})$  be defined for j > 2 by

$$m_0(n) = \begin{cases} 1, & n < \frac{1}{4}2^j \text{ or } n > \frac{3}{4}2^j, \\ \frac{1}{\sqrt{2}}, & n = \frac{1}{2}2^j \text{ or } n = \frac{3}{4}2^j, & n \in \mathbb{Z}_{2^j} \\ 0, & \text{otherwise}, \end{cases}$$

### The Shannon Scaling Function

#### Example 2 (Shannon Filter)

Let  $m_0 \in \ell(\mathbb{Z}_{2^j})$  be defined for j > 2 by

$$m_0(n) = \begin{cases} 1, & n < \frac{1}{4}2^j \text{ or } n > \frac{3}{4}2^j, \\ \frac{1}{\sqrt{2}}, & n = \frac{1}{2}2^j \text{ or } n = \frac{3}{4}2^j, & n \in \mathbb{Z}_{2^j} \\ 0, & \text{otherwise}, \end{cases}$$

If  $\varphi$  is constructed as in Theorem 2, then  $\hat{\varphi}(k) = 2^{-\frac{j}{2}}$  whenever  $|k| < 2^{j-1}$ .

### The Shannon Scaling Function (j = 6)



### The Shannon Wavelet (j = 6)



Preliminaries on the torus

#### Part II: The Torus

# Part II: The Torus

• The matrices:

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
  $B = A^* = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ .

• The matrices:

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = A^* = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

• The lattices:

• The matrices:

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = A^* = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

- The lattices:
  - The lattice of order  $2^j$  generated by A:

$$\Gamma_j = A^{-j} \mathbb{Z}^2 / \mathbb{Z}^2.$$

Convention: Each  $\alpha \in \Gamma_j$  should lie in  $[0, 1) \times [0, 1)$ .

• The matrices:

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = A^* = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

- The lattices:
  - The lattice of order  $2^j$  generated by A:

$$\Gamma_j = A^{-j} \mathbb{Z}^2 / \mathbb{Z}^2.$$

Convention: Each  $\alpha \in \Gamma_j$  should lie in  $[0, 1) \times [0, 1)$ .

• The dual lattice of order  $2^j$  generated by A:

$$\Gamma_j^* = \mathbb{Z}^2 / B^j \mathbb{Z}^2$$

Convention: 
$$\Gamma_j^* = B^j R \cap \mathbb{Z}^2$$
, where  $R = (-\frac{1}{2}, \frac{1}{2}] \times (-\frac{1}{2}, \frac{1}{2}]$ .

Preliminaries on the torus

### The Dual Lattices $\Gamma_i^*$



### **Dilation & Translation**

Recall:

• Dilation, 
$$D: L^2(\mathbb{T}^2) \to L^2(\mathbb{T}^2)$$
, is defined by

$$\widehat{Df}(k) = \widehat{f}(Ak), \quad k \in \mathbb{Z}^2.$$

### **Dilation & Translation**

Recall:

• Dilation, 
$$D: L^2(\mathbb{T}^2) \to L^2(\mathbb{T}^2)$$
, is defined by

$$\widehat{Df}(k) = \widehat{f}(Ak), \quad k \in \mathbb{Z}^2.$$

• Translation,  $T_{\alpha}: L^2(\mathbb{T}^2) \to L^2(\mathbb{T}^2), \alpha \in \mathsf{F}_j$ , is defined by

$$T_{\alpha}f(x) = f(x - \alpha), \quad x \in \mathbb{T}^2.$$

### **Dilation & Translation**

Recall:

• Dilation, 
$$D: L^2(\mathbb{T}^2) \to L^2(\mathbb{T}^2)$$
, is defined by

$$\widehat{Df}(k) = \widehat{f}(Ak), \quad k \in \mathbb{Z}^2.$$

• Translation,  $T_{\alpha}: L^2(\mathbb{T}^2) \to L^2(\mathbb{T}^2), \alpha \in \mathsf{F}_j$ , is defined by

$$T_{\alpha}f(x) = f(x - \alpha), \quad x \in \mathbb{T}^2.$$

• Interplay of *D* and *T*:

$$DT_{\alpha}f = T_{B\alpha}Df, \quad \alpha \in \Gamma_j.$$

Note that  $B\alpha \in \Gamma_j$  for all  $\alpha \in \Gamma_j$ .

