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Abstract

We seek to demonstrate a connection between refinable quasi-affine systems and the discrete
wavelet transform known as the à trous algorithm. We begin with an introduction of the bracket
product, which is the major tool in our analysis. Using multiresolution operators, we then
proceed to reinvestigate the equivalence of the duality of refinable affine frames and their quasi-
affine counterparts associated with a fairly general class of scaling functions that includes the
class of compactly supported scaling functions. Our methods show that for negative scales only
one of the generalized Smith-Barnwell equations is actually needed to establish the additivity
property of the quasi-affine multiresolution operators. This fact is then identified with the à
trous algorithm thereby illustrating the connection with quasi-affine systems. We then introduce
the notion of a generalized quasi-affine (GQA) system, in which separate generating wavelets
are used for non-negative and negative dilations. Sufficient conditions are described for two
GQA systems to constitute dual frames, providing a means for the construction of frames
from appropriate à trous systems. We conclude with a brief discussion of examples of GQA
frames associated with two different biorthogonal wavelet systems. The novelty of this work
is the connection established between the à trous algorithm and refinable quasi-affine systems
together with the notion of GQA systems, which are introduced to exploit this connection.

1 Introduction

Throughout this analysis the dilation matrix M will be a fixed n × n matrix with integer entries
such that each eigenvalue λ of M satisfies |λ| > 1, i.e. M is an expanding lattice-preserving n × n
matrix. The unitary dilation operator on L2(Rn) induced by M will be denoted D and is defined
by Df(x) := |det M | 12 f(Mx) for f ∈ L2(Rn). Similarly, we use M to define an alternative dilation
operator ∆, by ∆f(x) := f

(
(MT )−1x

)
, where MT denotes the transpose of M . We are also

interested in the translation operator, Tu, u ∈ Rn, defined by Tuf(x) := f(x − u). Lastly, we will
adopt the following definition for the Fourier transform, f̂ , of f ∈ L2(Rn),

f̂(ξ) =
∫

Rn

f(x)e−i〈ξ,x〉dx.

We now recall the definition of an affine system.
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Definition 1. The affine system generated by Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), denoted X(Ψ), is the
collection

X(Ψ) = {ψ`;j,k : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zn},
where ψ`;j,k := DjTkψ`.

Examples of affine systems are numerous. We are interested here in affine systems that are based on
the notion of a multiresolution analysis (MRA). In one-dimension, we have the 2-band orthonormal
MRA wavelets as in [Mal1] and [Da] as well as the 2-band biorthogonal MRA wavelets found in
[CDF]. M -band biorthogonal MRA wavelets have also been studied in one-dimension [So], [Mag].
In n-dimensions, orthonormal [Ca1, Ca2] and tight-frame [Bo] MRA wavelets relative to expanding,
lattice-preserving dilations have been described. By means of separable products the one-dimensional
methods also provide examples of refinable affine systems in n-dimensions.

Closely related to affine systems are the quasi-affine systems introduced by Ron and Shen in
[RS2] as a means for applying the theory of shift-invariant spaces to the characterization of affine
frames. We have the following definition.

Definition 2. The quasi-affine system generated by Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), denoted Xq(Ψ),
is the collection

Xq(Ψ) := {ψq
`;j,k : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zn},

where

ψq
`;j,k :=

{
DjTkψ`, j ≥ 0
|detM | j

2 TkDjψ`, j < 0.

The reader should note the use of the superscript q in Definition 2. We will apply this notational tool
to other objects below in order to distinguish between the quasi-affine and affine dilation structures.
We now state the characterization of affine systems achieved by Ron and Shen [RS2] under a weak
decay assumption that was later overcome in the work of Chui, Shi, and Stöeckler [CSS].

Theorem 1. Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn).

(a)X(Ψ) is a Bessel system if and only if Xq(Ψ) is a Bessel system. Moreover, the Bessel
bounds are the same in either case.

(b)X(Ψ) is a frame if and only if Xq(Ψ) is a frame. Moreover, the frame bounds are the same
in either case.

For completeness we review the definitions of Bessel systems and frames for a Hilbert space, H.

Definition 3. The collection {hj}j∈J ⊂ H is a frame for H if there exist constants A,B > 0 such
that for all f ∈ H

A‖f‖2H ≤
∑

j∈J

|〈f, hj〉H|2 ≤ B‖f‖2H. (1)

The constants A and B are referred to as the lower and upper frame bounds, respectively. In the
case that A = B the frame is said to be tight. If only the right inequality of (1) holds, the system is
called a Bessel system and in this case B is referred to as the Bessel bound. We say two frames for
H, {hj}j∈J and {h̃j}j∈J , are dual if for each f ∈ H we have

f =
∑

j∈J

〈f, h̃j〉hj . (2)
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Finally, let us give a qualitative description of the à trous algorithm introduced in the work
[HKMT]. Simply put, the à trous algorithm is a variation on the discrete wavelet transform (DWT)
that results in an integer-shift invariant representation of a discrete signal. The deviation from the
ordinary DWT may be explained in two equivalent ways. First, one can view the à trous algorithm
as a DWT in which the downsampling and upsampling stages are removed. Alternatively, one can
realize the à trous algorithm as the analog of the DWT for the system obtained by reversing the order
of the dilation and translation operators. This latter formulation is in accord with the quasi-affine
scenario. The difference between à trous wavelets and quasi-affine systems lies in the fact that the
originators of the à trous algorithm make no mention of positive scales because they were interested
only in applications, where the scale j = 0 corresponds to the resolution of discrete signals. Besides
[HKMT], one may find a treatment of the à trous algorithm in [Mal2] as well as an interesting
application of the à trous algorithm to edge-detection in [MZ].

2 The Bracket Product

In this section we shall introduce the bracket product, developing basic facts relevant to our study
of refinable affine and quasi-affine systems. Most, if not all, of this material can be found elsewhere
in the literature, see e.g. [RS1] or [RS2], but we include it here for completeness. We have the
following definition.

Definition 4. The bracket product of f and g, f, g ∈ L2(Rn), is denoted [f, g] and is defined for a.e.
x ∈ Rn by

[f, g](x) =
∑

k∈Zn

f(x + 2πk)g(x + 2πk). (3)

Notice that the bracket product is 2πZn periodic. We present some elementary properties of the
bracket product.

Lemma 2. Let f, g ∈ L2(Rn).

(a)
∣∣[f̂ , ĝ]

∣∣ ≤ [f̂ , f̂ ]
1
2 [ĝ, ĝ]

1
2 .

(b) 1
(2π)n

∫

Tn

[f̂ , ĝ](ξ)dξ = 〈f, g〉.

(c) [f̂ , ĝ] ∈ L1(Tn), but in general, [f̂ , ĝ] /∈ L2(Tn).

