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Abstract. The properties of oversampled affine frames are considered here with two main goals
in mind. The first goal is to generalize the approach of Chui and Shi to the matrix oversampling
setting for expanding, lattice-preserving dilations, whereby we obtain a new proof of the Second
Oversampling Theorem for affine frames. The Second Oversampling Theorem, proven originally by
Ron and Shen via Gramian analysis, states that oversampling an affine frame with dilation M by a
matrix P will result in a frame with the same bounds (after renormalization) provided that P and
M satisfy a certain relative primality condition. In this case, the matrix P is said to be admissible
for M . The second goal of this work is to examine the compatibility of admissible oversampling with
the refinable affine frames arising from a certain class of scaling functions. In this setting we show
that oversampling dual affine systems by an admissible P preserves the multiresolution structure
and, from this fact, that the oversampled systems remain dual. We then show that the admissibility
of P is also sufficient to endow the dual oversampled systems with a discrete wavelet transform. The
novelty of this work lies both in our approach to the Second Oversampling Theorem as well as our
consideration of oversampling in the context of multiresolution analysis.

Key words. affine system, oversampling, wavelet, multiresolution analysis

AMS subject classifications. 42C15, 65T60

1. Introduction. Unless otherwise stated, M will denote a fixed n× n di-
lation matrix with integer entries such that each eigenvalue λ of M satisfies |λ| > 1.
We will refer to M ∈ GLn(R) as expanding if its eigenvalues satisfy this latter
condition. Thus M is a Zn-lattice preserving, expanding dilation. The unitary
dilation operator on L2(Rn) induced by M will be denoted D and is defined by

Df(x) := | detM | 12 f(Mx) for f ∈ L2(Rn). For u ∈ Rn, let Tu denote the usual
translation operator, i.e. Tuf(x) := f(x − u). With these basic ingredients we may
now recall the definition of an affine system.

Definition 1.1. Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The affine system generated
by Ψ, denoted X(Ψ), is the collection

X(Ψ) = {ψ`;j,k : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zn},

where ψ`;j,k := DjTkψ`.

Our interest lies in those affine systems that constitute frames for L2(Rn).

Definition 1.2. Let H be a Hilbert space. The collection {hj}j∈J ⊂ H is a frame
for H if there exist constants A,B > 0 such that for all f ∈ H

A‖f‖2
H
≤

∑

j∈J

|〈f, hj〉H|2 ≤ B‖f‖2
H
. (1.1)

The constants A and B are referred to as the lower and upper frame bounds, respec-
tively. In the case that A = B the frame is said to be tight. If only the right inequality
holds, the system is called a Bessel system and in this case B is referred to as the
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Bessel bound. We say two frames for H, {hj}j∈J and {h̃j}j∈J , are dual frames if for
each f ∈ H we have

f =
∑

j∈J

〈f, h̃j〉hj . (1.2)

Let GLn(Z) denote the set of all n × n matrices with integer entries having
nonzero determinant. Given P ∈ GLn(Z), we now define the oversampled affine
system generated by a family Ψ relative to P .

Definition 1.3. Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The oversampled affine
system generated by Ψ relative to P ∈ GLn(Z), denoted XP (Ψ), is the collection

XP (Ψ) := {ψP
`;j,k : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zn},

where ψP
`;j,k := 1√

p
DjTP−1kψ` and p := | detP |.

The factor 1√
p

in Definition 1.3 compensates for the increase in the density of the

lattice of translations caused by the oversampling. This allows us to compare the
frame bounds of the oversampled and non-oversampled systems.

This notion of oversampling was introduced by Chui and Shi in [2] when they
proved that oversampling a dyadic affine frame (M = 2) in one dimension by p odd
preserves the frame bounds. In [3], Chui and Shi later extended this result to the
multivariate case in which the dilation M ∈ GLn(Z) is expanding and P = pI with
gcd (p, | detM |) = 1. The result is referred to there as the Second Oversampling
Theorem. Since the one-dimensional result appeared, several other researchers have
investigated the problem of bound-preserving oversampling for affine frames. In the
case that M,P ∈ GLn(Z) with M expanding, Ron and Shen have used their Gramian
analysis to show that a relative primality condition on the lattices MT Zn and P T Zn is
sufficient for bound-preserving oversampling [7]. More recently, the work of Laugesen
[6] provides another approach to the Second Oversampling Theorem which employs
the concept of almost periodicity. In [6] it is observed that the conditions on M
and P for bound-preserving oversampling described in [7] and [6] are equivalent. We
should also mention that Chui, Czaja, Maggioni, and Weiss have developed a notion of
tightness-preserving oversampling based on the characterizion of affine tight-frames
[1]. In their work the dilation matrix M is not required to have integer entries;
however, the result only applies to tight-frames.

During the revision of this paper the author has become aware of an interesting
work by Hernández, Labate, Weiss, and Wilson [4] in which the various embodiments
of oversampling are unified into a single theory, including quasi-affine systems as well
as oversampled affine systems.

The techniques used by Ron and Shen in [7] and Laugesen in [6] are quite different
from those used originally by Chui and Shi in [2]. In each case a notion of relative pri-
mality between the dilation matrix and the oversampling matrix has proven essential
in the proof of the Second Oversampling Theorem. One of the goals of our work is to
extend the original ideas of Chui and Shi to the matrix oversampling case with a care-
ful development of the relative primality conditions. These conditions are introduced
in section 2, where we define a notion of admissible oversampling and develop related
elementary results. In section 3 we present our version of the Second Oversampling
Theorem.
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The second goal of this work is to explore the compatibility of admissible oversam-
pling with multiresolution analysis. In section 4 we restrict attention to dual refinable
affine systems associated with a certain class of scaling functions. We introduce mul-
tiresolution operators for the oversampled systems and show that they behave much
like those associated with the original affine systems. This allows us to prove that the
duality of refinable affine frames is preserved under admissible oversampling. Finally,
we show that admissible oversampling endows the dual oversampled systems with a
discrete wavelet transform (DWT).

