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Co-affine systems in Rd

Brody Dylan Johnson

Abstract. The proof of non-existence for co-affine frames is extended from
the one-dimensional setting [GLWW] to the case of expansive dilation ma-
trices in Rd. The problem of identifying subspaces on which co-affine sys-
tems may admit frame-type inequalities is then considered. In the context

of multiresolution analysis it is shown that frame-type inequalities may hold
on certain fundamental subspaces of an MRA. Finally, necessary conditions
are given for a general co-affine system to admit frame-type inequalities on

band-limited subspaces. In the case of the co-affine system generated by the
Shannon wavelet these results dictate that Parseval’s identity holds on the

band-limited subspace having bandwidth 2, but cannot hold with any larger

bandwidth.

1. Introduction

Let A ∈ GLd(R) be expansive, i.e., each eigenvalue of A is strictly larger than
1 in modulus. Let D be the dilation operator induced by A, given by Df(x) =√
|detA|f(Ax). Let Ty, y ∈ Rd, be the translation operator, defined by Tyf(x) =

f(x− y). Finally, Fourier transform, f̂ , of f ∈ L1 ∩ L2(Rd) shall be taken to be

f̂(ξ) :=
∫
Rd

f(x)e−2πiξ·xdx.

Together, the dilation and translation operators form the backbone of wavelet
theory. The classic notion of a dyadic orthonormal wavelet is a function ψ ∈ L2(R)
for which the collection {2

j
2ψ(2jx − k) : j, k ∈ Z} is an orthonormal basis for

L2(R) [D, HW]. More generally, wavelet theory involves the study of collections
composed of certain dilates and translates of a finite number of generating functions.
Given a finite collection Ψ = {ψ1, . . . , ψL} ⊂ L2(Rd), the affine system generated
by Ψ is defined to be the collection

X(Ψ) = {DjTkψ` : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zd}.
As in the dyadic orthonormal case, one might be interested merely in those Ψ ⊂
L2(Rd) for which X(Ψ) is an orthonormal basis for L2(Rd), but in many instances
this restriction is unnecessary and one may instead consider the more general class
of affine systems which comprise frames for L2(Rd).
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In a separable Hilbert space, H, a collection {hj}j∈J ⊂ H is a frame if there
exist constants 0 < B1 ≤ B2 <∞ such that for all f ∈ H

(1.1) B1‖f‖2H ≤
∑
j∈J
|〈f, hj〉H|2 ≤ B2‖f‖2H.

The constants B1 and B2 are referred to as the lower and upper frame bounds,
respectively, and in the case that one may choose B1 = B2 the frame is said to
be tight. In particular, when one may choose B1 = B2 = 1 the frame is said to
be Parseval. Any collection possessing an upper frame bound is called a Bessel
sequence.

The term wavelet will be used here to refer to a generator or set of generators
Ψ (as above) for which X(Ψ) is a frame for L2(Rd). When X(Ψ) is additionally
an orthonormal collection the term orthonormal wavelet will also be used. The
literature in wavelet theory has been dominated by the study of affine systems, but
there are alternative systems that have also played important roles in the theory.
The most notable alternative systems are the quasi-affine systems, which were
introduced by Ron and Shen as a tool for characterizing affine frames using the
theory of shift-invariant spaces [RS]. With Ψ as above, the quasi-affine system
generated by Ψ is the collection

Xq(Ψ) ={DjTkψ` : 1 ≤ ` ≤ L, j ≥ 0, k ∈ Zd}∪

{|detA|
j
2TkD

jψ` : 1 ≤ ` ≤ L, j < 0, k ∈ Zd}.

