FRAME POTENTIAL & FINITE ABELIAN GROUPS Brody Dylan Johnson St. Louis University (joint with Kasso Okoudjou)

Notation & Definitions:

- \mathbb{H} denotes a [finite-dimensional] real or complex Hilbert space
- $\{f_k\}_{k=1}^n \subseteq \mathbb{H}$ is a frame if $\exists 0 < A \leq B < \infty$ s.t.

$$A||f||^2 \le \sum_{k=1}^n |\langle f, f_k \rangle|^2 \le B||f||^2, \quad \text{for all } f \in \mathbb{H}.$$

The frame is *tight* if it is possible to choose A = B.

• The frame potential of $\{f_k\}_{k=1}^n \subseteq \mathbb{H}$ is defined as

$$\operatorname{FP}(\{f_k\}_{k=1}^n) = \sum_{j,k=1}^n |\langle f_j, f_k \rangle|^2.$$

- Benedetto & Fickus (2000): Local minimizers of frame potential for overdetermined systems consisting of unit vectors characterize the tight frames [1].
- Casazza, Fickus, Kovačević, Leon, & Tremain (2004):
 - Considered collections constrained s.t. $||x_n|| = a_n > 0$ with the convention that

$$a_0 \ge a_2 \ge \cdots \ge a_{N-1}.$$

• Local minimizers of frame potential for overdetermined systems characterize the tight frames provided that the lengths satisfy the *fundamental frame inequality* [2].

Theorem 1 (Fundamental frame inequality [2]). If $\{x_n\}_{n=0}^{N-1} \in a_0 \mathbb{S}^{d-1} \times \cdots \times a_{N-1} \mathbb{S}^{d-1}$ is a tight frame and $a_0 \geq a_1 \geq \cdots \geq a_{N-1} > 0$, then

$$da_0^2 \le \sum_{n=0}^{N-1} a_n^2.$$
 (1)

Notes:

- $\mathbb{H} = K^d$ where $K = \mathbb{R}$ or \mathbb{C} .
- $\mathbb{S}^{d-1} = \{x \in K^d : ||x|| = 1\}.$

Remark: The preceding characterization is thus complete since no tight frames exist when the fundamental frame inequality is not satisfied.

Casazza et al. also examine the properties of [overdetermined] minimizers of the frame potential when the lengths fail to satisfy the fundamental frame inequality.

- The largest vectors force smaller vectors into their orthogonal complement.
- At some point the remaining vectors satisfy the fundamental frame inequality in a lower-dimensional subspace and comprise a tight frame for this subspace.

In the underdetermined case local minimizers of the frame potential always consist of mutually orthogonal vectors.

Vale & Waldron (2004): examined the symmetries possessed by tight frames for finite-dimensional Hilbert spaces [5]. The symmetry group of a frame X is defined as

$$Sym(X) = \{ U \in \mathcal{U}(\mathbb{H}) : U(X) = X \}.$$

Note: $\mathcal{U}(\mathbb{H})$ is the group of unitary linear transformations on \mathbb{H} .

Example: Mercedes-Benz frame $Sym(X) = D_3.$ (dihedral group of order 6) f_2

A Natural Question:

Under what conditions, if any, can tight frames with specified symmetries be characterized as local minimizers of the frame potential?

A partial answer to this question will be sought by considering collections of functions in the group algebra of a finite abelian group which possess the symmetries of a chosen subgroup.

More Notation:

- G will denote a finite abelian group
- $\ell(G)$ will denote the group algebra of G (real or complex valued functions on G)
- $(T_g f)(g') = f(g'g^{-1})$ will denote the translation operator on $\ell(G)$ induced by $g \in G$
- Given a subgroup H of G, collections of the form

$$X_H = \{T_h f_k : h \in H, \, f_k \in \ell(G), \, 0 \le k \le n-1\}$$
(2)

will be studied. By construction, $H \leq \text{Sym}(X_H)$.