To close the section let us note that we will adopt the following definition for the
Fourier transform, f̂ , of f ∈ L2(Rn),

f̂(ξ) =

∫

Rn

f(x)e−i〈ξ,x〉dx.

2. Admissible Oversampling Matrices. Given a candidate oversampling
matrix, P ∈ GLn(Z), we are concerned with the quotient group P−1Zn/Zn. Let
{θr}p−1

r=0 be a complete set of distinct coset representatives of the quotient group
P−1Zn/Zn, where again p = | detP |. In the following proposition we consider condi-
tions on P such that the action of M on P−1Zn/Zn is nice.

Proposition 2.1. Suppose M,P ∈ GLn(Z) with m := | detM | and p := | detP |.
Let {θr}p−1

r=0 be a complete set of distinct coset representatives of P−1Zn/Zn with θ0 =
0. Suppose PMP−1 ∈ GLn(Z). Then {Mθr}p−1

r=0 is a complete set of representatives
of P−1Zn/Zn if and only if M and P satisfy M−1Zn

⋂

P−1Zn = Zn.

Proof: The statement is trivial if p = 1. We proceed to prove the result in the case
that p ≥ 2.

(⇒) By way of contradiction assume that M−1Zn
⋂

P−1Zn ) Zn. Then there
exists θr0 , 1 ≤ r0 ≤ p − 1, such that θr0 ∈

(

P−1Zn
⋂

M−1Zn
)

\ Zn. This implies

that Mθr0 ≡ 0 (mod Zn) which means {Mθr}p−1
r=0 can not be a complete set of

representatives of P−1Zn/Zn. This is a contradiction.

(⇐) The condition PMP−1 ∈ GLn(Z) implies that Mx ∈ P−1Zn if x ∈ P−1Zn,
i.e. the multiplication map induced by M maps P−1Zn into itself. Suppose {Mθr}p−1

r=0

is not a complete set of coset representatives of P−1Zn/Zn. Then there is some θr0 ,
1 ≤ r0 ≤ p− 1, such that Mθr0 ∈ Zn which implies that θr0 ∈M−1Zn. Since r0 6= 0,
θr0 /∈ Zn implying θr0 ∈

(

P−1Zn
⋂

M−1Zn
)

\Zn and we haveM−1Zn
⋂

P−1Zn ) Zn,
a contradiction. 2

Definition 2.2. Let P ∈ GLn(Z). P is an admissible oversampling matrix for
M if PMP−1 ∈ GLn(Z) and M−1Zn

⋂

P−1Zn = Zn. If the matrix M is clear from
the context we will simply say that P is admissible.

In the terminology of the preceding proposition, notice that if gcd (m, p) = 1 then
M−1Zn

⋂

P−1Zn = Zn. Indeed, suppose θ ∈
(

M−1Zn
⋂

P−1Zn). Since the order of
θ divides both m and p we conclude that θ ∈ Zn.

Example 1. Consider the following examples of admissible oversampling matri-
ces.
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(a) Let M =

(

1 1
−1 1

)

, the Quincunx dilation matrix, and let P =

(

3 1
−2 1

)

. It

is easy to check that PMP−1 has integer entries and, in light of the previous
remark, P is admissible.

(b) Let M = mIn, where m ≥ 2 is an integer and In is the n×n identity matrix.
Clearly, PMP−1 ∈ GLn(Z) for all P ∈ GLn(Z), which means a sufficient
condition for P to be admissible is that gcd (m, | detP |) = 1.

Given that P is admissible, Proposition 2.1 tells us that the mapping θr 7→Mθr,
0 ≤ r ≤ p− 1, acts to permute the coset representatives of P−1Zn/Zn. Let σ be the
permutation of {0, . . . , p− 1} such that θσ(r) ≡Mθr (mod Zn) in P−1Zn. Let σ−1 be
the associated inverse permutation. The following result, which replaces Lemma 2 of
[2] in this setting, describes a basic property of the permutation σ.

Lemma 2.3. Let j0 ∈ Z. If P ∈ GLn(Z) is admissible, then for j ≥ j0 and
0 ≤ r ≤ p− 1, θσj(r) ≡M j−j0θσj0 (r) (mod Zn) in P−1Zn.

Proof: The statement holds trivially for j = j0. By induction, assume the formula
holds for j and we will derive the formula for j+1. Proposition 2.1 and the definition
of σ imply

θσj+1(r) ≡Mθσj(r) ≡M j+1−j0θσj0 (r) (mod Zn). 2

Corollary 2.4. Let j, j0 ∈ Z with j ≥ j0 and suppose P ∈ GLn(Z) is admissible.
For 0 ≤ r ≤ p− 1,

{DjTθ
σj(r)

+kψ` : 1 ≤ ` ≤ L, k ∈ Zn} = {TM−j0θ
σj0 (r)

DjTkψ` : 1 ≤ ` ≤ L, k ∈ Zn}.

3. The Second Oversampling Theorem. We now seek to describe our
version of the Second Oversampling Theorem, generalizing the approach of Chui and
Shi introduced in [2]. We begin by demonstrating the preservation of Bessel bounds
for admissible oversampling, which follows essentially from Proposition 2.1.

Lemma 3.1. Suppose X(Ψ) is a Bessel system with bound B > 0 relative to an ex-
panding dilation matrix M ∈ GLn(Z). If P ∈ GLn(Z) is an admissible oversampling
matrix, then XP (Ψ) is a Bessel system with the same bound.

Proof: The fact that X(Ψ) is Bessel with bound B > 0 implies for each f ∈ L2(Rn)
that

L
∑

`=1

∑

j≥0

∑

k∈Zn

p−1
∑

r=0

1

p

∣

∣〈T−θr
f, ψ`;j,k〉

∣

∣

2 ≤ B‖f‖2.