Notice that Xq(Ψ) is Zd-shift invariant, a property stemming from the reversal of
the dilation and translation operators for the scales j < 0. The principle result
relating affine and quasi-affine systems says that when A is an integral, expansive
matrix then X(Ψ) is a frame for L2(Rd) if and only if Xq(Ψ) is a frame for L2(Rd)
and, moreover, that in either case the frame bounds of the two systems are identical
[RS, CSS]. The result also holds for Bessel sequences. Despite the prevalence of
affine systems in the literature, there have been a number of other interesting works
dealing with or related to quasi-affine systems [Bo1, GLWW, HKMT, HLW,
HLWW, La, MZ]. In particular, the works [HKMT] and [MZ] deal with the à
trous algorithm, which is a shift-invariant version of the discrete wavelet transform
with strong ties to quasi-affine systems [Jo].

It is natural to wonder what would result from the reversal of the dilation and
translation operators at each scale j ∈ Z, as opposed to just the negative scales as
in the quasi-affine systems.

Definition 1.1 ([GLWW]). Let Ψ = {ψ`}L`=1 ⊂ L2(Rd) and let c := {c`;j},
1 ≤ ` ≤ L, j ∈ Z, be any numerical sequence. The weighted co-affine system
generated by Ψ and c, denoted X∗(Ψ, c), is the collection

X∗(Ψ, c) = {ψ∗`;j,k := c`;jTkD
jψ` : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zd}.

Gressman et al. showed that when d = 1, A = a > 1, and Ψ = {ψ}, the
weighted co-affine system X∗(Ψ, c) can never comprise a frame for L2(R) [GLWW].
This suggests that finitely generated co-affine systems should always fail to consti-
tute frames for L2(Rd) (at least for expansive dilations), but as unions of shift-
invariant systems one would still expect that co-affine systems should be able to
provide stable, frame-like reconstruction formulas on proper subspaces of L2(Rd).
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The intent of this paper is threefold. First, the non-existence result of [GLWW]
will be extended to the case of finitely generated co-affine systems associated with
expansive dilation matrices in Rd. Second, the framework of multiresolution anal-
ysis shall be used to develop frame-like reconstruction formulas for certain funda-
mental subspaces of an MRA. Finally, the technique of the non-existence result will
be used to derive necessary conditions for a co-affine system to admit a frame-type
inequality on a given band-limited subspace.

2. Non-existence of co-affine frames

The following lemma generalizes a useful calculation from [GLWW] to Rd.

Lemma 2.1. If X∗(Ψ, c) is a Bessel system for L2(Rd) then for each f ∈
L2(Rd),

(2.1)
∫
D
w(x)dx =

∫
Rd

( L∑
`=1

∑
j∈Z

|c`;j |2|detA|−j |ψ̂(A−jξ)|2
)
|f̂(ξ)|2dξ,

where w(x) is the Zd-periodic function defined by

w(x) =
L∑
`=1

∑
j∈Z

∑
k∈Zd

∣∣〈Txf, ψ∗`;j,k〉∣∣2,
and D represents the unit cube in Rd.

Proof. The fact that the system is Bessel implies that the integral in (2.1)
is finite. Moreover, the integrand is non-negative, allowing one to interchange the
order of the sums and the integral. Observe that∫

D
w(x)dx =

∫
D

L∑
`=1

∑
j∈Z

∑
k∈Z

∣∣〈Txf, ψ∗`;j,k〉∣∣2dx
=

L∑
`=1

∑
j∈Z

|c`;j |2
∫
D

∑
k∈Zd

∣∣〈f, T−x+kD
jψ`〉

∣∣2dx
=

L∑
`=1

∑
j∈Z

|c`;j |2
∫
Rd

∣∣〈f, TxDjψ`〉
∣∣2dx

=
L∑
`=1

∑
j∈Z

|c`;j |2
∫
Rd

∣∣〈f̂ , |detA|
−j
2 ψ̂`

(
(AT )−j ·

)
e−2πi〈x,·〉〉

∣∣2dx
=

L∑
`=1

∑
j∈Z

|c`;j |2 |detA|−j
∫
Rd

∣∣(f̂ ψ̂`((AT )−j ·
))

(̌x)
∣∣2dx

=
∫
Rd

( L∑
`=1

∑
j∈Z

|c`;j |2 |detA|−j
∣∣ψ̂`((AT )−jξ

)∣∣2)∣∣f̂(ξ)|2dx.

