The Physics of Bowling:
How good bowlers stay off the straight and narrow.

Brody Dylan Johnson

Saint Louis University
Outline

1. Introduction
2. Bowling Strikes
3. Underlying Physics
4. Mathematical Model
5. Human Experiment
Forms of bowling can be traced back to Egypt around 3200 B.C., although the first “standardized rules” were established in New York in 1895.

Forms of bowling can be traced back to Egypt around 3200 B.C., although the first “standardized rules” were established in New York in 1895.

The origin of ten pin bowling is attributed to an 1841 law in Connecticut banning ninepin bowling, which was the form of bowling brought to America from Europe. (The extra pin prevented violation of the law.)

Brief History of Bowling

- Forms of bowling can be traced back to Egypt around 3200 B.C., although the first “standardized rules” were established in New York in 1895.
- The origin of ten pin bowling is attributed to an 1841 law in Connecticut banning ninepin bowling, which was the form of bowling brought to America from Europe. (The extra pin prevented violation of the law.)
- Lane dimensions: Length: 60 feet, Width: 41.5 inches.

Brief History of Bowling

Forms of bowling can be traced back to Egypt around 3200 B.C., although the first “standardized rules” were established in New York in 1895.

The origin of ten pin bowling is attributed to an 1841 law in Connecticut banning ninepin bowling, which was the form of bowling brought to America from Europe. (The extra pin prevented violation of the law.)

Lane dimensions: Length: 60 feet, Width: 41.5 inches.

Ball specifications: Circumference: 2.25 feet, Weight: up to 16 pounds.

Scoring

- There are ten frames in which up to two balls may be rolled toward the pins;
There are ten **frames** in which up to two balls may be rolled toward the pins;

The base score for a frame is the total **pinfall** (number of pins knocked down);
Scoring

- There are ten **frames** in which up to two balls may be rolled toward the pins;
- The base score for a frame is the total **pinfall** (number of pins knocked down);
- In the case of a **strike** (all 10 pins knocked down on first ball) the pinfalls of the next two balls are added to the score for the frame;
Scoring

- There are ten **frames** in which up to two balls may be rolled toward the pins;
- The base score for a frame is the total **pinfall** (number of pins knocked down);
- In the case of a **strike** (all 10 pins knocked down on first ball) the pinfalls of the next two balls are added to the score for the frame;
- In the case of a **spare** (all remaining pins knocked down on second ball) the pinfall of the next ball is added to the score for the frame;
Scoring

- There are ten frames in which up to two balls may be rolled toward the pins;
- The base score for a frame is the total pinfall (number of pins knocked down);
- In the case of a strike (all 10 pins knocked down on first ball) the pinfalls of the next two balls are added to the score for the frame;
- In the case of a spare (all remaining pins knocked down on second ball) the pinfall of the next ball is added to the score for the frame;
- These bonus pinfalls can lead to up to two additional frames when a spare or strike occurs in the tenth frame.
A perfect game consists of twelve consecutive strikes. The pinfall is 30 for each frame for a total score of 300.
A perfect game consists of twelve consecutive strikes. The pinfall is 30 for each frame for a total score of 300.

The highest possible score without any strikes results from ten frames of 9-1 spares followed by an additional 9 in the eleventh frame, corresponding to a pinfall of 19 each frame and a total score of 190.
A perfect game consists of twelve consecutive strikes. The pinfall is 30 for each frame for a total score of 300.

The highest possible score without any strikes results from ten frames of 9-1 spares followed by an additional 9 in the eleventh frame, corresponding to a pinfall of 19 each frame and a total score of 190.

Consecutive strikes are essential to high scores.
A perfect game consists of twelve consecutive strikes. The pinfall is 30 for each frame for a total score of 300.

The highest possible score without any strikes results from ten frames of 9-1 spares followed by an additional 9 in the eleventh frame, corresponding to a pinfall of 19 each frame and a total score of 190.