We now relate this sum to the inner products of the oversampled system, XP (Ψ),

L
∑

`=1

∑

j≥0

∑

k∈Zn

p−1
∑

r=0

1

p

∣

∣〈T−θr
f, ψ`;j,k〉

∣

∣

2
=

L
∑

`=1

∑

j≥0

∑

k∈Zn

p−1
∑

r=0

1

p

∣

∣〈f,DjTMjθr+kψ`〉
∣

∣

2

(by Proposition 2.1) =

L
∑

`=1

∑

j≥0

∑

k∈Zn

1

p

∣

∣〈f,DjTP−1kψ`〉
∣

∣

2
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=

L
∑

`=1

∑

j≥0

∑

k∈Zn

∣

∣〈f, ψP
`;j,k〉

∣

∣

2
.

Letting J ≥ 0 and observing that ‖DJf‖2 = ‖f‖2 it is easily shown that for each
f ∈ L2(Rn)

L
∑

`=1

∑

j≥−J

∑

k∈Zn

∣

∣〈f, ψP
`;j,k〉

∣

∣

2 ≤ B‖f‖2.

Letting J → ∞ we see that XP (Ψ) is a Bessel system with upper bound B. 2

Given an admissible oversampling matrix we can use the permutation σ guaran-
teed by Proposition 2.1 to rewrite the oversampled system as the union of appropriate
affine-like systems, one for each coset of P−1Zn/Zn. Namely,

XP (Ψ) =

p−1
⋃

r=0

1√
p
Sr (disjointly),

where Sr := {DjTθ
σj (r)+kψ` : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zn}. S0 is precisely X(Ψ) while

the remaining collections Sr, 1 ≤ r ≤ p − 1, are slightly more complicated. This
decomposition plays a key role in our proof of the Second Oversampling Theorem.

Theorem 3.2 (Second Oversampling Theorem). Suppose X(Ψ) is a frame with
lower and upper bounds A,B > 0, respectively, relative to an expanding dilation matrix
M ∈ GLn(Z). If P ∈ GLn(Z) is an admissible oversampling matrix, then XP (Ψ) is
a frame with the same bounds.

Remark: In [6], Laugesen shows that if X(Ψ) and X(Ψ̃) are dual frames and P
is admissible, then XP (Ψ) and XP (Ψ̃) are also dual frames. This statement will be
proven in the next section (see Theorem 4.4 below) for a certain class of refinable
functions.

Proof: The preservation of the upper bound was discussed above; hence, it suffices
to demonstrate the lower bound. Since S0 = X(Ψ), S0 is a frame with lower bound
A. It is, therefore, sufficient to prove that each of the collections Sr, 1 ≤ r ≤ p − 1,
is a frame with lower bound A.

Fix r, 1 ≤ r ≤ p− 1, and let f ∈ L∞
c (Rn), the dense subset of L2(Rn) consisting

of essentially bounded functions of compact support. It is sufficient to demonstrate
the lower bound for such an f . Suppose that supp f ⊂ K, where K is a compact
subset of Rn containing 0. Let R := diamK. Lastly, let λ− > 1 and λ+ be the strict
lower and upper bounds, respectively, for the moduli of the eigenvalues of M .

1. For j0 ∈ Z, let fr
j0

= T−M−j0θ
σj0 (r)

f . By defining Kr
j0

:= K−M−j0θσj0 (r) we

see that suppf r
j0

⊂ Kr
j0

. Observe that by Corollary 2.4 we have

∑

g∈Sr

|〈f, g〉|2 =
L

∑

`=1

∑

j∈Z

∑

k∈Zn

∣

∣〈f,DjTθ
σj (r)

+kψ`〉
∣

∣

2

=

L
∑

`=1

∑

j≥j0

∑

k∈Zn

∣

∣〈fr
j0
, DjTkψ`〉

∣

∣

2
+

L
∑

`=1

∑

j<j0

∑

k∈Zn

∣

∣〈f,DjTθ
σj(r)+kψ`〉

∣

∣

2
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≥
L

∑

`=1

∑

j∈Z

∑

k∈Zn

∣

∣〈fr
j0
, ψ`;j,k〉

∣

∣

2 −
L

∑

`=1

∑

j<j0

∑

k∈Zn

∣

∣〈fr
j0
, ψ`;j,k〉

∣

∣

2

≥ A‖f‖2 −
L

∑

`=1

∑

j<j0

∑

k∈Zn

∣

∣〈fr
j0
, ψ`;j,k〉

∣

∣

2
.

We are left to prove that the latter sum tends to 0 as j0 → −∞.

2. Let ε > 0. Let us adopt the notation

Sr
j0

(f) =

L
∑

`=1

∑

j<j0

∑

k∈Zn

∣

∣〈fr
j0
, ψ`;j,k〉

∣

∣

2
.

Estimating the inner product of f r
j0

with ψ`;j,k by

∣

∣〈fr
j0
, ψ`;j,k〉

∣

∣

2 ≤ ‖fr
j0
‖2 ‖ψ`;j,kχKr

j0
‖2 ≤ ‖f‖2

∫

MjKr
j0

|ψ`(x− k)|2dx,

we obtain a bound on Sr
j0

(f):

Sr
j0

(f) ≤ ‖f‖2
L

∑

`=1

∑

j<j0

∑

k∈Zn

∫

MjKr
j0

−k

|ψ`(x)|2dx.

We will break up the sum over j into two pieces, corresponding to j < j0 − J
and j0 − J ≤ j < j0 where J > 0 will be fixed below (independent of j0).
Since M is expanding it is well known that there exists β ≥ 1 such that for
x ∈ Rn and j > 0, we have the estimates

β−1λj
−‖x‖ ≤ ‖M jx‖ ≤ βλj

+‖x‖,

and

β−1λ−j
+ ‖x‖ ≤ ‖M−jx‖ ≤ βλ−j

− ‖x‖,

where β ≥ 1 depends on λ−, λ+, and M .
We now make a pair of technical assumptions that will be used below, each
of which relies on the expanding property of M .
(a) We may assume j0 is negative and sufficiently less than 0 that

R <
1

2
‖M−j0θσj0 (r)‖.