Convolution & Sampling:

• The convolution of $f_1, f_2 \in \ell(G)$ is given by

$$f_1 * f_2(g) = \sum_{x \in G} f_1(x) f_2(g^{-1}x), \quad g \in G.$$

• Sampling operator, $\mathcal{S}_H : \ell(G) \to \ell(H)$,

$$(\mathcal{S}_H f)(h) = f(h), \quad h \in H,$$

• Upsampling operator, $\mathcal{S}_H^* : \ell(H) \to \ell(G)$,

$$(\mathcal{S}_H^*f)(g) = \begin{cases} f(g), & g \in H \\ 0, & g \notin H, \end{cases} \quad g \in G.$$

Convolutional Systems for $\ell(G)$:

- Filters: $\{f_k\}_{k=0}^{n-1} \subseteq \ell(G)$
- Frame Operator of X_H :

$$Ff = \sum_{k=0}^{n-1} \sum_{h \in H} \langle f, T_h f_k \rangle T_h f_k$$
$$= \sum_{k=0}^{n-1} \left[\mathcal{S}_H^* \mathcal{S}_H (f * \tilde{f}_k) \right] * f_k$$

The latter form reveals the convolutional nature of X_H . In this sense F may be thought of as a *filter bank frame operator*.

Note: \tilde{f}_k denotes the *involution* of the filter f_k , given by

$$\tilde{f}_k(g) = \overline{f_k(g^{-1})}$$

Filterbanks on $\ell(G)$:

Figure 1: Block diagram of an *n*-channel filterbank on $\ell(G)$.

Prior Work:

Fickus, J–, Kornelson, Okoudjou (2004): Examined the case where $G = \mathbb{Z}/d\mathbb{Z}$ and H is a cyclic subgroup [3].

- Local minimizers of frame potential for overdetermined systems characterize the tight frames provided that the *lengths of the generators* satisfy the fundamental frame inequality.
- If the lengths of the generators do not satisfy the fundamental frame inequality then tight frames are not possible.
- The key tool behind the result is the *modulated filter representation* of the synthesis operator, which is essentially a block diagonalization in the Fourier domain making use of the relationship between sampling and the Fourier transform.

Modulated Filter Representation of L^* :

Under the Fourier transform L^* is unitarily equivalent to an operator of the form:

• Each collection X_j consists of n vectors, say $\{x_{j,k}\}_{k=0}^{n-1}$, whose lengths must satisfy

$$a_k^2 = \sum_{j=1}^N ||x_{j,k}||^2.$$

• The frame bounds of the X_j determine the frame bounds of the convolutional system. The combined frame potential of the X_j is equal to the frame potential of the convolutional system.

Fourier Analysis on $\ell(G)$:

• The discrete Fourier transform (DFT) of $f \in \ell(G)$ is defined by

$$\mathcal{F}f(\chi) = \widehat{f}(\chi) = \sum_{x \in G} f(x) \overline{\chi(x)}, \quad \chi \in \widehat{G}.$$

- \widehat{G} is the *dual group* to *G* consisting of all characters of *G* under pointwise multiplication. (\widehat{G} is isomorphic to *G*)
- A character of G is a group homomorphism $\chi : \ell(G) \to \mathbb{T}$. (Here, \mathbb{T} represents the group of unimodular complex numbers.)

Downsampling/Upsampling in $\mathbb{Z}/d\mathbb{Z}$:

• Downsampling by 2: (periodization)

$$\widehat{\downarrow_2 f}(\ell) = \sum_{k=0}^{d/2-1} (\downarrow_2 f)(k) \exp\left(-2\pi i k \ell / (d/2)\right)$$
$$= \sum_{k=0}^{d-1} \left[\frac{1+(-1)^k}{2}\right] f(k) \exp\left(-2\pi i k \ell / d\right) = \frac{1}{2} \left[\widehat{f}(\ell) + \widehat{f}(\ell + d/2)\right]$$

• Upsampling by 2: (periodic extension)

$$\widehat{\uparrow_2 f}(\ell) = \sum_{k=0}^{d-1} (\uparrow_2 f)(k) \exp\left(-2\pi i k\ell/d\right) \\ = \sum_{k=0}^{d/2-1} f(k) \exp\left(-2\pi i 2k\ell/d\right) = \widehat{f}(\ell).$$

Sampling over a Subgroup H in $\ell(G)$:

The following proposition relates a given character in $\ell(H)$ to its extensions in $\ell(G)$ and is based on a result of Serre [4].