(d) 〈f, Tkg〉 = 1
(2π)n

∫

Tn

[f̂ , ĝ](ξ)ei〈k,ξ〉dξ, i.e.
∑

k∈Zn

〈f, Tkg〉e−i〈k,ξ〉 is the Fourier series of [f̂ , ĝ].

(e) [µf̂ , ĝ] = µ[f̂ , ĝ] = [f̂ , µĝ] when µ is 2πZn periodic.

Lemma 3. Let ψ,ϕ ∈ C := {f ∈ L2(Rn) : [f̂ , f̂ ] ∈ L∞(Tn)}.
(a) [ψ̂, ϕ̂] ∈ Lp(Tn), 1 ≤ p ≤ ∞. If, in addition, ψ and ϕ have compact support then [ψ̂, ϕ̂] is
a trigonometric polynomial.

(b) For all f ∈ L2(R), [f̂ , ϕ̂] ∈ L2(Tn) with

∥∥[f̂ , ϕ̂]
∥∥

L2(Tn)
≤ ∥∥[ϕ̂, ϕ̂]

∥∥ 1
2

∞‖f‖. (4)
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Proof: (a) The first claim follows from Lemma 2 (a) and the definition of C. We observe by Lemma
2 (d) that since ψ and ϕ are of compact support only finitely many Fourier coefficients of [ψ̂, ϕ̂] will
be non-zero and, hence, [ψ̂, ϕ̂] is a trigonometric polynomial.

(b) We simply compute the norm of [f̂ , ϕ̂], using Lemma 2 (a)

∥∥[f̂ , ϕ̂]
∥∥2

L2(Tn)
≤ 1

(2π)n

∫

Tn

[f̂ , f̂ ](ξ) [ϕ̂, ϕ̂](ξ)dξ

≤ ∥∥[ϕ̂, ϕ̂]
∥∥
∞ ‖f‖2. 2

For ϕ̃, ϕ ∈ C, let Rϕ̃,ϕ be the operator mapping f ∈ L2(R) to

Rϕ̃,ϕf =
∑

k∈Zn

〈f, Tkϕ̃〉Tkϕ. (5)

We will see shortly that Rϕ̃,ϕ is bounded on L2(Rn) and we will obtain a characterization of Rϕ̃,ϕ

in terms of the Fourier transforms of ϕ and ϕ̃ that will play an important role in the next section.

Proposition 4. Let ϕ̃, ϕ ∈ C and f ∈ L2(Rn).

(a) ̂(
Rϕ̃,ϕf

)
= [f̂ , ˆ̃ϕ]ϕ̂.

(b) ‖Rϕ̃,ϕf
∥∥

L2(Rn)
≤

∥∥[ϕ̂, ϕ̂]
∥∥ 1

2

∞
∥∥[f̂ , ˆ̃ϕ]

∥∥
L2(Tn)

.

(c) Consequently, Rϕ̃,ϕ is a bounded operator on L2(Rn) with ‖Rϕ̃,ϕ

∥∥ ≤
∥∥[ˆ̃ϕ, ˆ̃ϕ]

∥∥ 1
2

∞
∥∥[ϕ̂, ϕ̂]

∥∥ 1
2

∞.

Proof: We first show that [f̂ , ˆ̃ϕ]ϕ̂ ∈ L2(Rn). By Lemma 3 (b) we have

∥∥[f̂ , ˆ̃ϕ]ϕ̂
∥∥2 =

∫

Tn

∣∣[f̂ , ˆ̃ϕ](ξ)
∣∣2 ∣∣[ϕ̂, ϕ̂](ξ)

∣∣dξ

≤ (2π)n
∥∥[ˆ̃ϕ, ˆ̃ϕ]

∥∥
∞

∥∥[f̂ , ˆ̃ϕ]
∥∥2

L2(Tn)

≤ (2π)n
∥∥[ϕ̂, ϕ̂]

∥∥
∞

∥∥[ˆ̃ϕ, ˆ̃ϕ]
∥∥
∞‖f‖2.

Thus, [f̂ , ˆ̃ϕ]ϕ̂ ∈ L2(Rn). (a) follows once we have established the fact that ̂(
Rϕ̃,ϕf

)
= [f̂ , ˆ̃ϕ]ϕ̂. We

have for each g ∈ L2(Rn)

1
(2π)n

〈
[f̂ , ˆ̃ϕ]ϕ̂, ĝ

〉
=

1
(2π)n

∫

Rn

[f̂ , ˆ̃ϕ](ξ) ϕ̂(ξ)ĝ(ξ)dξ

=
1

(2π)n

∫

Tn

[f̂ , ˆ̃ϕ](ξ) [ϕ̂, ĝ](ξ)dξ

=
〈
[f̂ , ˆ̃ϕ], [ĝ, ϕ̂]

〉
L2(Tn)

=
∑

k∈Zn

〈f, Tkϕ̃〉 〈g, Tkϕ〉

=
〈
Rϕ̃,ϕf, g

〉

With (a) proven, (b) and (c) follow from the above observations. 2
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3 Another look at affine and quasi-affine systems

Due to the relative importance of refinable wavelet systems in applications we offer a separate
examination of the affine, quasi-affine phenomenon in this context. The results of Ron and Shen in
[RS2] and Chui, Shi, and Stöeckler in [CSS], such as Theorem 1, suggest that affine and quasi-affine
systems function in the same way. We would like to understand, at least in the context of refinable
systems, if there are any significant differences in the behavior of the two systems and, if so, whether
they can be exploited in any useful way. We will introduce and study multiresolution operators for
both the affine and quasi-affine systems along the lines of many previous works on refinable systems.
Our methods will differ mainly in that we will be applying multiresolution operators to quasi-affine
systems as well as affine systems, but also in the use of the bracket product as a tool for efficiently
describing each of the multiresolution operators involved.

Let us fix scaling functions ϕ, ϕ̃ ∈ C with associated 2πZn periodic low-pass filters m0 and m̃0

such that

ϕ̂(MT ξ) = m0(ξ)ϕ̂(ξ) and ˆ̃ϕ(MT ξ) = m̃0(ξ)ˆ̃ϕ(ξ) (6)

for a.e. ξ ∈ Rn. Let m1, . . . , mL and m̃1, . . . , m̃L be two sets of 2πZn periodic high-pass filters and
define Ψ := {ψ1, . . . , ψL}, Ψ̃ := {ψ̃1, . . . , ψ̃L} by the refinement identities

ψ̂`(MT ξ) = m`(ξ)ϕ̂(ξ) and ˆ̃
ψ`(M

T ξ) = m̃`(ξ)ˆ̃ϕ(ξ) (7)

for 1 ≤ ` ≤ L. For notational convenience, let us define ψ0 = ϕ and ψ̃0 = ϕ̃. We will assume
hereafter that the filters satisfy the generalized Smith-Barnwell equations for the dilation M , namely
for 0 ≤ p ≤ m− 1 we have

L∑

`=0

m`(ξ)m̃`(ξ + 2π(MT )−1ϑp) = δ0,p a.e. ξ ∈ Tn, (8)

where {ϑp}m−1
p=0 is a complete set of distinct coset representatives of Zn/MTZn, m := | detM |, and

δ0,p is the Kronecker delta. We assume ϑ0 = 0. The following lemma, which is proven in [GH],
facilitates the derivation of the generalized Smith-Barnwell equations and will also aid our analysis
of multiresolution operators below.