(b) We will assume J > 0 is such that λJ
− > 2β−1(R+ ‖θσj0 (r)‖).

3. Let us first handle the terms for which j < j0 − J . Consider the set

E :=
⋃

j<j0−J

M jKr
j0

=
⋃

j<j0−J

(

M j(K −M−j0θσj0 (r))
)

.

Our first estimate involves replacing the sum over j by integration over E,
which requires the that the sets {M jKr

j0
}j<j0−J have finite overlaps which
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can be bounded independently of j0. Supposing for the moment that this is
the case, we have

I1 := ‖f‖2
∑

`,k

∑

j<j0−J

∫

MjKr
j0

−k

|ψ`(x)|2dx ≤ C‖f‖2
∑

`,k

∫

E−k

|ψ`(x)|2dx.

We now investigate the disjointness of {M jKr
j0
}j<j0−J . Suppose that

M j1Kr
j0

⋂

M j2Kr
j0

6= ∅,

with j1 > j2, then M j1−j2Kr
j0

⋂

Kr
j0

6= ∅. Thus it suffices to prove that there

exists j1 > 0 (independent of j0) such that M jKr
j0

⋂

Kr
j0

= ∅ for all j ≥ j1.
For x ∈ Kr

j0
we have by assumption (a) that

‖x‖ ≤ R+ ‖M−j0θσj0 (r)‖ ≤ 3

2
‖M−j0θσj0 (r)‖,

and

‖x‖ ≥ ‖M−j0θσj0 (r)‖ −R ≥ 1

2
‖M−j0θσj0 (r)‖.

Again using the expanding property of M , we have for x ∈ Kr
j0

and j > 0

‖M jx‖ ≥ 1

β
λj
−

1

2
‖M−j0θσj0 (r)‖.

Hence, a sufficient condition for the disjointness of the sets M jKr
j0

and Kr
j0

is

1

β
λj
−

1

2
‖M−j0θσj0 (r)‖ ≥ 3

2
‖M−j0θσj0 (r)‖,

or, equivalently,

λj
− ≥ 3β.

Again, since M is expanding we have λ− > 1, so we may choose j1 > 0 to be
the smallest j for which this last inequality holds.

4. Returning to the estimate from 3, we will next fix J large enough to control
the term I1. Let us examine a typical j in the sum defining I1, which is of
the form j = j0 − J − j1 with j1 ≥ 1. If x ∈M jKr

j0
, then

‖x‖ ≤ βλj0−J−j1
− R+ βλ−J−j1

− ‖θσj0 (r)‖ ≤ βλ−J−j1
−

(

R+ ‖θσj0 (r)‖
)

,

where we have used the assumption that j0 < 0 and β is as above. We con-
clude that if x ∈ E, then ‖x‖ ≤ λ−J−1

−
(

R+‖θσj0 (r)‖
)

≤ 1
2 by the assumption

(b) above regarding J . This means that diamE ≤ 1, implying that any dis-
tinct integer translates of E are disjoint. While the definition of E above
does depend on both j0 and J , we just showed that the measure of E can
be made arbitrarily small independent of j0, by choosing J sufficiently large.
Since each ψ` ∈ L2(Rn) the dominated convergence theorem allows us to fix
J > 0 so large that I1 < ε independent of j0.
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5. We now estimate the terms in Sr
j0

(f) for j0 − J ≤ j < j0 with J fixed as
in the last step. It suffices to consider an arbitrary term of this sort, which
can be written as j = j0 − j1 with 1 ≤ j1 ≤ J . By definition, M jKr

j0
=

M j0−j1K−M−j1θσj0 (r), whereM−j1θσj0 (r) is one of p−1 constants depending
on j0. Hence,

I2,j :=
∑

`,k

∫

MjKr
j0

−k

|ψ`(x)|2dx =
∑

`,k

∫

Mj0−j1K−M−j1θ
σj0 (r)

−k

|ψ`(x)|2dx.

Applying the dominated convergence theorem we may choose j0 sufficiently
less than zero that I2,j < ε.

By definition we have

Sr
j0

= I1 +

j0−1
∑

j=j0−J

I2,j ,

so, combining all the estimates, we have shown that Sr
j0

→ 0 as j0 → −∞. Thus, Sr

is a frame with lower bound A for each r, 0 ≤ r ≤ p− 1, completing the proof. 2

4. Oversampling and Multiresolution Analysis. Consider two families
of generating functions, Ψ := {ψ1, . . . , ψL} and Ψ̃ := {ψ̃1, . . . , ψ̃L} ⊂ L2(Rn). Let us
assume that the families are produced by refinement with scaling functions ϕ, ϕ̃ ∈ E,
respectively, where E := {f ∈ L2(Rn) : [f̂ , f̂ ] ∈ L∞(Tn)}. Recall that [f, g] , the
bracket product of f, g ∈ L2(Rn), is defined by

[f, g] =
∑

k∈Zn

T2πkfT2πkg.

Adopting the convention that ψ0 := ϕ and ψ̃0 := ϕ̃ for notational convenience, we
have the refinement identities

ψ̂`(M
T ξ) = m`(ξ)ϕ̂(ξ) and ˆ̃ψ`(M

T ξ) = m̃`(ξ) ˆ̃ϕ(ξ) (4.1)

for 0 ≤ ` ≤ L and a.e. ξ ∈ Rn, where m`, m̃` ∈ L∞(Tn) for 0 ≤ ` ≤ L. We assume
here that M ∈ GLn(Z) is expansive. Finally, we assume that the filters satisfy the
generalized Smith-Barnwell equations for the dilation M , namely for 0 ≤ s ≤ m − 1
we have

L
∑

`=0

m`(ξ)m̃`(ξ + 2π(MT )−1ϑs) = δ0,s a.e. ξ ∈ Tn, (4.2)

where {ϑs}m−1
p=0 is a complete set of distinct coset representatives of Zn/MT Zn, m :=

| detM |, and δ0,s is the Kronecker delta. Implicitly assumed here is the fact that
ϑ0 = 0. Together, the scaling functions and filters specify the generating families Ψ
and Ψ̃ that define the affine systems X(Ψ) and X(Ψ̃). We will rely on some basic
properties of this class of refinable affine systems as found in [5].