#### **Definition 8**

Let  $\phi \in L^2(\mathbb{T}^2)$ . The principal A-shift-invariant space of order  $2^j$  generated by  $\phi$ , denoted  $V_j(\phi)$ , is the finite-dimensional subspace of  $L^2(\mathbb{T}^2)$  spanned by the collection

$$X_j(\phi) = \{T_\alpha \phi : \alpha \in \mathsf{\Gamma}_j\}. \tag{6}$$

#### **Definition 8**

Let  $\phi \in L^2(\mathbb{T}^2)$ . The principal A-shift-invariant space of order  $2^j$  generated by  $\phi$ , denoted  $V_j(\phi)$ , is the finite-dimensional subspace of  $L^2(\mathbb{T}^2)$  spanned by the collection

$$X_j(\phi) = \{T_\alpha \phi : \alpha \in \mathsf{\Gamma}_j\}. \tag{6}$$

#### **Definition 9**

Let  $f, g \in L^2(\mathbb{T}^2)$ . The *A*-bracket product of f and g of order  $2^j$  is the element of  $\ell(\Gamma_j^*)$  defined by

$$[\widehat{f},\widehat{g}]_{A^j}(eta)=2^j\sum_{k\in B^j\mathbb{Z}^2}\widehat{f}(eta+k)\overline{\widehat{g}(eta+k)},\quadeta\in \mathsf{\Gamma}_j^*.$$

Here,  $\ell(\Gamma_i^*)$  is the space of  $\mathbb{C}$ -valued functions on  $\Gamma_i^*$ .

#### Lemma 2

Define  $e_{j,\alpha} \in \ell(\Gamma_j^*)$ , j > 0,  $\alpha \in \Gamma_j$ , by

$$e_{j,\alpha}(eta) = \exp\left(2\pi i \langle lpha, eta 
angle
ight), \quad eta \in \mathsf{F}_j^*.$$

The collection  $\{2^{-\frac{j}{2}}e_{j,\alpha}\}_{\alpha\in\Gamma_j}$  is an orthonormal basis for  $\ell(\Gamma_j^*)$ .

#### Lemma 2

Define  $e_{j,\alpha} \in \ell(\Gamma_j^*)$ , j > 0,  $\alpha \in \Gamma_j$ , by

$$e_{j,\alpha}(eta) = \exp\left(2\pi i \langle lpha, eta 
angle
ight), \quad eta \in \mathsf{F}_j^*.$$

The collection  $\{2^{-\frac{j}{2}}e_{j,\alpha}\}_{\alpha\in\Gamma_j}$  is an orthonormal basis for  $\ell(\Gamma_j^*)$ .

#### **Proposition 5**

The collection  $X_j(\phi)$  forms an orthonormal basis for  $V_j(\phi)$  if and only if

$$[\hat{\phi}, \hat{\phi}]_{A^j}(\beta) = 1, \quad \beta \in \Gamma_j^*.$$

### **Refinable Functions**

#### Definition 10

A function  $\phi \in L^2(\mathbb{T}^2)$  is *A*-refinable of order  $2^j$  if there exists a mask  $c \in \ell(\Gamma_j)$  such that

$$D\phi = \sum_{\alpha \in \mathsf{F}_j} c(\alpha) T_{\alpha} \phi.$$
 (7)

### **Refinable Functions**

#### Definition 10

A function  $\phi \in L^2(\mathbb{T}^2)$  is *A*-refinable of order  $2^j$  if there exists a mask  $c \in \ell(\Gamma_j)$  such that

$$D\phi = \sum_{lpha \in \mathsf{F}_j} c(lpha) \, T_lpha \phi.$$

#### Lemma 3

If  $\phi$  is refinable of order  $2^{j}$ , then

$$\hat{\phi}(Ak) = m(k)\hat{\phi}(k), \quad k \in \mathbb{Z}^2,$$

(8)

(7)

where  $m \in \ell(\Gamma_j^*)$  is given by

$$m(\beta) = \sum_{\alpha \in \Gamma_j} c(\alpha) \overline{e_{j,\alpha}(\cdot)}, \quad \beta \in \Gamma_j^*.$$

Preliminaries on the torus

### **Refinability of Dilates**

#### Lemma 4

If  $\phi$  is refinable of order  $2^j$  with filter  $m \in \ell(\Gamma_j^*)$ , then  $D\phi$  is refinable of order  $2^{j-1}$  with filter  $m(A \cdot) \in \ell(\Gamma_{j-1}^*)$ .