Lemma 5. Let M be an expanding, lattice-preserving n× n matrix and let {ϑp}m−1
p=0 be a complete

set of distinct coset representatives of Zn/MTZn, where m = |det M |. For each k ∈ Zn, we have

m∑
p=1

e−2πi
〈
(MT )−1ϑp,k

〉
=

{
m, k ∈ MZn

0, k /∈ MZn.
(9)

At this point, a few observations regarding the filters and the wavelets are in order. If we restrict
our filters to the class L∞(Tn), then the wavelets ψ`, ψ̃` will belong to C. To see this, we observe

[ψ̂`, ψ̂`](ξ) =
∑

k∈Zn

∣∣∣ψ̂`(ξ + 2πk)
∣∣∣
2

=
∑

k∈Zn

∣∣∣m`

(
(MT )−1(ξ + 2πk)

)∣∣∣
2∣∣ϕ̂(

(MT )−1(ξ + 2πk)
)∣∣∣

2

=
m−1∑
p=0

∣∣m`

(
(MT )−1(ξ + 2πϑp)

)∣∣2[ϕ̂, ϕ̂]
(
(MT )−1(ξ + 2πϑp)

)
,
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from which we conclude
∥∥[ψ̂`, ψ̂`]

∥∥
∞ ≤ m‖m`‖2∞

∥∥[ϕ̂, ϕ̂]
∥∥
∞. Similar reasoning leads to the conclusion

that if f ∈ C then Djf ∈ C for each j ∈ Z. These classes of scaling functions and filters are
sufficiently general, since in practice it is likely that we would restrict the filters to the subclass of
L∞(Tn) consisting of trigonometric polynomials, in which case the scaling functions and wavelets
would belong to the subclass of C corresponding to the compactly supported functions in L2(Rn).

We are now equipped to introduce multiresolution operators associated with the proposed dual
affine and quasi-affine systems generated by Ψ and Ψ̃. At each scale j we will have one operator
that essentially approximates a given function by incorporating information from all scales coarser
than j and another operator that captures the variation of the function at the scale j. In the affine
orthonormal wavelet setting these soon to be defined operators become orthogonal projections, but
in general this is not true although the inspired intuition remains useful. The affine approximation
and detail operators at the scale j ∈ Z, Pj and Qj , respectively, act on f ∈ L2(Rn) by

Pjf :=
∑

k∈Zn

〈f, ϕ̃j,k〉ϕj,k and Qjf :=
L∑

`=1

∑

k∈Zn

〈f, ψ̃`;j,k〉ψ`;j,k, (10)

whereas the quasi-affine approximation and detail operators at the scale j, P q
j and Qq

j , respectively,
are defined similarly by

P q
j f :=

∑

k∈Zn

〈f, ϕ̃q
j,k〉ϕq

j,k and Qq
jf :=

L∑

`=1

∑

k∈Zn

〈f, ψ̃q
`;j,k〉ψq

`;j,k. (11)

By definition, P q
j = Pj and Qq

j = Qj for each j ≥ 0. Note that we have again used the superscript
q to distinguish the quasi-affine objects from their affine counterparts.

Proposition 6. Let ψ`, ψ̃` ∈ C for 0 ≤ ` ≤ L. For each j ∈ Z, the operators Pj, Qj, P q
j , and Qq

j

are bounded on L2(Rn) and we have

(a) Pj = DjRψ̃0,ψ0
D−j, j ∈ Z,

(b) Qj =
L∑

`=1

DjRψ̃`,ψ`
D−j, j ∈ Z,

(c) P q
j = | detM |jRDj ψ̃0,Djψ0

, j < 0,

(d) Qq
j =

L∑

`=1

| detM |jRDj ψ̃`,Djψ`
, j < 0.

Proof: The boundedness of the operators follows from Proposition 4 (a) and the above remarks
once we establish the claimed formulas for Pj , Qj , P q

j , and Qq
j . We will demonstrate only the

characterizations of Pj and P q
j as the other two follow by analogy. Fix j ∈ Z and let f ∈ L2(Rn).

We have

Pjf =
∑

k∈Zn

〈f, ϕ̃j,k〉ϕj,k

=
∑

k∈Zn

〈f, DjTkϕ̃〉DjTkϕ

= Dj
( ∑

k∈Zn

〈D−jf, Tkϕ̃〉Tkϕ
)
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= DjRψ̃0,ψ0
D−jf.

We now perform a similar calculation for P q
j , j < 0.

P q
j f =

∑

k∈Zn

〈f, ϕ̃q
j,k〉ϕq

j,k

= |det M |j
∑

k∈Zn

〈f, TkDjϕ̃〉TkDjϕ

= |det M |jRDj ψ̃0,Djψ0
f. 2

Recall the operator ∆ from the first section, where ∆f̂(ξ) = f̂
(
(MT )−1ξ

)
. Notice that ∆j f̂ =

| detM | j
2 (̂Djf) for each j ∈ Z. It follows that for any linear operator R,

̂(DjRD−jf) = ∆jR̂∆−j f̂ , (12)

where R̂ is defined by R̂f̂ := (̂Rf). Together with Proposition 6 this observation puts us in the
position to describe the multiresolution operators via the characterization of Proposition 4 (c). We
pause for an elementary lemma.

Lemma 7. For all f, g ∈ L2(Rn) and j ∈ Z,

[f̂ , ĝ] =
m−1∑
p=0

T2πϑp∆[∆−1f̂ , ∆−1ĝ]. (13)

Proof: It will be helpful to note the following elementary identity,

Tu∆j = ∆jT(MT )−ju,

where u ∈ Rn. Applying the definition of the bracket product we have

[f̂ , ĝ] =
∑

k∈Zn

T2πkf̂T2πkĝ

= ∆
( ∑

k∈Zn

T2π(MT )−1k∆−1f̂ T2π(MT )−1k∆−1ĝ
)

= ∆
( m−1∑

p=0

∑

k∈Zn

T2π(MT )−1ϑp+2πk∆−1f̂ T2π(MT )−1ϑp+2πk∆−1ĝ
)

=
m−1∑
p=0

∆T2π(MT )−1ϑp
[∆−1f̂ , ∆−1ĝ]

=
m−1∑
p=0

T2πϑp∆[∆−1f̂ , ∆−1ĝ]. 2

Proposition 8. For each j ∈ Z, we have

(a) Pj + Qj = Pj+1,

(b) P q
j + Qq

j = P q
j+1.