Given that these two systems are dual frames for L2(Rn) we are interested in two
properties of the resulting oversampled systems. First, we will investigate when the
oversampled affine systems XP (Ψ) and XP (Ψ̃) relative to a matrix P ∈ GLn(Z) are
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again dual frames. Secondly, we will examine the scaling equations associated with
the oversampled system and determine conditions on the oversampling matrix that
endow the oversampled system with a bonafide DWT. We conclude the section by
reconciling the conditions required for these two properties.

4.1. Multiresolution Operators and Duality. Our analysis will involve
multiresolution operators that arise naturally as generalizations of the orthogonal
projections found in the orthonormal MRA case. The affine approximation and detail
operators at the scale j ∈ Z, Pj and Qj , respectively, act on f ∈ L2(Rn) by

Pjf :=
∑

k∈Zn

〈f, ϕ̃j,k〉ϕj,k and Qjf :=
L

∑

`=1

∑

k∈Zn

〈f, ψ̃`;j,k〉ψ`;j,k, (4.3)

whereas the oversampled affine approximation and detail operators at the scale j, PP
j

and QP
j , respectively, are defined similarly by

PP
j f :=

∑

k∈Zn

〈f, ϕ̃P
j,k〉ϕP

j,k and QP
j f :=

L
∑

`=1

∑

k∈Zn

〈f, ψ̃P
`;j,k〉ψP

`;j,k. (4.4)

We have the following basic properties for Pj and Qj .

Lemma 4.1 ([5]). Suppose ϕ, ϕ̃ ∈ E and Ψ, Ψ̃ ⊂ L2(Rn) are such that (4.1) and
(4.2) hold.

(a) Pj and Qj are bounded operators on L2(Rn) for each j ∈ Z.

(b) Pj + Qj = Pj+1 for each j ∈ Z.

(c) For each f ∈ L2(Rn), lim
j→−∞

‖Pjf‖ = 0.

(d) If X(Ψ) and X(Ψ̃) are dual frames for L2(Rn) then for each f ∈ L2(Rn),
we have

f = lim
j→∞

Pjf =
∑

j∈Z

Qjf. (4.5)

Our objective is to establish similar properties for the oversampled multiresolution
operators armed with this information. We begin by expressing the oversampled
multiresolution operators in terms of the original affine counterparts.

Proposition 4.2. Let ϕ, ϕ̃ ∈ E. Let P ∈ GLn(Z). For each j ∈ Z, PP
j and QP

j

are bounded operators on L2(Rn) and we have

(a) PP
j =

1

p

p−1
∑

r=0

TM−jθr
PjT−M−jθr

,

(b) QP
j =

1

p

p−1
∑

r=0

TM−jθr
QjT−M−jθr

.

Proof: It is sufficient to derive (a). We have for each f ∈ L2(Rn),

PP
j f =

∑

k∈Zn

〈f, ϕ̃P
j,k〉ϕP

j,k
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=
1

p

p−1
∑

r=0

∑

k∈Zn

〈f,DjTθr+kϕ̃〉DjTθr+kϕ

=
1

p

p−1
∑

r=0

∑

k∈Zn

〈T−M−jθr
f,DjTkϕ̃〉TMjθr

DjTkϕ

=
1

p

p−1
∑

r=0

TM−jθr
PjT−M−jθr

f. 2

It is important to realize that the representations of PP
j and QP

j above are inde-
pendent of the choice of coset representatives. This is because Pj and Qj are invariant
under conjugation by translation operators over M−jZn. Indeed, for each f ∈ L2(Rn)
and k0 ∈ Zn we have

TM−jk0
PjT−M−jk0

f =
∑

k∈Zn

〈T−M−jk0
f,DjTkϕ̃〉TM−jk0

DjTkϕ

=
∑

k∈Zn

〈f, TM−jk0
DjTkϕ̃〉TM−jk0

DjTkϕ

=
∑

k∈Zn

〈f,DjTk+k0 ϕ̃〉DjTk+k0ϕ

= Pjf.

Since any two representatives of the same coset in P−1Zn/Zn differ by an element of
Zn the claim follows. This independence is particularly important for the following
proposition.

Proposition 4.3. Let ϕ, ϕ̃ ∈ E. If P ∈ GLn(Z) is an admissible oversampling
matrix then for each j ∈ Z

PP
j + QP

j = PP
j+1.

Proof: The condition on the oversampling matrix P guarantees that {Mθr}p−1
r=0 is

a complete set of coset representatives for P−1Zn/Zn. This fact together with the
previous proposition imply for f ∈ L2(Rn),

PP
j f + QP

j f =
1

p

p−1
∑

r=0

(

TM−jθr
PjT−M−jθr

f + TM−jθr
QjT−M−jθr

f
)

=
1

p

p−1
∑

r=0

TM−jθr
Pj+1T−M−jθr

f

=
1

p

p−1
∑

r=0

TM−(j+1)Mθr
Pj+1T−M−(j+1)Mθr

f

=
1

p

p−1
∑

r=0

TM−(j+1)θr
Pj+1T−M−(j+1)θr

f
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= PP
j+1f. 2

We are now in the position to examine the duality of the oversampled systems.