Consecutive strikes are essential to high scores.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/1</td>
<td>10/-</td>
<td>10/-</td>
<td>10/-</td>
<td>9/1</td>
<td>9/1</td>
<td>9/1</td>
<td>9/1</td>
<td>9/1</td>
<td>9/1/9</td>
<td>224</td>
</tr>
<tr>
<td>2</td>
<td>9/1</td>
<td>10/-</td>
<td>9/1</td>
<td>10/-</td>
<td>9/1</td>
<td>10/-</td>
<td>9/1</td>
<td>10/-</td>
<td>9/1</td>
<td>9/1/9</td>
<td>198</td>
</tr>
</tbody>
</table>

These two games have identical frames with different orderings. There are four strikes in each game.
Angle of Attack

The shot should make contact with the pocket, which is the space between Pin 1 and Pin 3. An angle of six degrees with respect to the lane boards is considered optimal for the generation of strikes.²

Reference: http://www.jimloy.com/bowling/6degrees.htm
Angle of Attack

The shot should make contact with the pocket, which is the space between Pin 1 and Pin 3.

\[\theta \]

\(^2\)Reference: http://www.jimloy.com/bowling/6degrees.htm
The shot should make contact with the **pocket**, which is the space between Pin 1 and Pin 3.

An angle of six degrees with respect to the lane boards is considered optimal for the generation of strikes\(^2\).

\(^2\)Reference: http://www.jimloy.com/bowling/6degrees.htm
Assuming that the pocket is in the middle of the lane, the largest angle possible with a straight ball is

$$\tan^{-1}\left(\frac{1.75}{60}\right) \approx 1.67 \text{ degrees}.$$
Reality Check

- Assuming that the pocket is in the middle of the lane, the largest angle possible with a straight ball is

\[\tan^{-1}\left(\frac{1.75}{60}\right) \approx 1.67 \text{ degrees.} \]

- A six degree angle with a straight shot would require the bowler to stand about 6.3 feet to the side of the pocket, which is more than halfway across the adjacent lane.
Reality Check

- Assuming that the pocket is in the middle of the lane, the largest angle possible with a straight ball is

\[
\tan^{-1}\left(\frac{1.75}{60}\right) \approx 1.67 \text{ degrees.}
\]

- A six degree angle with a straight shot would require the bowler to stand about 6.3 feet to the side of the pocket, which is more than halfway across the adjacent lane.

- In order to achieve the desired six degree angle, the ball must be \textit{curved}.
Reality Check

- Assuming that the pocket is in the middle of the lane, the largest angle possible with a straight ball is

\[
\tan^{-1}\left(\frac{1.75}{60}\right) \approx 1.67 \text{ degrees.}
\]

- A six degree angle with a straight shot would require the bowler to stand about 6.3 feet to the side of the pocket, which is more than halfway across the adjacent lane.

- In order to achieve the desired six degree angle, the ball must be **curved**.

- A curved path requires the ball to experience **acceleration**. What forces can produce such an acceleration?
Suppose a ball (radius R) is rolling and sliding with velocity v_C and angular rotation speed ω_C.

The velocity of the contact point B is given by:

$$v_B = v_C - \omega_C R$$

If $v_B = 0$, then the ball is undergoing pure rolling. Otherwise, the ball is sliding and frictional forces will act on the ball.
A Rolling/Sliding Ball

Suppose a ball (radius R) is rolling and sliding with velocity v_C and angular rotation speed ω_C.

- The velocity of the contact point B is given by:

$$v_B = v_C - \omega_C R$$
A Rolling/Sliding Ball

- Suppose a ball (radius R) is rolling and sliding with velocity v_C and angular rotation speed ω_C.

- The velocity of the contact point B is given by:

$$v_B = v_C - \omega_C R$$

- If $v_B = 0$ then the ball is undergoing pure rolling. Otherwise the ball is sliding and frictional forces will act on the ball.
A frictional force F_B will act on the ball opposite to the direction of v_B.
The Effect of Friction

- A frictional force F_B will act on the ball opposite to the direction of v_B.

- If $v_B > 0$ then ω_C is too small for pure rolling and the friction force takes translational energy and converts it into rotational energy, increasing ω_C and decreasing v_C until $v_B = 0$.
The Effect of Friction

- A frictional force F_B will act on the ball opposite to the direction of v_B.

- If $v_B > 0$ then ω_C is too small for pure rolling and the friction force takes translational energy and converts it into rotational energy, increasing ω_C and decreasing v_C until $v_B = 0$.