�

The next lemma describes a well-known fact about matrices that plays an
important role in the handling of expansive dilations. One can find a proof of the
lemma in [HLW].
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Lemma 2.2. Suppose A ∈ GLd(R) and that there exist α, β ∈ R such that 0 <
α < |λ| < β <∞ for each eigenvalue λ of A. Then there exists C = C(A,α, β) ≥ 1
such that

(2.2) C−1αj |x| ≤ |Ajx| ≤ Cβj |x|,

for all x ∈ Rd and each positive integer j.

Theorem 2.3. There exist no weighted co-affine frames for L2(Rd).

Proof. Let Ψ = {ψ1, . . . , ψL} ⊂ L2(R) and c = {c`;j}1≤`≤L,j∈Z be a fixed
numerical sequence, c 6= 0. Proceeding by contradiction, suppose that X∗(Ψ, c) is
a frame with bounds 0 < B1 ≤ B2 <∞. Notice that for any fixed j0 ∈ Z, k0 ∈ Zd,
and 1 ≤ `0 ≤ L one has

|c`0;j0 |4‖ψ∗`0,j0,k0
‖4 ≤

L∑
`=1

∑
j∈Z

∑
k∈Zd

∣∣〈ψ∗`0;j0,k0
, ψ∗`;j,k〉

∣∣2 ≤ B2|c`0;j0 |2‖ψ`0‖2,

which implies

(2.3) |c`;j |2 ≤ B2‖ψ`‖−2.

It follows from Lemma 2.1 that for a.e. ξ ∈ Rd

(2.4) B1 ≤
L∑
`=1

∑
j∈Z

|c`;j |2|detA|−j
∣∣ψ̂`((AT )−jξ

)∣∣2 ≤ B2.

It is by means of (2.4) that a contradiction will be derived.
Let 1 < λ ≤ Λ < ∞, respectively, be strict lower and upper bounds of the

eigenvalues of A. Let Ea,b be the set defined by

E = Ea,b = {x ∈ Rd : a < |x| < b},

where 0 < a < b <∞. It is important to understand the overlap of (AT )j1Ea,b and
(AT )j2Ea,b for j1, j2 ∈ Z. Since A ∈ GLn(R) it is sufficient to consider j1 ≥ 0 and
j2 = 0. Observe that if x ∈ Ea,b and j > 0 then

(2.5) C−1λja < |(AT )jx| < CΛjb,

with C as in Lemma 2.2. Thus, in order for (AT )jE to be disjoint from E one must
have

λj ≥ C b
a
.

Fixing a = 1 and b = λ there exists J ≥ 1 (finite) such the last inequality is satisfied
for all j ≥ J . Let E := E1,λ. The upshot of these observations is that the sets
{(AT )jE}j∈Z have finite overlap, i.e., AjE ∩E = ∅ for sufficiently large integers j.
This property is crucial for the following argument. In fact, if x ∈ (AT )j0E, j0 ∈ Z,
then x belongs to at most 2J − 1 sets in the collection {(AT )jE}j∈Z. Let n ∈ Z
and observe by (2.4) that∫

(AT )−nE

B1dξ ≤
∫

(AT )−nE

( L∑
`=1

∑
j∈Z

|c`;j |2 |detA|−j
∣∣ψ̂`((AT )−jξ

)∣∣2)dξ
=
∫
E

( L∑
`=1

∑
j∈Z

|c`;j |2 |detA|−(j+n)
∣∣ψ̂`((AT )−(j+n)ξ

)∣∣2)dξ
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=
∫
E

( L∑
`=1

∑
m∈Z

|c`;−(m+n)|2 |detA|m
∣∣ψ̂`((AT )mξ

)∣∣2)dξ
≤

L∑
`=1

B2‖ψ`‖−2
∑
m∈Z

∫
(AT )mE

|ψ̂`(ξ)|2dξ

≤ (2J − 1)
L∑
`=1

B2‖ψ`‖−2

∫
Rd

|ψ̂`(ξ)|2dξ

≤ (2J − 1)B2 L.