Theorem 4.4. Suppose ϕ, ϕ̃ ∈ E and Ψ, Ψ̃ ⊂ L2(Rn) are such that (4.1) and
(4.2) hold. If X(Ψ) and X(Ψ̃) are dual frames and P ∈ GLn(Z) is an admissible
oversampling matrix, then XP (Ψ) and XP (Ψ̃) are dual frames with the same bounds
as X(Ψ) and X(Ψ̃), respectively. Moreover, for each f ∈ L2(Rn) we have

f = lim
j→∞

PP
j f =

∑

j∈Z

QP
j f = f, (4.6)

and

lim
j→−∞

‖PP
j f‖ = 0. (4.7)

Proof: For this class of scaling functions we use the corresponding properties of Pj

and Qj contained in Lemma 4.1. Let f ∈ L2(Rn). Since PP
j is the finite sum of trans-

lated versions of Pj we conclude (4.7) directly from Lemma 4.1 (c) and Proposition
4.2. By Lemma 4.1 (d) we also have that Pjf → f in L2(Rn) as j → ∞, from which
we will obtain the first equality of (4.6) by approximation. Indeed, for each u ∈ Rn

we have the estimate

‖TM−juPjT−M−juf − f‖ ≤ ‖TM−juf − f‖ + ‖TM−juPjT−M−juf − TM−juf‖
≤ ‖TM−juf − f‖ + ‖PjT−M−juf − f‖
≤ ‖TM−juf − f‖ + ‖Pjf − f‖+ ‖PjT−M−juf −Pjf‖
≤ ‖TM−juf − f‖ + ‖Pjf − f‖+ C‖T−M−juf − f‖.

Each of the three terms in this estimate tend to zero as j → ∞ and, thus, the first
equality of (4.6) follows by summing the above as u = θr, 0 ≤ r ≤ p− 1.

By Theorem 3.2, we have that XP (Ψ) and XP (Ψ) are frames with the same
bounds as their respective affine counterparts. Lastly, the second equality of (4.6)
follows from a telescoping argument using Proposition 4.3 and the fact that the over-
sampled systems are Bessel, thereby implying that XP (Ψ) and XP (Ψ̃) are indeed
dual. 2

Remark: We should note that in many cases the assumption in Theorem 4.4 that
the original affine systems are actually dual frames may be avoided. For example,
in [8] Ron and Shen have derived sufficient conditions (assuming a weak smoothness
condition on the refinable family) involving identities of the form (4.2) under which
a pair of refinable affine Bessel systems will constitute dual frames.

4.2. Discrete Wavelet Transform. Throughout this section we assume
that P ∈ GLn(Z) is an admissible oversampling matrix for the dilation M . Recall
that the refinement equations (4.1) can be written in the space domain as

ψ`;j,k = m
1
2

∑

r∈Zn

α`;rϕj+1,r+Mk ,
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for 0 ≤ ` ≤ L, j ∈ Z, and k ∈ Zn, where m`(ξ) =
∑

r∈Zn α`;re
−i〈ξ,r〉. We omit the

analogous formulas for the dual functions and filters. We can obtain a similar formula
for the oversampled system by observing

ψP
`;j,k =

1√
p
ψ`;j,P−1k =

√
m

∑

r∈Zn

α`;r
1√
p
ϕj+1,r+MP−1k

=
√
m

∑

r∈Zn

α`;r
1√
p
ϕj+1,P−1(Pr+M̃k)

=
√
m

∑

r∈Zn

α`;rϕ
P

j+1,Pr+M̃k
,

where M̃ := PMP−1. Notice that because P is admissible M̃ has integer entries.
Letting αP

`;r be the coefficient sequence given by

αP
`;r :=

{

α`;s r = Ps, s ∈ Zn

0 otherwise,

we arrive at

ψP
`;j,k =

√
m

∑

r∈Zn

αP
`;rϕ

P

j+1,r+M̃k
.

Thus, given f ∈ L2(Rn) the sequence of inner products {〈f, ψP
`;j,k〉}k∈Zn is given by

〈f, ψP
`;j,k〉 =

√
m

∑

r∈Zn

∑

r∈Zn

αP
`;r〈f, ϕP

j+1,r+M̃k
〉,

for 0 ≤ ` ≤ L and j ∈ Z. To those familiar with subband coding theory, this is
immediately recognizable as a convolution followed by a downsampling operation.
Note that the downsampling is relative to M̃ rather than M as for the original affine
system. We would like this decomposition to be reversible, meaning that the sequence
{

〈f, ϕj+1,k〉}k∈Zn should be recoverable from the sequences
{

〈f, ψ`;j,k〉}k∈Zn , 0 ≤
` ≤ L, by first upsampling each sequence by M̃ and then summing the respective
convolutions with the dual filter coefficient sequences α̃P

`;r. It is well known that this

is equivalent to the coefficient sequences αP
`;r and α̃P

`;r satisfying the filter equations

(4.2) with M̃ instead of M . Letting mP
` be defined by

mP
` (ξ) =

∑

r∈Zn

αP
`;re

−i〈ξ,r〉,

for 0 ≤ ` ≤ L, we have mP
` (ξ) = m`(P

T ξ) by the definition of αp
`;r. The necessary

generalized Smith-Barnwell equations are thus

L
∑

`=0

mP
` (ξ)m̃P

` (ξ + 2π(M̃T )−1ϑ̃s) = δ0,s, (4.8)

for a.e. ξ ∈ Tn and 0 ≤ s ≤ m − 1, where {ϑ̃s}m−1
s=0 is a complete set of coset

representatives of Zn/M̃T Zn with ϑ̃s = 0. In terms of the original filters, (4.8) is
equivalent to

L
∑

`=0

m`(ξ)m̃`(ξ + 2πP T (M̃T )−1ϑ̃s) = δ0,s, (4.9)
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for 0 ≤ s ≤ m − 1, because mP
` (ξ) = m`(P

T ξ). With the following theorem we
describe a condition on the oversampling matrix that reduces (4.9) to (4.2) giving a
condition under which the dual oversampled affine systems have an associated DWT.

Theorem 4.5. Let P ∈ GLn(Z) be an admissible oversampling matrix and
assume that P also satisfies (P T )−1Zn

⋂

(M̃T )−1Zn = Zn. Then (4.2) and (4.9) are
equivalent.