Multiresolution Analysis on the Torus

### **Multiresolution Analysis**

#### Definition 11

A multiresolution analysis (MRA) of order  $2^j$   $(j \in \mathbb{N})$  is a collection of closed subspaces of  $L^2(\mathbb{T}^2)$ ,  $\{V_k\}_{k=0}^j$ , satisfying

Multiresolution Analysis on the Torus

### **Multiresolution Analysis**

#### Definition 11

A multiresolution analysis (MRA) of order  $2^j$   $(j \in \mathbb{N})$  is a collection of closed subspaces of  $L^2(\mathbb{T}^2)$ ,  $\{V_k\}_{k=0}^j$ , satisfying

i) For  $1 \le k \le j$ ,  $V_{k-1} \subseteq V_k$ ;

### **Multiresolution Analysis**

#### Definition 11

A multiresolution analysis (MRA) of order  $2^j$   $(j \in \mathbb{N})$  is a collection of closed subspaces of  $L^2(\mathbb{T}^2)$ ,  $\{V_k\}_{k=0}^j$ , satisfying

- i) For  $1 \le k \le j$ ,  $V_{k-1} \subseteq V_k$ ;
- ii) For  $1 \le k \le j, f \in V_k$  if and only if  $Df \in V_{k-1}$ ;

### **Multiresolution Analysis**

#### Definition 11

A multiresolution analysis (MRA) of order  $2^j$   $(j \in \mathbb{N})$  is a collection of closed subspaces of  $L^2(\mathbb{T}^2)$ ,  $\{V_k\}_{k=0}^j$ , satisfying

- i) For  $1 \leq k \leq j$ ,  $V_{k-1} \subseteq V_k$ ;
- ii) For  $1 \le k \le j, f \in V_k$  if and only if  $Df \in V_{k-1}$ ;
- iii)  $V_0$  is the subspace of constant functions;
# **Multiresolution Analysis**

### Definition 11

A multiresolution analysis (MRA) of order  $2^j$   $(j \in \mathbb{N})$  is a collection of closed subspaces of  $L^2(\mathbb{T}^2)$ ,  $\{V_k\}_{k=0}^j$ , satisfying

- i) For  $1 \leq k \leq j$ ,  $V_{k-1} \subseteq V_k$ ;
- ii) For  $1 \le k \le j, f \in V_k$  if and only if  $Df \in V_{k-1}$ ;
- iii)  $V_0$  is the subspace of constant functions;
- iv) There exists a *scaling function*  $\varphi \in V_j$  such that  $X_k(2^{\frac{j-k}{2}}D^{j-k}\varphi)$  is an orthonormal basis for  $V_k$ ,  $0 \le k \le j$ .

### Main Results

#### Theorem 4

Suppose that  $\varphi \in L^2(\mathbb{T}^2)$  is refinable of order  $2^j$   $(j \in \mathbb{N})$  with  $\hat{\varphi}(0) \neq 0$ . Then  $\varphi$  is the scaling function of an MRA of order  $2^j$  if and only if

$$|m_0(\beta)|^2 + |m_0(\beta + B^{j-1}\beta_1)|^2 = 1, \quad \beta \in \Gamma_{j-1}^*,$$
 (9)

and

$$[\hat{\varphi}, \hat{\varphi}]_{A^{j}}(\beta) = 1, \quad \beta \in \Gamma_{j}^{*}, \tag{10}$$

where  $\beta_1$  is the nonzero element of  $\Gamma_1^*$ .

### Main Results

#### Theorem 4

Suppose that  $\varphi \in L^2(\mathbb{T}^2)$  is refinable of order  $2^j$   $(j \in \mathbb{N})$  with  $\hat{\varphi}(0) \neq 0$ . Then  $\varphi$  is the scaling function of an MRA of order  $2^j$  if and only if

$$m_0(\beta)|^2 + |m_0(\beta + B^{j-1}\beta_1)|^2 = 1, \quad \beta \in \Gamma_{j-1}^*,$$
 (9)

and

$$[\hat{\varphi}, \hat{\varphi}]_{A^{j}}(\beta) = 1, \quad \beta \in \Gamma_{j}^{*}, \tag{10}$$

where  $\beta_1$  is the nonzero element of  $\Gamma_1^*$ .

#### Theorem 5

Fix j > 0 and let  $m_0 \in \ell(\Gamma_j^*)$  be a candidate low-pass filter satisfying (3) and  $m_0(0) = 1$ . Then  $m_0$  is the low-pass filter of a trigonometric polynomial scaling function of order  $2^j$ .

## Orthonormal MRA Wavelets

### Definition 12

Let  $\{V_k\}_{k=0}^j$  be an MRA of order  $2^j$ . A function  $\psi \in V_j$  is a *wavelet* for the MRA if the collection

$$\left\{2^{rac{j-k}{2}}T_{lpha}D^{j-(k+1)}\psi: 0 \leq k \leq j-1, \ lpha \in \mathsf{F}_k
ight\}$$

is an orthonormal basis for  $V_j \ominus V_0$ .