Letting µ denote the volume of the unit sphere in Rd, the left-hand side of the
last chain of inequalities becomes∫

A−nE

B1dξ = |detA|−nµ(λd − 1)B1,

from which it follows that

(2.6) µ(λd − 1)B1 ≤ | detA|n (2J − 1)B2 L

for each n ∈ Z. By choosing −n large enough one obtains the desired contradiction.
�

3. Multiresolution analysis and co-affine systems

In the last section it was seen that co-affine systems can never constitute frames
for L2(Rd). This leads naturally to questions about which subspaces admit frame-
like reconstructions in terms of co-affine systems. One setting in which this will be
possible is that of the familiar multiresolution analysis, a tool that has fueled much
research in wavelet theory. Accordingly, it will be assumed throughout this section
not only that A is expansive, but also that A is integral, i.e., AZd ⊂ Zd.

Recall that a multiresolution analysis (MRA) is a collection of closed subspaces
{Vj}j∈Z ⊆ L2(Rd) such that:

(i) Vj ⊆ Vj+1, j ∈ Z;
(ii) f ∈ Vj if and only if Df ∈ Vj+1, j ∈ Z;
(iii) ∩j∈ZVj = {0};
(iv) ∪j∈ZVj = L2(Rd);
(v) There exists ϕ ∈ V0 (a scaling function) such that {Tkϕ}k∈Zd is an or-

thonormal basis for V0.
The subspace V0 is often referred to as the core subspace of the MRA. Notice that
V0 is invariant under integral translations.

The importance of multiresolution analysis in wavelet theory is immense. The
early works of Mallat [Ma] and Daubechies [D] offered constructions of dyadic
orthonormal wavelets relying on the structure of MRAs and since that time there
have been generalizations and extensions too numerous to mention here in any
detail. One example of a multi-dimensional construction of MRA wavelets (tight
affine frames) may be found in [Bo1] and a nice treatment of the one-dimensional
theory of dyadic orthonormal wavelets may be found in [HW].

Example 3.1. Consider the Shannon wavelet,

ψ(x) = −2
sin(2πx) + cos(πx)

π(2x+ 1)
,
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and the associated scaling function

ϕ(x) =
sin(πx)
πx

.

Notice that ϕ̂(ξ) = χ[−2−1,2−1](ξ) and thus the principal shift-invariant space V0

generated by ϕ consists precisely of those L2(R) functions whose Fourier transforms
are supported in [−2−1, 2−1]. The collection {Tkϕ}k∈Z forms an orthonormal basis
for V0. Defining Vj =

{
f ∈ L2(R) : supp(f̂) ⊆ [−2j−1, 2j−1]

}
it is easy to see

that {Vj}j∈Z is a dyadic MRA. The subspaces Vj are merely dyadic band-limited
subspaces with bandwidth 2j .

Given a scaling function ϕ for an MRA, it is an elementary fact that there exists
m0 ∈ L∞(Td) (the low-pass filter associated to ϕ) such that ϕ̂(AT ξ) = m0(ξ) ϕ̂(ξ).
The Zd-periodic low-pass filter must also satisfy

|detA|−1∑
s=0

|m0(ξ + (AT )−1ϑs)|2 = 1, a.e.ξ ∈ Td,

where {ϑs}|detA|−1
s=0 is a complete set of distinct coset representatives of Zd/ATZd

with ϑ0 = 0. Given m1, . . . ,mL ∈ L∞(Td) (high-pass filters) one can construct
Ψ = {ψ`}1≤`≤L via the refinement equations

ψ̂`(AT ξ) = m`(ξ) ϕ̂(ξ), 1 ≤ ` ≤ L.