7



Proof: (a) Let f ∈ L2(Rn). The remarks preceding Lemma 7 combined with Propositions 4 and 6
lead us to

(̂Pjf) = ∆j [∆−j f̂ , ˜̂ϕ]ϕ̂, (14)

with a similar formula for (̂Qjf). We observe that the scaling equations (7) can be written as

∆−1ψ̂` = m`ϕ̂ and ∆−1 ˆ̃
ψ` = m̃`

ˆ̃ϕ (15)

for 0 ≤ ` ≤ L. Now we compute (̂Pjf)+ (̂Qjf) incorporating the (14), (15), Lemma 7, and the filter
equations (8).

(̂Pjf) + (̂Qjf) =
L∑

`=0

∆j [∆−j f̂ ,
ˆ̃
ψ`] ∆jψ̂`

=
L∑

`=0

∆j
( m−1∑

p=0

T2πϑp
∆[∆−(j+1)f̂ , m̃`

ˆ̃ϕ]
)

∆j+1
(
m`ϕ̂

)

= ∆j
( m−1∑

p=0

T2πϑp∆[∆−(j+1)f̂ , ˆ̃ϕ]
)

∆j+1ϕ̂ ∆j+1
( L∑

`=0

T2π(MT )−1ϑp
m̃`m`

)

= ∆j+1[∆−(j+1)f̂ , ˆ̃ϕ] ∆j+1ϕ̂

= ̂(Pj+1f). 2

(b) First we note that when j ≥ 0 (b) follows from (a) since the quasi-affine multiresolution
operators agree with the corresponding affine operators at these scales. Fix j < 0 and let f ∈ L2(Rn).
We follow the proof of (a), but with less sleight of hand,

(̂P q
j f) + (̂Qq

jf) =
L∑

`=0

[f̂ , ∆j ˆ̃
ψ`] ∆jψ̂`

=
L∑

`=0

[f̂ , ∆j+1
(
m̃`

ˆ̃ϕ
)
] ∆j+1

(
m`ϕ̂

)

= [f̂ , ∆j+1 ˆ̃ϕ] ∆j+1ϕ̂ ∆j+1
( L∑

`=0

m̃`m`

)

= [f̂ , ∆j+1 ˆ̃ϕ] ∆j+1ϕ̂

= ̂(P q
j+1f). 2

Proposition 8 uncovers an important feature of the behavior of the quasi-affine multiresolution
operators for scales j < 0. In the proof of (b), we only made use of the p = 0 case of the generalized
Smith-Barnwell equations (7). We will see in the next section how this is reminiscent of the à
trous algorithm and in section 5 we will offer a generalized version of quasi-affine systems that takes
advantage of this fact.

In light of Proposition 8, for each f ∈ L2(Rn) and J ≥ 0 we have

P−Jf +
J−1∑

j=−J

Qjf = PJf = P q
J f = P q

−Jf +
J−1∑

j=−J

Qq
jf. (16)
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We will now examine the behavior of the approximation operators acting on L2(Rn) functions as
the scale j tends to −∞.

Proposition 9. Let ϕ̃, ϕ ∈ C. Then for each f ∈ L2(Rn) ‖Pjf‖ → 0 and ‖P q
j f‖ → 0 as j → −∞.

Proof: By an approximation argument it is sufficient to prove each result for f a characteristic
function of some compact set K ⊂ Rn. We begin with the affine approximation operator, Pj . We
have by (14) and Proposition 4 (b)

‖(̂Pjf)‖2 =
∥∥∆j

(
[∆−j f̂ , ˆ̃ϕ]ϕ̂

)∥∥2

= | detM |j
∥∥[∆−j f̂ , ˆ̃ϕ]ϕ̂

∥∥2

=
∥∥[D̂−jf, ˆ̃ϕ]ϕ̂

∥∥2

≤ (2π)n
∥∥[D̂−jf, ˆ̃ϕ]

∥∥2

L2(Tn)

∥∥[ϕ̂, ϕ̂]
∥∥
∞.

Now, as a consequence of Lemma 2 (d) we see that
∥∥[D̂−jf, ˆ̃ϕ]

∥∥2

L2(Tn)
=

∑

k∈Zn

∣∣〈f, ϕj,k〉
∣∣2,

but
∑

k∈Zn

∣∣〈f, ϕj,k〉
∣∣2 ≤ CK

∑

k∈Zn

∫

K

| detM |j |ϕ̃(M jx− k)|2dx

= CK

∑

k∈Zn

∫

MjK

|ϕ̃(x− k)|2dx

= CK

∑

k∈Zn

∫

MjK−k

|ϕ̃(x)|2dx.

Since ϕ̃ ∈ L2(Rn), this expression tends to 0 as j → −∞ by the dominated convergence theorem
and we conclude that ‖Pjf‖ → 0 as j → −∞.

The quasi-affine approximation operator will be handled in a similar fashion. Recall that (̂P q
j f) =

[f̂ , ∆j ˆ̃ϕ]∆jϕ̂. Our next step is to apply Proposition 4 (b), but we first note that when j < 0,∥∥[∆jϕ̂,∆jϕ̂]
∥∥
∞ ≤ ∥∥[ϕ̂, ϕ̂]

∥∥
∞. Hence,

∥∥(̂P q
j f)

∥∥2 ≤ (2π)n
∥∥[ϕ̂, ϕ̂]

∥∥
∞

∥∥[f̂ , ∆j ˆ̃ϕ]
∥∥2

L2(Tn)
,

but Lemma 2 (d) reveals the fact that
∥∥[f̂ , ∆j ˆ̃ϕ]

∥∥2

L2(Tn)
=

∥∥[f̂ , | detM | j
2 (̂Djϕ̃)]

∥∥2

L2(Tn)

=
∑

k∈Zn

∣∣〈f, | detM | j
2 TkDjϕ̃〉∣∣2

=
∑

k∈Zn

∣∣〈f, ϕ̃q
j,k〉

∣∣2.

