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Abstract. This note considers the problem of sparse recovery in Rn from linear mea-
surements associated with a discrete cosine transform. The main theorem shows that an
s-sparse vector in Rn can be recovered from the first 2s coefficients of its discrete cosine
transform. This theorem is a real-valued analog of a result in [1] concerned with sparse
recovery in Cn based on linear measurements via the discrete Fourier transform.

1. Introduction

This article is concerned with the problem of recovering a sparse vector x ∈ RN from its
linear measurements, y = Ax ∈ Rm, associated with a measurement matrix A ∈ Rm×N .
It will be convenient to establish some notation (mostly following that of [1]) surrounding
vectors in RN and their sparsity.

Let [N ] represent the index set {0, 1, 2, . . . , N − 1} and define the support of a vector
x = (x(0), x(1), . . . , x(N − 1)) ∈ RN by

supp(x) := {j ∈ [N ] : x(j) 6= 0}.

The sparsity of a vector in RN is measured in terms of the cardinality of its support set
and for x ∈ RN will be denoted by

‖x‖0 := card(supp(x)),

despite the fact that this definition does not produce a proper norm. A vector x ∈ RN is
said to be s-sparse if ‖x‖0 ≤ s.

The starting point for the present work is Theorem 2.15 of [1], which describes a procedure
for the recovery of an s-sparse vector in CN from the first two 2s coefficients of its discrete
Fourier transform. The discrete Fourier transform of x ∈ CN will be denoted by x̂ and is
defined by

x̂(j) =
N−1∑
k=0

x(k)e−2πijk/N , 0 ≤ j ≤ N − 1.

The DFT-based sparse recovery procedure described in [1] essentially involves two steps.
First, the support set of the s-sparse vector is determined from a matrix equation involv-
ing the discrete Fourier coefficients. Second, the nonzero elements of the s-sparse vector
are determined from the 2s linear measurements, x̂(0), x̂(1), . . . , x̂(2s − 1). The statement
presented here focuses on the first step, which relies on the special structure of the discrete
Fourier transform.

Theorem 1 (See Theorem 2.15 of [1]). Let x ∈ CN be s-sparse with 2s ≤ N . Suppose that
q ∈ CN is such that its discrete Fourier transform satisfies q̂(0) = 1, q̂(j) = 0 for j > s,

1991 Mathematics Subject Classification. 94A12, 41A60, 42C15.
Key words and phrases. sparse recovery, discrete cosine transform, compressive sensing.

1



2 BENJAMIN BARROS AND BRODY DYLAN JOHNSON

and 
x̂(s− 1) x̂(s− 2) · · · x̂(0)
x̂(s) x̂(s− 1) · · · x̂(1)

...
...

. . .
...

x̂(2s− 2) x̂(2s− 3) · · · x̂(s− 1)



q̂(1)
q̂(2)

...
q̂(s)

 = −


x̂(s)

x̂(s+ 1)
...

x̂(2s− 1)

 ,
where x̂ denotes the discrete Fourier transform of x. Then,

supp(x) ⊆ {j ∈ [N ] : q(j) = 0}.

The main result of this article is a real-valued version of Theorem 1 based on the discrete
cosine transform, which will be developed in the remaining sections. Section 2 is devoted to
a brief review of the discrete cosine transform, including a convolution formula which plays
a critical role in the proof of the main result. The main result will be presented and proven
in Section 3.

2. Discrete Cosine Transform

The goal of this section is to introduce a specific version of the discrete cosine transform
(DCT) that will be used in the next section to prove a real-valued counterpart to Theorem
1. A convolution formula for the DCT will be reviewed, following the treatment of Martucci
in his systematic study of convolution formulas for discrete sine and cosine transforms [2].

The discrete cosine transform of x ∈ RN will be denoted by x̂ ∈ RN and is defined by

x̂(j) = x(0) + 2
N−1∑
k=1

x(k) cos

(
2π

2N − 1
jk

)
for 0 ≤ j ≤ N−1. The distinction between the DCT and DFT will be made clear in context.
The DCT can be implemented via matrix multiplication by C1 ∈ RN×N with entries

(C1)jk =

cos
(

2π
2N−1jk

)
k = 0

2 cos
(

2π
2N−1jk

)
1 ≤ k ≤ N − 1,

where 0 ≤ j, k ≤ N−1. This variety of the DCT is known in the literature as the odd version
of the DCT-I and its inverse transform corresponds to multiplication by (2N − 1)−1C1.

Loosely speaking, the DCT of x ∈ RN can be realized as the DFT of a symmetric
extension of x to R2N−1. The convolution formula for the DFT in R2N−1 then induces a
convolution formula for the DCT in RN . Towards this end, denote the symmetric extension
of x ∈ RN to R2N−1 by X, which is defined by

X(n) =

{
x(n) 0 ≤ n ≤ N − 1

x(2N − 1− n) N ≤ n ≤ 2N − 2.