Given a low-pass filter, m0, there are two conditions on the high-pass filters that
will be useful below, namely,

(3.1)
L∑
`=0

|m`(ξ)|2 = 1, a.e. ξ ∈ Td,

and

(3.2)
L∑
`=0

|m`(ξ + (AT )−1ϑs)|2 = δ0,s, a.e.ξ ∈ Td.

Observe that (3.2) implies (3.1). It will be seen below how these assumptions on the
high-pass filters will lead to two different reconstruction formulas for fundamental
subspaces of a given MRA in terms of appropriate co-affine systems.

Associated with an MRA {Vj}j∈Z, the multiresolution approximation operators
Pj are defined by

(3.3) Pjf =
∑
k∈Zd
〈f,DjTkϕ〉DjTkϕ

for f ∈ L2(Rd) and j ∈ Z. The operator Pj is actually the orthogonal projection
onto Vj , since ϕ is a scaling function for the MRA.

One may also construct multiresolution operators using the co-affine structure.
Let P ∗j and Q∗j , respectively, be the co-affine approximation and detail operators
at the scale j ∈ Z. For f ∈ L2(Rd) these operators are given by

(3.4) P ∗j f :=
∑
k∈Zd
〈f, ϕ∗j,k〉ϕ∗j,k and Q∗jf :=

L∑
`=1

∑
k∈Zd
〈f, ψ∗`;j,k〉ψ∗`;j,k,
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where ψ∗`;j,k := c`;jTkD
jψ` and ϕ∗j,k = TkD

jϕ. For j ≤ 0 these operators resemble
the analogous multiresolution operators for the refinable quasi-affine systems as
defined in [Jo] and, through this association, it is easy to see that P ∗j and Q∗j
are bounded when ϕ is a scaling function for an MRA, see, e.g., Proposition 6 of
[Jo]. The following lemma from [Jo] summarizes the key properties of the co-affine
multiresolution operators.

Lemma 3.2. [Jo] Let ϕ and Ψ as above and suppose that the coefficient sequence
associated to X∗(Ψ, c) is such that c`;j = |detA|

j
2 , 1 ≤ ` ≤ L, j < 0.

(a) For each f ∈ L2(Rd), ‖P ∗j f‖ → 0 as j → −∞.
(b) If the filters m0, . . . ,mL satisfy (3.1), then P ∗j +Q∗j = P ∗j+1, j < 0.
(c) If the filters m0, . . . ,mL satisfy (3.2) and c`;0 = 1, 1 ≤ ` ≤ L, then

P ∗0 +Q∗0 = P1, where, as above, P1 is the orthogonal projection onto V1.

Remark 3.3. The conditions on {c`;j}`,j in Lemma 3.2 owe some explanation.
Notice that Lemma 3.2 (b) depends only on {c`;j}, j < 0, while Lemma 3.2 (c)
additionally employs the coefficients {c`;0}. These normalizations are borrowed
from the quasi-affine structure and, moreover, the properties presented in Lemma
3.2 are essentially a restatement of the analogous properties of quasi-affine systems
(see [Jo]).

The next proposition shows how one may decompose V0 using a truncated co-
affine system under the fairly weak filter condition (3.1).

Proposition 3.4. Let ϕ and Ψ as above and suppose that c = {c`;j}j∈Z is
defined by

c`;j =

{
0, j ≥ 0
|detA|

j
2 , j < 0.

If the filters m1, . . . ,mL satisfy (3.1), then the collection P0

(
X∗(Ψ, c)

)
is a Parseval

frame for V0, i.e., for each f ∈ V0,

(3.5)
L∑
`=1

∑
j∈Z

∑
k∈Zd

|〈f, ψ∗`;j,k〉|2 = ‖f‖2.