- If $v_B < 0$ then ω_C is too large for pure rolling and the friction force takes rotational energy and converts it into translational energy, increasing v_C and decreasing ω_C until $v_B = 0$.
Energy Considerations

- Energy is conserved when v_C and ω_C have the same sign.
Energy Considerations

- Energy is conserved when \(v_C \) and \(\omega_C \) have the same sign.
- Energy is destroyed when \(v_C \) and \(\omega_C \) have opposite signs.
Energy Considerations

- Energy is conserved when v_C and ω_C have the same sign.
- Energy is destroyed when v_C and ω_C have opposite signs.
- Excess rotational energy can be thought of as a power source for the translational motion. The ball can accelerate as long as there is excess spin.
Energy Considerations

- Energy is conserved when v_C and ω_C have the same sign.
- Energy is destroyed when v_C and ω_C have opposite signs.
- Excess rotational energy can be thought of as a power source for the translational motion. The ball can accelerate as long as there is excess spin.
- Conversely, insufficient rotational energy will result in a power drain on the translational motion and the ball will decelerate until a balance is reached.
There are many bowlers that release the ball with a small amount of backspin. Generally the ball can be seen to reverse its direction of spin as the ball heads down the lane.
Practical Observations

- There are many bowlers that release the ball with a small amount of backspin. Generally the ball can be seen to reverse its direction of spin as the ball heads down the lane.

- Theoretically, if enough backspin were generated, the ball could actually reverse its direction of motion and come back towards the bowler.
There are many bowlers that release the ball with a small amount of backspin. Generally the ball can be seen to reverse its direction of spin as the ball heads down the lane.

Theoretically, if enough backspin were generated, the ball could actually reverse its direction of motion and come back towards the bowler.

For the typical bowler, the ball is released with a good balance of rotational and translational energy and the ball will generally achieve a pure rolling state before reaching the pins.
Mathematical Model, Part I

- Physical parameters:
 - Mass $= m$
 - Ball Radius $= r$
 - Rotational Inertia $= I = \frac{2}{5}mr^2$
 - Coefficient of Friction $= \mu$
 - Gravitational Constant $= g$

Oil conditions: Although oil patterns vary from one place to the next, typically a bowling lane is oiled from the foul line to a point about fifteen feet in front of the pins. This last section has a much higher coefficient of friction due to the lack of oil and often contributes a noticeable redirection of the ball trajectory. (the "extra" spin must last long enough for this to work.)
Physical parameters:

- Mass \(m \)
- Ball Radius \(r \)
- Rotational Inertia \(I = \frac{2}{5}mr^2 \)
- Coefficient of Friction \(\mu \)
- Gravitational Constant \(g \)

Oil conditions: Although oil patterns vary from one place to the next, typically a bowling lane is oiled from the foul line to a point about fifteen feet in front of the pins.
Mathematical Model, Part I

- Physical parameters:
 \[\text{Mass} = m \]
 \[\text{Ball Radius} = r \]
 \[\text{Rotational Inertia} = I = \frac{2}{5}mr^2 \]
 \[\text{Coefficient of Friction} = \mu \]
 \[\text{Gravitational Constant} = g \]

- Oil conditions: Although oil patterns vary from one place to the next, typically a bowling lane is oiled from the foul line to a point about fifteen feet in front of the pins.

- This last section has a much higher coefficient of friction due to the lack of oil and often contributes a noticeable redirection of the ball trajectory. (the “extra” spin must last long enough for this to work)
Mathematical Model, Part II

Variables: We will use a vector
\[x = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \end{pmatrix} \]
- \(x_1 \) = position in lane (from left)
- \(x_2 \) = position along lane (from foul line)
- \(x_3 \) = velocity in lane (left to right)
- \(x_4 \) = velocity along lane (towards pins)
- \(x_5 \) = rotation about \(x_1 \) axis (backspin +)
- \(x_6 \) = rotation about \(x_2 \) axis (rightspin +)
Mathematical Model, Part II

- **Variables**: We will use a vector
 \[x = (x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6) \]
 - \(x_1 \) = position in lane (from left)
 - \(x_2 \) = position along lane (from foul line)
 - \(x_3 \) = velocity in lane (left to right)
 - \(x_4 \) = velocity along lane (towards pins)
 - \(x_5 \) = rotation about \(x_1 \) axis (backspin +)
 - \(x_6 \) = rotation about \(x_2 \) axis (rightspin +)

- **System of differential equations**: One obtains a linear system of first order differential equations by applying Newton’s 2nd law to the bowling ball. (Both translational and rotational forms.)
Mathematical Model, Part III

Friction Forces:
\[F_{x_1} = -\mu m g \operatorname{sgn}(v_{x_1}) \]
\[F_{x_2} = -\mu m g \operatorname{sgn}(v_{x_2}) \]

Newton's second law:
\[m \frac{d^2x_3}{dt^2} = F_{x_1} \]
\[m \frac{d^2x_4}{dt^2} = F_{x_2} \]
Mathematical Model, Part III