Finally, we estimate the squared sum of the sequence of inner products,

∑

k∈Zn

∣∣∣〈f, ϕ̃q
j,k〉

∣∣∣
2

≤ CK

∑

k∈Zn

∫

K

|det M |2j
∣∣ϕ̃(

M j(x− k)
)∣∣2dx

9



= CK

∑

k∈Zn

∫

Mj(K−k)

| detM |j
∣∣ϕ̃(x)

∣∣2dx

= CK

∫

Rn

gj(x)dx,

where gj(x) is given by

gj(x) =
∑

k∈Zn

| detM |j∣∣ϕ̃(x)
∣∣2χSj,k

(x)

and Sj,k is defined to be

Sj,k := M j(K − k).

Since K is compact there exists some N > 0, independent of j, such that Sj,k0 intersects at most
N of the sets Sj,k, k ∈ Zn. This implies that |gj | ≤ N |ϕ̃|2, providing a dominating function for
the collection {gj}j<0. Since gj → 0 a.e. as j → −∞ we conclude by the dominated convergence
theorem that ‖P q

j f‖ → 0 as j → −∞. 2

With the help of Theorem 1 (a) we obtain an equivalence between dual refinable affine and
quasi-affine frames. We should note that the following result is a special case of those given in [CSS].

Theorem 10. Let ϕ̃, ϕ ∈ C and m`, m̃` ∈ L∞(Tn), 0 ≤ ` ≤ L, such that (6) and (8) hold and
suppose that Ψ̃ = {ψ̃1, . . . , ψ̃L} and Ψ = {ψ1, . . . , ψL} are defined by (7). Then X(Ψ) and X(Ψ̃)
are dual frames for L2(Rn) if and only if Xq(Ψ) and Xq(Ψ̃) are dual frames for L2(Rn).

Proof: We begin with the (⇒) implication, supposing that X(Ψ) and X(Ψ̃) are dual frames for
L2(Rn). By definition, we have for each f ∈ L2(Rn)

f =
L∑

`=0

∑

j∈Z,k∈Zn

〈f, ψ̃`;j,k〉ψ`;j,k =
∑

j∈Z
Qjf.

Letting J →∞ in (16) we see that

f = lim
J→∞

J∑

j=−J

Qq
jf.

By Theorem 1 (a), Xq(Ψ̃) and Xq(Ψ) are Bessel systems and, thus, the convergence of the above
sum is unconditional and we have the dual reproducing formula

f =
L∑

`=0

∑

j∈Z,k∈Zn

〈f, ψ̃q
`;j,k〉ψq

`;j,k,

for all f ∈ L2(Rn). It remains only to demonstrate the lower frame bounds for Xq(Ψ̃) and Xq(Ψ)
and for this we make use of a standard argument involving the reproducing formula and the Bessel
bounds. We have

‖f‖2 =
L∑

`=0

∑

j∈Z,k∈Zn

〈f, ψ̃q
`;j,k〉 〈ψq

`;j,k, f〉

≤
( L∑

`=0

∑

j∈Z,k∈Zn

|〈f, ψ̃q
`;j,k〉|2

) 1
2

( L∑

`=0

∑

j∈Z,k∈Zn

|〈f, ψq
`;j,k〉|2

) 1
2

10



≤ C‖f‖
( L∑

`=0

∑

j∈Z,k∈Zn

|〈f, ψq
`;j,k〉|2

) 1
2
,

from which we conclude

1
C2
‖f‖2 ≤

L∑

`=0

∑

j∈Z,k∈Zn

|〈f, ψq
`;j,k〉|2.

The lower frame bound for Xq(Ψ̃) follows by analogy. Moreover, the reverse implication follows
from a completely similar argument. 2

4 The À Trous Connection

In order to better illustrate the connection between the à trous algorithm and the multiresolution
operators associated with quasi-affine systems we will take another look at Proposition 8 (b). We
will provide another proof of the result in the case that j < 0 that is an adaptation of the usual à
trous algorithm found in [HKMT] and [Mal2] to the case of n dimensions and a more general dilation
matrix M , as described above.

Let us assign coefficient representations to the filters of the last section,

m`(ξ) =
∑

k∈Zn

α`;ke−i〈ξ,k〉 and m̃`(ξ) =
∑

k∈Zn

α̃`;ke−i〈ξ,k〉,

which for all intents and purposes we may think of as trigonometric polynomials. An elementary
computation with the refinement relationships (6) and (7) reveals

| detM |− 1
2 ψ`;j−1,k =

∑

r∈Zn

α`;r ϕj,r+Mk and |det M |− 1
2 ψ̃`;j−1,k =

∑

r∈Zn

α̃`;r ϕ̃j,r+Mk,

for 0 ≤ ` ≤ L, where we recall the convention that ψ0 = ϕ and ψ̃0 = ϕ̃. We would like to write
these formulas in terms of the quasi-affine dilation structure. When j ≥ 0 the difference is just
the cosmetic addition of brackets in the subscripts, but for j < 0 we obtain something altogether
different. Indeed, for j < 0, k ∈ Zn, and 0 ≤ ` ≤ L we have

ψq
`;j−1,k = |det M | j−1

2 TkDj−1ψ`

= |det M | j−1
2 Tkψ`;j−1,0

= |det M | j
2

∑

r∈Zn

α`;r Tkϕj,r

= |det M | j
2

∑

r∈Zn

α`;r TkDjTrϕ

=
∑

r∈Zn

α`;r ϕq
j,M−jr+k(x).

Notice that the sum in the last line of this calculation includes only the translates of the scaling
function in the sub-lattice M−jZn + k rather than Zn. It is this fact that connects quasi-affine
systems with the à trous algorithm of Holschneider, Kronland-Martinet, Morlet, and Tchamitchian
[HKMT]. We follow their lead, defining for each scale j < 0 upsampled filter coefficients

α`;j,r :=

{
α`;Mjr r ∈ M−jZn

0 r /∈ M−jZn,

11



where 0 ≤ ` ≤ L. Inserting the upsampled coefficients into the preceding formula, we achieve the
desired replacements for the affine scaling equations in the quasi-affine theory,

ψq
`;j−1,k =

∑

r∈Zn

α`;j,r ϕq
j,r+k and ψ̃q

`;j−1,k =
∑

r∈Zn

α̃`;j,r ϕ̃q
j,r+k,

where j < 0, k ∈ Zn, and 0 ≤ ` ≤ L. The last piece of information we require comes from the
computation of the rth Fourier coefficient (r ∈ Zn) of the filter equation (8) in the case that p = 0,

δ0,r =
1

(2π)n

∫

Tn

L∑

`=0

m`(ξ)m̃`(ξ)e−i〈ξ,r〉dξ

=
1

(2π)n

∫

Tn

L∑

`=0

( ∑

k∈Zn

α`;kei〈ξ,k〉
)( ∑

k′∈Zn

α̃`;k′e
−i〈ξ,k′〉

)
e−i〈ξ,r〉dξ

=
1

(2π)n

∫

Tn

L∑

`=0

∑

k∈Zn

α`;kα̃`;k−rdξ

=
L∑

`=0

∑

k∈Zn

α`;kα̃`;k−r.