Proof. Applying Lemma 3.2 (b) one finds that for f ∈ V0,

f = P0f = lim
J→∞

−1∑
j=−J

L∑
`=1

∑
k∈Zd
〈f, ψ∗`;j,k〉ψ∗`;j,k,

where the limit converges in L2(Rd). By taking inner products with f on each side
of this equation it follows that

‖f‖2 = lim
J→∞

L∑
`=1

−1∑
j=−J

∑
k∈Zd

|〈f, ψ∗`;j,k〉|2 =
∑
j<0

L∑
`=1

∑
k∈Zd

|〈f, ψ∗`;j,k〉|2.

Because c`;j = 0 whenever j ≥ 0, (3.5) now follows. Finally, that (3.5) is equivalent
to P0

(
X∗(Ψ, c)

)
being a Parseval frame for V0 follows from the fact that P0f = f

for f ∈ V0. �
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Remark 3.5. One must include the projection P0 in the statement of Propo-
sition 3.4 because, even after truncation, the collection X∗(Ψ, c) is not necessarily
contained in V0.

By additionally imposing the filter conditions (3.2) one may marginally increase
the utility of co-affine systems by truncating the system at j = 1 rather than j = 0.

Proposition 3.6. Let ϕ and Ψ as above and suppose that c = {c`;j}j∈Z is
defined by

c`;j =

{
0, j > 0
|detA|

j
2 , j ≤ 0.

If the filters m1, . . . ,mL satisfy (3.2), then the collection P1

(
X∗(Ψ, c)

)
is a Parseval

frame for V1.

Proof. The proof follows that of Proposition 3.4, except in this case one may
also appeal to Lemma 3.2 (c). �

Remark 3.7. For the sake of simplicity this discussion has been limited to the
context of MRAs, but one could prove results similar to Propositions 3.4 and 3.6
for properly defined dual systems in which separate filters were used for analysis
and synthesis, e.g., biorthogonal wavelets.

Example 3.8. Again consider the Shannon wavelet of Example 3.1. By defining
m0(ξ) by

m0(ξ) =

{
1, 0 ≤ |ξ| ≤ 1

4

0, 1
4 < |ξ| <

1
2 .

and m1(ξ) by

m1(ξ) =

{
0, 0 ≤ |ξ| ≤ 1

4

e2πiξ, 1
4 < |ξ| <

1
2 .

one can verify the refinement equations ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ) and ψ̂(2ξ) = m1(ξ)ϕ̂(ξ).
Moreover, the filter equations (3.2) are satisfied and, thus, Proposition 3.6 applies.
In this case the collection {2jψ(2j(x − k)}j≤0,k∈Zd is itself a Parseval frame for
V1 =

{
f ∈ L2(R) : supp(f) ⊆ [−1, 1]

}
. The projection P1 is unnecessary because of

the fact that V1 is band-limited and, hence, shift-invariant under all Rd translations.

Propositions 3.4 and 3.6 indicate that truncated co-affine systems may provide
stable reconstruction formulas on useful subspaces of L2(Rd), admitting frame-like
inequalities on core subspaces of a given MRA. One deficit of these results is that
the elements of X∗(Ψ, c) for scales j ≥ 1 are ignored. In the next section, this
problem will be approached from another angle, where necessary conditions will be
considered for a co-affine system to admit a frame-type inequality on band-limited
subspaces of L2(Rd). The goal is to quantify the contribution of the positive scales.

4. Band-limited subspaces spanned by co-affine systems

Example 3.8 provides motivation for understanding necessary conditions under
which frame inequalities (or equalities) of the sort (3.5) may hold for a given co-
affine system on a band-limited subspace of L2(Rd). For Ω ∈ R+, let BΩ be the
band-limited subspace

BΩ =
{
f ∈ L2(Rd) : supp(f̂) ⊆ [−Ω,Ω]d

}
.