Proof: It is sufficient to prove that {MTP T (M̃T )−1ϑ̃s}m−1
s=0 is a complete set of

representatives for Zn/MT Zn. In other words we need only show

(MT )−1Zn =
m−1
⋃

s=0

(

P T (M̃T )−1ϑ̃s + Zn
)

.

Observing that {(M̃T )−1ϑ̃s}m−1
s=0 is a complete set of representatives of (M̃T )−1Zn/Zn

our problem is equivalent to showing that if {γs}m−1
s=0 is a complete set of distinct

coset representatives for (M̃T )−1Zn/Zn then {P Tγs}m−1
s=0 is a compete set of coset

representatives for (MT )−1Zn/Zn.

The first bit of business is to establish that P T γs ∈ (MT )−1Zn. This requires
for each x ∈ Zn a corresponding y ∈ Zn such that P T (M̃T )−1x = (MT )−1y or,
equivalently, that MTP T (M̃T )−1 has integer entries. Computing this we see

MTP T (M̃T )−1 = MTP T (P T )−1(MT )−1P T = P T ,

which clearly has integer entries.

We now proceed by way of contradiction. Suppose that {P T γs}m−1
s=0 is not a

complete set of coset representatives. Then P T γs0 ∈ Zn for some s0, 1 ≤ s0 ≤ m− 1.
Since γs0 /∈ Z this implies that (P T )−1Zn

⋂

(M̃T )−1Zn ) Zn, a contradiction. 2

4.3. Reconciliation of the Hypotheses. In the last subsection we found
a relationship between the dilation matrix, M , and the oversampling matrix, P , that
is sufficient for the existence of a DWT for the oversampled system. This condition
essentially ensures that the perfect reconstruction filter equations for the matrix M̃ :=
PMP−1 are equivalent to those associated with M . It turns out that this condition
is automatically satisfied for all admissible oversampling matrices.

Theorem 4.6. Let M,P ∈ GLn(Z) and such that M̃ := PMP−1 ∈ GLn(Z).
Then

P−1Zn
⋂

M−1Zn = Zn (4.10)

and

(P T )−1Zn
⋂

(M̃T )−1Zn = Zn, (4.11)

are equivalent.

Proof: We prove the result step by step.
1. By symmetry, it is sufficient to prove (4.10) implies (4.11). Indeed, letting
M ′ = M̃T and P ′ = P T we have (M̃ ′)T = M and (P ′)T = P .
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2. Consider (4.11). If x ∈ (M̃T )−1Zn
⋂

(P T )−1Zn, then x = (M̃T )−1r =
(P T )−1s for some r, s ∈ Zn. This allows us to write

(M̃T )−1Zn
⋂

(P T )−1Zn =
{

(P T )−1s : s ∈ Zn and (P T )−1MT s ∈ Zn
}

.

Letting S = {s ∈ Zn : (P T )−1MT s ∈ Zn}, we have (M̃T )−1Zn
⋂

(P T )−1Zn =
(P T )−1S. Thus, (4.11) is equivalent to S = P T Zn.

3. P T Zn ⊆ S. Proof: Let s ∈ P T Zn and write s = P Tx, x ∈ Zn. Then
(P T )−1MTP Tx = M̃Tx ∈ Zn because M̃ has integer entries. Hence, s ∈ S.

4. We now provide an unusual characterization of S. It is easy to see that
x ∈ Zn if and only if 〈x, y〉 ∈ Z for all y ∈ Zn. Thus, s ∈ S if and only if
〈(P T )−1MT s, y〉 ∈ Z for all y ∈ Zn. This, in turn, is equivalent to s ∈ S if
and only if 〈s,My〉 ∈ Z for all y ∈ P−1Zn.

5. Recall from Proposition 2.1 that (4.10) is equivalent to {Mθr}p−1
r=0 being a

complete set of coset representatives for P−1Zn/Zn. In other words, (4.10)
allows us to write u ∈ P−1Zn as u = y+Mv, where y ∈ Zn and v ∈ P−1Zn.
Notice that if u /∈ Zn then v /∈ Zn. This will be used below.

6. S ⊆ P T Zn. Proof: Let s ∈ Zn and suppose that s /∈ P T Zn. Then there
exists u ∈ P−1Zn \Zn such that 〈s, u〉 /∈ Z. As explained above, (4.10) allows
us to write u = y + Mv, where y ∈ Zn and v ∈ P−1Zn. Since u /∈ Zn, we
must have v /∈ Zn. Then 〈s, u〉 = 〈s, y〉+ 〈s,Mv〉 /∈ Z and since 〈s, y〉 ∈ Z we
conclude 〈s,Mv〉 /∈ Z. Hence, s /∈ S. 2

Theorem 4.6 shows that the additional assumption of (4.11) in Theorem 4.5 is
redundant and that the dual oversampled affine systems always have an associated
DWT if P is admissible.

Corollary 4.7. If P ∈ GLn(Z) is an admissible oversampling matrix, then
(4.2) and (4.9) are equivalent.

5. Discussion of Related Work. With the number of variations on this
theme of bound-preserving oversampling, some comparisons are in order. In particular
we will discuss in detail how our work relates to that of Chui and Shi, Ron and Shen,
and Laugesen.

As mentioned in the introduction, the problem of identifying sufficient conditions
for the bound-preserving oversampling of affine frames started with Chui and Shi in
the one-dimensional setting with dyadic wavelets frames and oversampling by an odd
integer [2]. Our proof for Theorem 3.2 is an adaptation of that given in [2] to the
n-dimensional case for expansive dilations M ∈ GLn(Z) and admissible oversampling
matrices P . Chui and Shi improved on their one-dimensional result in [3], extending
the second oversampling theorem to expanding dilations M ∈ GLn(Z) (i.e. λ and
eigenvalue of M then |λ| > 1) and P = pIn, with gcd (p, detM) = 1. This version of
the second oversampling theorem also allows for the replacement of the Zn-translations
by bZn-translations, where b > 0. We will see below, more generally, that this case
actually follows from the Zn-translation case, which means that Theorem 3.2 implies
each of the results of Chui and Shi.