# The High-Pass Filter

#### Theorem 6

Let  $\varphi$  be the scaling function of an MRA of order  $2^{j}$ . Define  $\psi$  by

 $\hat{\psi}(k) = m_1(k)\hat{\varphi}(k), \quad k \in \mathbb{Z}^2,$ 

where  $m_1 \in \ell(\Gamma_j^*)$  is defined by

$$m_1(\beta) = \overline{m_0(\beta + B^{j-1}\beta_1)} \exp\left(2\pi i \langle A^{-(j-1)}\alpha_1, \beta \rangle\right).$$
(11)

Then,  $\psi$  is an orthonormal wavelet for the MRA.

### **Real-Valued Scaling Functions**

#### Proposition 6

Let  $m_0 \in \ell(\Gamma_j^*)$  be a low-pass filter satisfying (3) and such that  $m_0(0) = 1$  and  $m_0(-\beta) = \overline{m_0(\beta)}, \beta \in \Gamma_j^*$ . Then there is a real-valued scaling function  $\varphi$  which is refinable with respect to  $m_0$  giving rise to an MRA of order  $2^j$ .

### **Construction of Real-Valued Scaling Functions**

Let 
$$\mathcal{B} = \Gamma_j^* \setminus A\mathbb{Z}^2$$
. Define  $\varphi$  by  
1) Let  $\hat{\varphi}(0) = 2^{-\frac{j}{2}}$ .  
2) If  $\beta, -\beta \in \mathcal{B}$ , let  $\hat{\varphi}(\beta) = 2^{-\frac{j}{2}}$  and define  
 $\hat{\varphi}(A^k\beta) = \hat{\varphi}(\beta) \prod_{\ell=0}^{k-1} m_0(A^\ell\beta), \quad 1 \le k \le j-1.$   
3) If  $\beta \in \mathcal{B}$ , but  $-\beta \notin \mathcal{B}$ , let  $\hat{\varphi}(\pm \beta) = 2^{-\frac{j+1}{2}}$  and define

$$\hat{\varphi}(\pm A^k eta) = \hat{\varphi}(\pm eta) \prod_{\ell=0}^{k-1} m_0(\pm A^\ell eta), \quad 1 \leq k \leq j-1.$$

4) The remaining Fourier coefficients will be zero.

### Shannon Filter

#### Proposition 7 (Shannon Filter)

Fix  $j \ge 2$  and let  $S_j = \{\beta \in \Gamma_j^* : \beta, -\beta \in \Gamma_{j-1}^*\}$ . The low-pass filter  $m_0 \in \ell(\Gamma_j^*)$  defined by

$$m_0(eta) = egin{cases} 1 & eta \in S_j \ rac{1}{\sqrt{2}} & eta \in \Gamma_{j-1}^* \setminus S_j \ \sqrt{1-|m_0(eta-B^{j-1}eta_1)|^2} & otherwise, \end{cases}$$

satisfies (3) and is symmetric in the sense that  $m_0(-\beta) = m_0(\beta), \ \beta \in \Gamma_i^*$ .

# Shannon Filter



## Shannon Scaling Function



## Shannon Wavelet



Approximation with the Shannon Wavelet

### **Proposition 8**

Let  $\varphi$  be the scaling function corresponding to the low-pass filter of Proposition 7 given by Proposition 6. If  $j \ge 6 + \log_2 r^2$ , then  $E_j(k) = 0$  for all  $k \in \{k = (k_1, k_2) : \max\{|k_1|, |k_2|\} \le r\}.$ 

### Haar Filter

#### Proposition 9 (Haar Filter)

*Fix*  $j \ge 2$ *. Define*  $m_0 \in \ell(\Gamma_j^*)$  *by* 

$$m_0(\beta) = \frac{1}{2} \left( 1 + \exp\left(-2\pi i \langle A^{-(j-1)} \alpha_1, \beta \rangle \right) \right),$$

where  $\alpha_1$  is the nonzero element of  $\Gamma_1$ . Then  $\underline{m}_0$  satisfies (3) with  $\underline{m}_0(0) = 1$ and is conjugate-symmetric, i.e.,  $\underline{m}_0(-\beta) = \overline{\underline{m}_0(\beta)}, \beta \in \Gamma_i^*$ .

## Haar Filter



# Haar Scaling Function



## Haar Wavelet



### Approximation with the Haar Wavelet

#### Proposition 10

Let  $\varphi$  be the scaling function corresponding to the low-pass filter of Proposition 9 given by Proposition 6. Then for any  $r \in \mathbb{Z}^2$ ,

 $\lim_{j\to\infty}E_j(r)=0.$ 

## The Last Slide

## The End.

Brody Dylan Johnson (St. Louis University)

Quincunx wavelets on  $\mathbb{T}^2$ 

4 December 2009 48 / 48