CO-AFFINE SYSTEMS IN R
d 9

Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rd) and c = {c`;j}1≤`≤L,j∈Z be such that X∗(Ψ, c) is a
Bessel system with bound B2 relative to an expanding dilation matrix A ∈ GLd(R).
Suppose further that for all f ∈ BΩ one has

B1‖f‖2 ≤
L∑
`=1

∑
j,k∈Z

∣∣〈f, ψ∗`;j,k〉∣∣2.
It follows from Lemma 2.1 that

(4.1)
∑
j∈Z

|c`;j |2 |detA|j
∣∣ψ̂((AT )jξ

)∣∣2 ≤ B2, a.e. ξ ∈ Rd

and

(4.2)
∑
j∈Z

|c`;j |2 |detA|j
∣∣ψ̂((AT )jξ

)∣∣2 ≥ B1, a.e. ξ ∈ [−Ω,Ω]d.

The main idea behind Theorem 2.3 was to contradict (4.2) by integrating the in-
equality over a carefully chosen set E. In particular, the argument hinged on the
fact that the dilates of E have finite overlap, i.e., AjE ∩E = ∅ for sufficiently large
integers j. In order to apply this argument to the current problem one must addi-
tionally assume that E be contained in [−Ω,Ω]. The result of these observations is
the following proposition.

Proposition 4.1. Suppose that X∗(Ψ, c) is a Bessel system with bound B2 > 0
relative to an expanding dilation matrix A ∈ GLd(R). Suppose further that there
exists 0 < B1 < B2 such that for each f ∈ BΩ,

B1‖f‖2 ≤
L∑
`=1

∑
j,k∈Z

∣∣〈f, ψ∗`;j,k〉∣∣2.
If E ⊆ [−Ω,Ω] and AjE ∩ E = ∅ for each integer j ≥ J , then, necessarily,

(4.3) |E|B1 ≤ (2J − 1)B2 L,

where |E| is the Lebesgue measure of E ⊂ Rd.

As an application of Proposition 4.1 the situation of the Shannon wavelet will
be reexamined under the umbrella of all dyadic orthonormal wavelets for L2(R).

Corollary 4.2. Let ψ ∈ L2(R) be a dyadic orthonormal wavelet and fix c =
{cj}j∈Z so that cj = 1 if j > 0 and cj = 2

j
2 if j ≤ 0. Then X∗(ψ, c) does not satisfy

Parseval’s identity on any subspace BΩ, Ω > 1.

Proof. In the terminology of Proposition 4.1, L = 1 and B1 = B2 = 1. Two
separate cases will be considered: Ω ≥ 2 and 1 < Ω < 2. Case 1: Ω ≥ 2. Letting
E = [−2,−1]∪ [1, 2], one has that E ⊂ [−Ω,Ω] as well as the fact that 2jE ∩E = ∅
whenever j ≥ 1 (j an integer). Hence, J = 1 and |E| = 2. The necessary condition
(4.3) then becomes 2 ≤ 1, a contradiction.

Case 2: 1 < Ω < 2. Let Ω = 1 + t, where 0 < t < 1. Suppose by way of
contradiction that X∗(ψ, c) does yield Parseval’s identity on BΩ. Let E = [−(1 +
t),− 1+t

2 ] ∪ [ 1+t
2 , 1 + t]. The sets 2jE, j ∈ Z, are pairwise disjoint (J=1) and, thus,

Proposition 4.1 implies

|E| = 2
t+ 1

2
= t+ 1 ≤ 1,

which is a contradiction since 0 < t < 1. �
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In the case of the co-affine system generated by the Shannon wavelet, Corollary
4.2 implies that Parseval’s identity cannot hold on any band-limited subspace BΩ,
Ω > 1. Thus, the result of Proposition 3.6 is in some sense sharp.
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