Proposition 2. Suppose $H \leq G$, let $x \in G \setminus H$, and denote by H^x the subgroup of G generated by H and x. Let $m_x = \min \{n \in \mathbb{N} : x^n \in H\}$. Then each $\chi \in \widehat{H}$ extends to m_x orthogonal characters in $\widehat{H^x}$, $\{\chi_j\}_{j=0}^{m_x-1}$, and

$$\widehat{H^x} = \{\chi_j : \chi \in \widehat{H}, \ 0 \le j \le m_x - 1\}.$$

Sampling over a Subgroup H in $\ell(G)$:

Fix $\chi \in \widehat{H}$. \widehat{G}_{χ} will denote the subset of \widehat{G} consisting of characters ψ whose restrictions to H coincide with χ .

Corollary 3. Let $H \leq G$ and $\chi \in \widehat{H}$. Then $|\widehat{G}_{\chi}| = [G:H]$.

Corollary 4. Let $H \leq G$ and $\chi \in \widehat{H}$. Then,

$$\sum_{\psi \in \widehat{G}_{\chi}} \psi(g) = \begin{cases} [G:H]\chi(g), & g \in H, \\ 0, & otherwise. \end{cases}$$

These facts complete the picture for sampling and upsampling over a subgroup H.

Sampling/Upsampling in $\ell(G)$:

Proposition 5. Let G be a finite abelian group with subgroup H. Then

(i) For $f \in \ell(H)$, $\widehat{\mathcal{S}_{H}^{*}f}(\chi) = \widehat{f}(\chi|_{H}), \quad \chi \in \widehat{G}.$ (ii) For $f \in \ell(G)$, $\widehat{\mathcal{S}_{H}f}(\chi) = \frac{1}{[G:H]} \sum_{\psi \in \widehat{G}_{\chi}} \widehat{f}(\psi), \quad \chi \in \widehat{H}.$

With this information, the modulated filter representation can be extended to convolutional systems for $\ell(G)$.

The Main Result:

Theorem 6. Let G be a finite abelian group and H a subgroup of G with $n \ge [G : H]$. If $X_H(\{f_m\}_{m=0}^{n-1}) \subset \ell(G)$ is a local minimizer of the frame potential over $a_0 \mathbb{S}(G) \times \cdots \times a_{n-1} \mathbb{S}(G)$, where $a_0 \ge a_1 \ge$ $\cdots \ge a_{n-1} > 0$ satisfy

$$da_0^2 \le \sum_{m=0}^{n-1} a_m^2,$$

then $X_H({f_m}_{m=0}^{n-1})$ is a tight frame for $\ell(G)$.

Notation: $S(G) = \{ f \in \ell(G) : ||f|| = 1 \}.$

Directions for Further Study:

- Is it possible to extend the characterization of tight frames in terms of the frame potential to convolutional systems for $\ell(G)$, where G is an arbitrary finite group?
- What other symmetries or structures of systems in a finite dimensional Hilbert space lead to similar characterizations of tight frames in terms of the frame potential?

References

- J.J. Benedetto and M. Fickus. Finite normalized tight frames. Adv. Comp. Math., 18(2-4):357–358, 2003.
- [2] P.G. Casazza, M. Fickus, J. Kovačević, M.T. Leon, and J.C. Tremain. A physical interpretation of tight frames. In *Harmonic analysis and applications*, Appl. Numer. Harmon. Anal., pages 51–76. Birkhäuser Boston, Boston, MA, 2006.
- [3] M. Fickus, J-, K. Kornelson, and K.A. Okoudjou. Convolutional frames and the frame potential. Appl. Comput. Harmon. Anal., 19(1):77–91, 2005.
- [4] J.-P. Serre. A course in arithmetic. Springer-Verlag, New York, 1973. Translated from the French, Graduate Texts in Mathematics, No. 7.
- [5] R. Vale and S. Waldron. Tight frames and their symmetries. Constr. Approx., 21(1):83–112, 2005.