Friction Forces:

\[F_{x_1} = -\mu m g \text{ sgn}(v_{x_1}) \quad F_{x_2} = -\mu m g \text{ sgn}(v_{x_2}) \]
Friction Forces:

\[F_{x_1} = -\mu m g \, \text{sgn}(v_{x_1}) \quad \quad F_{x_2} = -\mu m g \, \text{sgn}(v_{x_2}) \]

Newton’s second law:

\[m \frac{dx_3}{dt} = F_{x_1} \quad \quad m \frac{dx_4}{dt} = F_{x_2} \]
Rotational form of Newton’s second law:

\[
\frac{d x_6}{dt} = F_{x_1} r \\
\frac{d x_5}{dt} = -F_{x_2} r
\]
Rotational form of Newton’s second law:

\[l \frac{dx_6}{dt} = F_{x_1} r \]
\[l \frac{dx_5}{dt} = -F_{x_2} r \]

The complete system of differential equations:

\[
\begin{align*}
\frac{dx_1}{dt} &= x_3 \\
\frac{dx_3}{dt} &= F_{x_1} \\
\frac{dx_5}{dt} &= F_{x_2} r \\
\frac{dx_2}{dt} &= x_4 \\
\frac{dx_4}{dt} &= F_{x_2} \\
\frac{dx_6}{dt} &= -\frac{F_{x_1} r}{l}.
\end{align*}
\]
Rotational form of Newton’s second law:

\[\frac{l}{dt} \frac{dx_6}{dt} = F_{x_1} r \]

\[\frac{l}{dt} \frac{dx_5}{dt} = -F_{x_2} r \]

The complete system of differential equations:

\[\frac{dx_1}{dt} = x_3 \]
\[\frac{dx_2}{dt} = x_4 \]
\[\frac{dx_3}{dt} = \frac{F_{x_1}}{m} \]
\[\frac{dx_4}{dt} = \frac{F_{x_2}}{m} \]
\[\frac{dx_5}{dt} = \frac{F_{x_2} r}{l} \]
\[\frac{dx_6}{dt} = -\frac{F_{x_1} r}{l} \]

Notice that the components of acceleration for the ball are piecewise constant.
Implications of the Model

- The ball does not curve faster with more spin, it just curves longer. (takes longer to reach pure rolling)
Implications of the Model

- The ball does not curve faster with more spin, it just curves longer. (takes longer to reach pure rolling)
- The ball experiences constant acceleration when it is sliding, which makes it possible for the ball to follow a parabolic path.

\[
\text{Parabolic trajectory: } f(x) = ax^2 + bx + c, \quad a = \frac{\tan(\pi/30)}{60}, \quad b = -\tan(\pi/30), \quad c = 1.75; \quad x \text{ in feet}
\]
Implications of the Model

- The ball does not curve faster with more spin, it just curves longer. (takes longer to reach pure rolling)
- The ball experiences constant acceleration when it is sliding, which makes it possible for the ball to follow a parabolic path.
- The ball experiences no acceleration when it is in a pure rolling state and, thus, follows a linear path once it stops sliding.
The ball does not curve faster with more spin, it just curves longer. (takes longer to reach pure rolling)

The ball experiences constant acceleration when it is sliding, which makes it possible for the ball to follow a parabolic path.

The ball experiences no acceleration when it is in a pure rolling state and, thus, follows a linear path once it stops sliding.

It is possible to achieve the six degree angle with a pure parabola: \(f(x) = ax^2 + bx + c, \ a = \tan \left(\frac{\pi}{30} \right)/60, \ b = -\tan \left(\frac{\pi}{30} \right), \ & c = 1.75; \ x \text{ in feet} \)
Implications of the Model

- The ball does not curve faster with more spin, it just curves longer. (takes longer to reach pure rolling)
- The ball experiences constant acceleration when it is sliding, which makes it possible for the ball to follow a parabolic path.
- The ball experiences no acceleration when it is in a pure rolling state and, thus, follows a linear path once it stops sliding.
- It is possible to achieve the six degree angle with a pure parabola:
 \[f(x) = ax^2 + bx + c, \quad a = \tan \left(\frac{\pi}{30} \right)/60, \]
 \[b = -\tan \left(\frac{\pi}{30} \right), \quad & c = 1.75; \ x \text{ in feet} \]
Cheating the Geometry

- The model allows us to compare trajectories obtained for various spins, speeds, and release angles.
The model allows us to compare trajectories obtained for various spins, speeds, and release angles.