We now reexamine the result of Proposition 8 (b),

(
P q

j + Qq
j

)
f =

L∑

`=0

∑

k∈Zn

〈f, ψ̃q
`;j,k〉ψq

`;j,k

=
L∑

`=0

∑

k∈Zn

∑

r,s∈Zn

α`;j+1,rα̃`;j+1,s〈f, ϕ̃q
j+1,s+k〉ϕq

j+1,r+k

=
∑

r,s∈Zn

( L∑

`=0

∑

k∈Zn

α`;j+1,r−kα̃`;j+1,s−k

)
〈f, ϕ̃q

j+1,s〉ϕq
j+1,r

=
∑

r,s∈Zn

Cr,s〈f, ϕ̃q
j+1,s〉ϕq

j+1,r.

It suffices to prove Cr,s = δr,s for each r, s ∈ Zn. First, suppose that r − s ∈ M−(j+1)Zn, in which
case s = r + M−(j+1)u for some u ∈ Zn and we have

Cr,s =
L∑

`=0

∑

k∈M−(j+1)Zn+r

α`;j+1,r−kα̃`;j+1,r−k+M−ju

=
L∑

`=0

∑

k∈Zn

α`;kα̃`;k+u

= δ0,u = δr,s.

Secondly, if r − s /∈ M−j+1Zn, then the supports of the coefficient sequences {α`;j+1,r−k}k∈Zn and
{α̃`;j+1,s−k}k∈Zn are disjoint and thus Cr,s = δr,s = 0, completing the argument.

5 Generalized Quasi-Affine Frames

In section 3 we saw how the usual multiresolution operators can be extended to the quasi-affine
scheme. Our study revealed the fact that only the p = 0 case of the perfect reconstruction equations

12



(8) was needed to prove P q
j−1 + Qq

j−1 = Qq
j for j < 0. In the last section we saw how this ties the

quasi-affine multiresolution operators to the à trous algorithm. Here, we will introduce the notion
of a generalized quasi-affine system in order to exploit this relationship, the basic idea being that
we will relax the structure of the systems for negative scales.

Definition 5. The generalized quasi-affine (GQA) system generated by Ψ = {ψ1, . . . , ψL},Φ =
{φ1, . . . , φL′} ⊂ L2(Rn), denoted Xgq(Ψ, Φ), is the collection

Xgq(Ψ, Φ) = {ψ`;j,k : 1 ≤ ` ≤ L, j ≥ 0, k ∈ Zn}
⋃
{φq

`;j,k : 1 ≤ `′ ≤ L′, j < 0, k ∈ Zn}.

We will refer to the collections, {ψ`;j,k : 1 ≤ ` ≤ L, j ≥ 0, k ∈ Zn} and {φq
`;j,k : 1 ≤ `′ ≤ L′, j <

0, k ∈ Zn}, respectively, as the standard and à trous components of the GQA system Xgq(Ψ, Φ).

Throughout this section Ψ, Ψ̃, ϕ, and ϕ̃ along with the filters m0, . . . , mL and m̃0, . . . , m̃L

remain as fixed in the section 3, collectively defining the standard component of a GQA system.
For the à trous component, let Φ = {φ1, . . . , φL′} and Φ̃ = {φ̃1, . . . , φ̃L′} ∈ L2(Rn) such that the
refinement identities

φ̂`′(MT ξ) = µ`′(ξ)ϕ̂(ξ) and ˆ̃
φ`′(M

T ξ) = µ̃`′(ξ)ˆ̃ϕ(ξ) (17)

hold for 1 ≤ `′ ≤ L′ and a.e. ξ ∈ Rn with µ`′ , µ̃`′ ∈ L∞(Tn). In accordance with the remarks above,
we assume that these filters satisfy only

m0(ξ)m̃0(ξ) +
L′∑

`′=1

µ`′(ξ)µ̃`′(ξ) = 1, (18)

for a.e. ξ ∈ Tn. Given this setup we would like to determine sufficient conditions that Xgq(Ψ,Φ)
and Xgq(Ψ̃, Φ̃) comprise dual frames for L2(Rn).

Since we are using the scaling functions ϕ, ϕ̃ in the refinement of both the standard and à trous
components it is reasonable to expect P q

j to serve in the role of the approximation operator for the
proposed dual GQA systems at the scale j. The detail operators will differ between non-negative
and negative dilations. We will denote the GQA detail operator at the scale j by Qgq

j and define it
by its action on f ∈ L2(Rn),

Qgq
j f :=





L∑

`=1

∑

k∈Zn

〈f, ψ̃`;j,k〉ψ`;j,k j ≥ 0

L′∑

`′=1

∑

k∈Zn

〈f, φ̃q
`′;j,k〉φq

`′;j,k j < 0.

We have already described the behavior of Qgq
j for j ≥ 0 and using the techniques of section 3

we obtain a complete description of Qgq
j for all scales j ∈ Z.

Proposition 11. Suppose ψ`, ψ̃`, φ`′ , φ̃`′ ∈ C for 0 ≤ ` ≤ L, 1 ≤ `′ ≤ L′. Then Qgq
j is a bounded

operator on L2(Rn) for each j ∈ Z and

(a) Qgq
j =

L′∑

`′=1

|det M |jRDj φ̃`,Djφ`
, j < 0,

(b) P q
j + Qgq

j = P q
j+1, j ∈ Z.
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Finally, we would like to answer the question of when the two GQA systems are dual frames for
L2(Rn). Again, we mimic the proof of Theorem 10 from the section 3, but in order that the proof
work out here we must additionally assume that the two GQA systems, Xgq(Ψ,Φ) and Xgq(Ψ̃, Φ̃)
are Bessel. This assumption is not overly restrictive as weak decay properties of the scaling functions
would suffice to ensure that the two GQA systems are Bessel.

Theorem 12. Let ϕ̃, ϕ ∈ C and m`, m̃`, µ`′ , µ̃`′ ∈ L∞(Tn), 0 ≤ ` ≤ L, 1 ≤ `′ ≤ L′, such that (6),
(8), and (18) hold. Suppose that Ψ̃ = {ψ̃1, . . . , ψ̃L} and Ψ = {ψ1, . . . , ψL} are defined by (7) and
that Φ̃ = {φ̃1, . . . , φ̃L′} and Φ = {φ1, . . . , φL′} are defined by (17). Then, if X(Ψ), X(Ψ̃) are dual
frames for L2(Rn) and Xgq(Ψ, Φ), Xgq(Ψ̃, Φ̃) are Bessel systems then Xgq(Ψ, Φ) and Xgq(Ψ̃, Φ̃) are
dual frames for L2(Rn).