We turn now to the Gramian analysis of Ron and Shen. The version of the second
oversampling theorem offered by Ron and Shen in [7] achieves the result of Theorem
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3.2 provided M ∈ GLn(Z) is expansive and P ∈ GLn(Z) satisfies

P T Zn
⋂

(MT )jZn = (MT )jP T Zn, (5.1)

for each j ≥ 0. We will see that this rather complicated expression is actually equiv-
alent to our notion of admissibility. Let us begin by showing that (5.1) implies that
P is admissible in terms of Definition 2.2. The j = 1 statement of (5.1) says that

P T Zn
⋂

MT Zn = MTP T Zn,

which is equivalent to

Zn
⋂

(P T )−1MT Zn = (P T )−1MTP T Zn =: M̃T Zn,

from which we conclude that M̃ := PMP−1 ∈ GLn(Z). Moreover, we have

P T Zn
⋂

MT Zn = MTP T Zn ⇔ (M̃T )−1Zn
⋂

(P T )−1Zn = Zn.

But by Theorem 4.6 we have

(M̃T )−1Zn
⋂

(P T )−1Zn = Zn ⇔M−1Zn
⋂

P−1Zn = Zn,

implying that P satisfies our admissibility condition.

For the reverse implication, assume P is admissible according to Definition 2.2.
Using the notation of Proposition 2.1 we have {M jθr}p−1

r=0 is a complete set of coset
representatives for P−1Zn/Zn for each j ≥ 0. This is achieved by successively applying
the proposition to the collection {M j−1θr}p−1

r=0. Note that since PMP−1 ∈ GLn(Z),
it follows that PM jP−1 = M̃ j ∈ GLn(Z). Thus, Proposition 2.1 implies that

M−jZn
⋂

P−1Zn = Zn.

Theorem 4.6 now guarantees

M−jZn
⋂

P−1Zn = Zn ⇔ (M̃T )−jZn
⋂

(P T )−1Zn = Zn,

but we also have

(M̃T )−jZn
⋂

(P T )−1Zn = Zn ⇔ (MT )jZn
⋂

P T Zn = (MT )jP T Zn.

This string of equivalences shows that our notion of admissibility is equivalent to (5.1).

Finally, we compare our version of the Second Oversampling Theorem to that
of Laugesen [6]. Laugesen handles two kinds of dilation matrices M ∈ GLn(Z),
the expanding and amplifying dilations. The expanding dilations include, but are not
limited to the expansive dilations considered in this work, while the class of amplifying

matrices includes such dilations as

(

2 0
0 1

)

. Thus, Laugesen’s result applies to a larger

class of dilations than Theorem 3.2.

Laugesen also considers translations over the lattice bZn, where b ∈ GLn(R)
commutes with M . This generalization is not essential as we will now describe, using
notation as in Theorem 3.2. Let us denote the affine system generated by Ψ ⊂ L2(Rn)
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relative to translations over bZn by Xb(Ψ) and, similarly, the associated oversampled
system {DjTbP−1kψ` : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zn} by XP

b (Ψ). For b ∈ GLn(R), let

Db be the unitary dilation operator mapping f ∈ L2(Rn) to Dbf := | det b| 12 f(b·).
Suppose that Xb(Ψ) is a frame for L2(Rn) with lower bound A and upper bound B.
We then have for each f ∈ L2(Rn),

A‖f‖2 ≤
L

∑

`=1

∑

j∈Z

∑

k∈Zn

∣

∣〈D−1
b f,DjTbkψ`〉

∣

∣

2 ≤ B‖f‖2.

Using the fact that b and M commute we obtain for each f ∈ L2(Rn),

A‖f‖2 ≤
L

∑

`=1

∑

j∈Z

∑

k∈Zn

∣

∣〈f,DjTkDbψ`〉
∣

∣

2 ≤ B‖f‖2.

This argument shows that Xb(Ψ) is a frame with bounds A,B if and only if X(DbΨ)
is a frame with the same bounds. If P is admissible, then using Theorem 3.2 we
conclude that XP (DbΨ) is a frame with bounds A,B. Thus, for each f ∈ L2(Rn) we
have

A‖f‖2 ≤
L

∑

`=1

∑

j∈Z

∑

k∈Zn

∣

∣〈Dbf,D
jTP−1kDbψ`〉

∣

∣

2 ≤ B‖f‖2,

from which it follows that

A‖f‖2 ≤
L

∑

`=1

∑

j∈Z

∑

k∈Zn

∣

∣〈f,DjTbP−1kψ`〉
∣

∣

2 ≤ B‖f‖2.

Hence, if M and P satisfy the hypotheses of Theorem 3.2 and Xb(Ψ) is a frame with
bounds A,B then the preceding argument shows that Theorem 3.2 is sufficient to
conclude that XP

b (Ψ) is a frame with the same bounds.

We will now discuss how the notion of admissibility for an oversampling matrix
P in [6] is equivalent to ours. Laugesen uses a notion of relative primality for M,P ∈
GLn(Z) in which M is prime relative to P if MT Zn

⋂

P T Zn ⊆ MTP T Zn. In [6],
given a dilation M (which we will assume is expansive), an oversampling matrix
P ∈ GLn(Z) is admissible if PMP−1 ∈ GLn(Z) and M is prime relative to P .
Observe that

MT Zn
⋂

P T Zn ⊆MTP T Zn ⇔ (P T )−1Zn
⋂

(M̃T )−1Zn ⊆ Zn, (5.2)

where M̃ = PMP−1. On the other hand, since P T , M̃T ∈ GLn(Z) we have

Zn ⊆ (P T )−1Zn
⋂

(M̃T )−1Zn.

It follows that under the hypothesis that PMP−1 ∈ GLn(Z), M being prime relative
to P requires equality rather than containment in (5.2). In light of Theorem 4.6 we
see that the notion of admissibility in [6] is equivalent to ours.
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