1.60 degrees
The model allows us to compare trajectories obtained for various spins, speeds, and release angles.
The model allows us to compare trajectories obtained for various spins, speeds, and release angles.
The three trajectories on the previous slide illustrate three stages of my bowling game:

- Straight balls: Throwing straight with a house ball.
- No-thumb spin: Creating spin by leaving the thumb out and torquing a house ball.
- Fingertip Grip: Creating spin with a personalized, fingertip grip ball.
The Three Stages

- The three trajectories on the previous slide illustrate three stages of my bowling game:
 - Straight balls: Throwing straight with a house ball.
The Three Stages

- The three trajectories on the previous slide illustrate three stages of my bowling game:

 - Straight balls: Throwing straight with a house ball.
 - No-thumb spin: Creating spin by leaving the thumb out and torquing a house ball.
The Three Stages

The three trajectories on the previous slide illustrate three stages of my bowling game:

- **Straight balls**: Throwing straight with a house ball.
- **No-thumb spin**: Creating spin by leaving the thumb out and torquing a house ball.
- **Fingertip Grip**: Creating spin with a personalized, fingertip grip ball.
The three trajectories on the previous slide illustrate three stages of my bowling game:

- **Straight balls**: Throwing straight with a house ball.
- **No-thumb spin**: Creating spin by leaving the thumb out and torquing a house ball.
- **Fingertip Grip**: Creating spin with a personalized, fingertip grip ball.

<table>
<thead>
<tr>
<th>Method</th>
<th>Average</th>
<th>Strike %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight</td>
<td>120</td>
<td>17%</td>
</tr>
<tr>
<td>No-thumb</td>
<td>130</td>
<td>22%</td>
</tr>
<tr>
<td>Fingertip</td>
<td>160</td>
<td>27%</td>
</tr>
</tbody>
</table>

Good bowlers seem to get on the order of 50% strikes.
The Three Stages

- The three trajectories on the previous slide illustrate three stages of my bowling game:

 - **Straight balls**: Throwing straight with a house ball.
 - **No-thumb spin**: Creating spin by leaving the thumb out and torquing a house ball.
 - **Fingertip Grip**: Creating spin with a personalized, fingertip grip ball.

<table>
<thead>
<tr>
<th>Method</th>
<th>Average</th>
<th>Strike %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight</td>
<td>120</td>
<td>17%</td>
</tr>
<tr>
<td>No-thumb</td>
<td>130</td>
<td>22%</td>
</tr>
<tr>
<td>Fingertip</td>
<td>160</td>
<td>27%</td>
</tr>
</tbody>
</table>

- Good bowlers seem to get on the order of 50% strikes.
The Three Stages
Straight Bowling

- **40 games:**
 - **Average:** 120
 - **First-Ball:** 7.1

<table>
<thead>
<tr>
<th>6/4/2004</th>
<th>Brady Commons</th>
<th>5</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>8</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>8</th>
<th>0</th>
<th>8</th>
<th>2</th>
<th>10</th>
<th>5</th>
<th>4</th>
<th>10</th>
<th>7</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF: 7, STR: 5</td>
<td>30</td>
<td>58</td>
<td>78</td>
<td>91</td>
<td>100</td>
<td>108</td>
<td>128</td>
<td>147</td>
<td>156</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
No-Thumb Spin Bowling

- 100 games:

<table>
<thead>
<tr>
<th>Average</th>
<th>First-Ball</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>7.6</td>
</tr>
</tbody>
</table>

7/27/2004 Tropicana Lanes 40 7 3 10 7 3 10 10 10 9 1 10 9 1 10 8 0
CF: 10, STR: 6 20 40 60 90 119 139 159 179 199 217
Fingertip Grip

60 games:

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>First-Ball</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>160</td>
<td>8.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2/15/2005</th>
<th>Tropicana</th>
<th>34</th>
<th>9</th>
<th>1</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>9</th>
<th>1</th>
<th>10</th>
<th>10</th>
<th>9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF: 9, STR: 7</td>
<td>20</td>
<td>50</td>
<td>80</td>
<td>110</td>
<td>139</td>
<td>159</td>
<td>179</td>
<td>208</td>
<td>227</td>
<td>236</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bowling, like many sports, is enjoyable for players of all skill levels because it is easy to get started and see real results (like bowling a strike), yet most people can play for years without ever coming close to the elusive perfect game.
Bowling, like many sports, is enjoyable for players of all skill levels because it is easy to get started and see real results (like bowling a strike), yet most people can play for years without ever coming close to the elusive perfect game.

The dynamics of the bowling ball, the oil, the gutters, etc. exhibit interesting concepts from math and physics that are accessible to anyone with a background in differential equations.