6 Examples of Generalized Quasi-Affine Frames

In this section we will study examples of generalized quasi-affine frames produced from two separate
2-band one-dimensional biorthogonal wavelets. The first pair of examples will be based upon a
Burt-Adelson biorthogonal system presented in [CDF] and arising from the well-known Burt-Adelson
Laplacian Pyramid [BA]. A second pair of examples will be given that stem from a piecewise linear
spline biorthogonal system, also borrowed from [CDF]. We hope with these examples to demonstrate
the flexibility present in the choice of high-pass filters for the negative dilations of the GQA system
Xgq(ψ, φ). We would hope that this flexibility will allow for better design of φ and φ̃ in terms of
support, vanishing moments, or symmetry than is possible in the affine case.

In this setting, the perfect reconstruction filter equations (8) reduce to

m0(ξ)m̃0(ξ) + m1(ξ)m̃1(ξ) = 1 (19)

and

m0(ξ)m̃0(ξ + π) + m1(ξ)m̃1(ξ + π) = 0 (20)

for a.e. ξ ∈ Tn. As discussed above, the main difference between the standard and à trous compo-
nents of a generalized quasi-affine system is the lack of downsampling on the à trous side. Accord-
ingly, the à trous high-pass filters, µ1, µ̃1, must satisfy only (18) which becomes

m0(ξ)m̃0(ξ) + µ1(ξ)µ̃1(ξ) = 1 (21)

in this case. We will additionally constrain the high-pass filters to vanish at zero, in order that the
wavelets have at least one vanishing moment. Rearranging (21), we see

µ1(ξ)µ̃1(ξ) = 1−m0(ξ)m̃0(ξ), (22)

which suggests that the family of choices for µ1 and µ̃1 are characterized by a complete factorization
of 1−m0(ξ)m̃0(ξ).

Before proceeding to construct examples we must first consider the question of which choices of
filters will result in GQA systems with the Bessel property. The following lemma is borrowed from
[Co] and describes a sufficient condition on the scaling functions to guarantee the desired Bessel
bounds. Similar techniques appear in other articles, e.g. [CDF].

Lemma 13. Suppose ϕ satisfies

sup
ξ∈R

∑

k∈Z
|ϕ̂(ξ + 2πk)|2−σ < ∞
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and

sup
ξ∈R

(1 + |ξ|)σ|ϕ̂(ξ)| < ∞

for some σ, 0 < σ < 2. If ψ̂(2ξ) = m(ξ)ϕ̂(ξ) with m a trigonometric polynomial satisfying m(0) = 0
then {ψj,k}j,k∈Z is a Bessel system for L2(R).

It is pointed out in [CDF] that both the Burt-Adelson and spline low-pass filters considered here do
give rise to scaling functions satisfying the hypotheses of Lemma 13 and, thus, the systems considered
below will be Bessel and Theorem 12 will apply. As a final preliminary remark, we note that the
regularity of the à trous wavelets is inherited from the scaling functions because each wavelet is a
finite linear combination of translates of the corresponding scaling function. With these comments,
we now proceed to consider some examples.

We begin with the Burt-Adelson case, recalling the generic form of the Burt-Adelson low-pass
filter with parameter a,

m0,a(ξ) =
(1
4
− a

2
)
ei2ξ +

1
4
eiξ + a +

1
4
e−iξ +

(1
4
− a

2
)
e−i2ξ.

We will work with a = 3
5 , in which case the low-pass filter becomes

m0(ξ) = − 1
20

ei2ξ +
1
4
eiξ +

3
5

+
1
4
e−iξ − 1

20
e−i2ξ.

The dual low-pass filter, m̃0, associated to m0 is given by

m̃0(ξ) = − 3
280

ei3ξ − 3
56

ei2ξ +
73
280

eiξ +
17
28

+
73
280

e−iξ − 3
56

e−i2ξ − 3
280

e−i3ξ.

Associated to these dual low-pass filters are the high-pass filters, m1 and m̃1, defined in accord with
(19) and (20) above as

m1(ξ) =
3

280
ei2ξ − 3

56
eiξ − 73

280
+

17
28

e−iξ − 73
280

e−i2ξ − 3
56

e−i3ξ +
3

280
e−i4ξ,

and

m̃1(ξ) = − 1
20

eiξ − 1
4

+
3
5
e−iξ − 1

4
e−i2ξ − 1

20
e−i3ξ.

Together, these four filters define the scaling functions, ϕ and ϕ̃, as well as the dual biorthogonal
wavelets, ψ and ψ̃, via the refinement equations (6) and (7), respectively. The graphs of these four
functions are given in Figure 1. This completely describes the standard component of our dual GQA
system and we now proceed to discuss the à trous component.

As remarked above, our à trous high-pass filters will result from a factorization of (22), which in
terms of the Burt-Adelson filters becomes

1−m0(ξ)m̃0(ξ) =

(
e−i5ξ(−1 + eiξ)4(1 + 7eiξ + ei2ξ)(−3 + 9eiξ + 94ei2ξ + 9ei3ξ − 3ei4ξ)

)

5600
. (23)

We are free to define µ1 by choosing terms from the factorizaton (23), provided we include at
least one factor of (−1 + eiξ) while simultaneously leaving at least one such factor for µ̃1 to ensure
that each à trous wavelet has a vanishing moment. Choosing any power of eiξ from (23) for our high-
pass filter will correspond to an unimportant translation of the associated wavelet; hence, excluding
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Figure 1: The a = 3
5 Burt-Adelson biorthogonal system. (a): The scaling function, ϕ. (b): The

wavelet, ψ. (c): The dual scaling function, ϕ̃. (d): The dual wavelet, ψ̃.

these unimodular delay terms and the factors (−1 + eiξ) we have two remaining factors that may
be distributed arbitrarily between µ1 and µ̃1. Each of these factors possesses symmetric coefficients,
thus the symmetry or anti-symmetry of the à trous wavelets will depend entirely on the distribution
of the factors (−1 + eiξ). In the original biorthogonal case, each of the high-pass filters has two
vanishing moments which implies that the biorthogonal Burt-Adelson wavelets have a symmetry
property. If we assign only one vanishing moment to either high-pass filter, the remaining filter will
have three vanishing moments and each à trous wavelet will have an anti-symmetry property.

Example A: The simplest possible choice for µ1 would be the high-pass filter of the Haar wavelet,
which consists of a single vanishing moment. Thus, we define φA by means of the high-pass filter
µA

1 given by

µA
1 (ξ) =

−1
2

(
1− e−iξ

)
.

This results in à trous wavelets with anti-symmetry properties and provides the shortest possible
analysis filter. Three vanishing moments are left for the dual wavelet, φ̃A, defined by the corre-
sponding dual à trous high-pass filter

µ̃A
1 (ξ) =

1
2800

(− 3ei4ξ − 3ei3ξ + 181ei2ξ + 181eiξ − 1400 + 1400e−iξ

− 181e−i2ξ − 181e−i3ξ + 3e−i4ξ + 3e−i5ξ
)
.

Each of the scaling functions, ϕ and ϕ̃, is symmetric about 0, which makes it easy to determine the
symmetry properties of the functions φA, φ̃A. Recall that equation (17) implies that

1
2
φA(

x

2
) =

∑

k∈Z
α1;kϕ(x− k),
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where {α1;k}k are the coefficients of the filter µA
1 . Thus, the anti-symmetry of µA

1 with respect to
k = 1

2 implies that φA is antisymmetric about x = 1
4 . The same reasoning applies to φ̃A. The graphs

of the two à trous wavelets, φA and φ̃A, are given in Figure 2, (a) and (b), respectively.
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Figure 2: Examples of Burt-Adelson à trous wavelets. (a): The wavelet, φA. (b): The dual wavelet,
φ̃A. (c): The wavelet, φB . (d): The dual wavelet, φ̃B .

Example B: For our next example, we will choose filters such that each of the à trous wavelets
possesses two vanishing moments, but such that the analysis filter, µB

1 , is as short as possible. Let
µB

1 be given by

µB
1 (ξ) =

−1
25

(
8eiξ − 16 + 8e−iξ

)
,

with the corresponding dual filter

µ̃B
1 (ξ) =

−1
1792

(− 3ei4ξ − 6ei3ξ + 175ei2ξ + 356eiξ − 1044 + 356e−iξ + 175e−i2ξ − 6e−i3ξ − 3e−i4ξ
)
.

In contrast to the last example, each filter here is even, implying that the dual à trous wavelets are
symmetric about zero. The associated wavelets, φB and φ̃B , respectively, are displayed in Figure 2,
(c) and (d).

We now turn to another base biorthogonal system based on the piecewise linear spline scaling
function of [CDF]. In the terminology of [CDF] this system consists of the dual scaling functions
ϕ2, ϕ̃2,4, ψ2,4, and ψ̃2,4, which are illustrated in Figure 3. We have the associated filters

m0(ξ) =
1
4
(
eiξ + 2 + e−iξ

)
,
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m̃0(ξ) =
1

128
(
3ei4ξ − 6ei3ξ − 16ei2ξ + 38eiξ + 90 + 38e−iξ − 16e−i2ξ − 6e−i3ξ + 3e−i4ξ

)
,

m1(ξ) =
1

128
(
3ei3ξ + 6ei2ξ − 16eiξ − 38 + 90e−iξ − 38e−i2ξ − 16e−i3ξ + 6e−i4ξ + 3e−i5ξ

)
,

and

m̃1(ξ) =
−1
4

(
1− 2e−iξ + 1e−i2ξ

)
.
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−1

0

1

2
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Figure 3: The piece-wise linear spline biorthogonal system. (a): The scaling function, ϕ. (b): The
wavelet, ψ. (c): The dual scaling function, ϕ̃. (d): The dual wavelet, ψ̃.

The factorization of (22) in terms of these spline filters becomes

1−m0(ξ)m̃0(ξ) =

(
− e−i5ξ(−1 + eiξ)6(3 + 18eiξ + 38ei2ξ + 18ei3ξ + 3ei4ξ)

)

512
. (24)

Notice that in this case besides the delay and moment factors we have just a single remaining factor
with symmetric coefficients.

Example C: We begin with the analog of Example A, corresponding to µC
1 equal to a multiple of

the Haar high-pass filter,

µC
1 (ξ) =

−3
4

(
1− e−iξ

)
,
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which forces

µ̃C
1 (ξ) =

1
384

(− 3ei4ξ − 3ei3ξ + 22ei2ξ + 22eiξ − 128 + 128e−iξ − 22e−i2ξ

− 22e−i3ξ + 3e−i4ξ + 3e−i5ξ
)
.

The resulting à trous wavelets, which possess one and five vanishing moments, respectively, are
depicted in Figure 4, (a) and (b). Since each scaling function is symmetric about x = 0 we see that
φC and φ̃C are anti-symmetric about x = 1

4 .
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Figure 4: Examples of spline à trous wavelets. (a): The wavelet, φC . (b): The dual wavelet, φ̃C .
(c): The wavelet, φD. (d): The dual wavelet, φ̃D.

Example D: Finally, we consider another example in which the vanishing moments are not shared
evenly between the two à trous wavelets, but with this example we will assign two vanishing moments
for µD

1 with the shortest possible filter. Letting

µD
1 (ξ) =

1
8
(− 3 + 6e−iξ − 3e−i2ξ

)
,

and

µ̃D
1 (ξ) =

1
192

(
3ei3ξ + 6ei2ξ − 16eiξ − 38 + 90e−iξ − 38e−i2ξ − 16e−i3ξ + 6e−i4ξ + 3e−i5ξ

)
,

we obtain the à trous wavelets, φD and φ̃D, pictured in Figure 3, (c) and (d). As in the Burt-Adelson
case, by assigning even numbers of vanishing moments to the à trous wavelets we obtain wavelets
with symmetry properties, in this case about x = 1

2 .

These four examples show the flexibility present in the design of à trous wavelets for use in the
negative dilations of a generalized quasi-affine frame arising from a given biorthogonal system. This
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flexibility grants us total control over the number of vanishing moments in analysis and synthesis or
the relative filter lengths and permits the creation of symmetry properties for the à trous wavelets
not present in the original biorthogonal wavelets, ψ and ψ̃. We did notice, however, for our two
biorthogonal systems that even numbers of vanishing moments leads to symmetry properties while
odd numbers of vanishing moments yield anti-symmetry properties for the resulting à trous wavelets.

7 Conclusion

The main intent of this work is to establish a connection between the à trous algorithm and quasi-
affine systems and to demonstrate how this connection can be used to obtain frames for L2(Rn)
beginning with appropriate à trous systems. Using techniques associated with the bracket product
we extended the multiresolution operators common in analyses of affine systems to the quasi-affine
setting. This analysis lead to the observation that the behavior of the quasi-affine multiresolution
operators resembles the à trous algorithm and, motivated by this observation, we showed that for
negative dilations the original generating wavelets could be replaced by appropriately chosen à
trous wavelets and the resulting GQA systems would constitute dual frames for L2(Rn). Lastly, we
considered examples of GQA systems for L2(R) with primary focus on the design of the à trous
wavelets in terms of a given 2-band biorthogonal wavelet system.
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