It is often convenient to interpret the indices modulo 2N − 1. This extension imposes a
whole-index symmetry at n = 0 in that X(−n) = X(n) for n ∈ Z. Similarly, the extension
forces a half-index symmetry at n = N − 1

2 in that X(n) = X(2N − 1−n). Notice that the

average of the two indices in this latter identity is N − 1
2 . As mentioned above, the DFT of
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X is related to the DCT of x:

X̂(m) =
2N−2∑
n=0

X(n)e−
2πi

2N−1
mn

= x(0) +
N−1∑
n=1

X(n)e−
2πi

2N−1
mn +

2N−2∑
n=N

X(2N − 1− n)e−
2πi

2N−1
mn

= x(0) +

N−1∑
n=1

x(n)2 cos

(
2π

2N − 1
mn

)
= x̂(m).

The symmetric convolution of X,Y ∈ R2N−1 is denoted by X ∗Y ∈ R2N−1 and is defined
by

(X ∗ Y )(n) =

2N−2∑
k=0

X(k)Y (n− k),

where the indices should be interpreted modulo 2N − 1. It is straightforward to verify that
if X,Y ∈ R2N−1 are symmetric with respect to n = 0 and n = N − 1

2 , then X ∗ Y will
be as well. Hence, it becomes possible to define a convolution operation on x, y ∈ Rn by
restricting the symmetric convolution of X and Y to the indices 0, 1, . . . , N −1; namely, for
x, y ∈ RN , let x ∗ y ∈ RN be defined by

(x ∗ y)(n) = (X ∗ Y )(n), 0 ≤ n ≤ N − 1,

where X and Y are the symmetric extensions of x and y, respectively. The final piece of
the puzzle comes from the usual convolution formula of the DFT. If 0 ≤ m ≤ N − 1, then

(x̂ ∗ y)(m) = (X̂ ∗ Y )(m)

=
2N−1∑
n=0

(X ∗ Y )(n)e−
2πimn
2N−1

=
2N−2∑
n=0

2N−2∑
k=0

X(k)Y (n− k)e−
2πimn
2N−1 e−

2πim
2N−1

(−k+k)

=

2N−2∑
k=0

X(k)e−
2πimk
2N−1

2N−2∑
n=0

Y (n− k)e−
2πim(n−k)

2N−1

= X̂(m) Ŷ (m)

= x̂(m) ŷ(m).

Note that, in this calculation, ˆ corresponds to the DFT in R2N−1 and the DCT in RN .

3. Sparse Recovery via the Discrete Cosine Transform

The convolution formula of the last section will now be put to use in the development of
a sparse recovery algorithm based on the DCT. The success of this algorithm will rely on a
uniqueness result for the DCT that generalizes an analogous property of the DFT.

Let x ∈ RN be an s-sparse vector and suppose that the first s discrete Fourier coefficients
of x vanish, i.e., x̂(m) = 0 for 0 ≤ m ≤ s − 1. Suppose further that the support of x is
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contained in S = {n1, n2, . . . , ns} ⊂ [N ], so that
x̂(0)
x̂(1)

...
x̂(s− 1)

 =


1 1 · · · 1

e−
2πin1
N−1 e−

2πin2
N−1 · · · e−

2πins
N−1

...
...

. . .
...

e−
2πi(s−1)n1

N−1 e−
2πi(s−1)n2

N−1 · · · e−
2πi(s−1)ns

N−1



xn1

xn2

...
xns

 .
The s × s matrix in this equation is Vandermonde and has a nonzero determinant, so it
follows that xnk = 0, 1 ≤ k ≤ s. In other words, if the first s discrete Fourier coefficients of
an s-sparse vector vanish, then the s-sparse vector is identically zero.

The following lemma will lead to a similar result for the DCT of s-sparse vectors and
corresponds to an exercise on double alternants from Muir’s treatise on determinants [3].

Lemma 2. Let x1, x2, . . . , xs be real numbers. Then,∣∣∣∣∣∣∣∣∣
1 · · · 1

cosx1 · · · cosxs
...

. . .
...

cos ((s− 1)x1) · · · cos ((s− 1)xs)

∣∣∣∣∣∣∣∣∣ = 2
(s−1)(s−2)

2

∣∣∣∣∣∣∣∣∣
1 · · · 1

cosx1 · · · cosxs
...

. . .
...

coss−1 x1 · · · coss−1 xs

∣∣∣∣∣∣∣∣∣ .
Proof. The basic idea is to convert products of cosines into sums using the angle addition
formula,

cosA cosB =
1

2
(cos (A+B) + cos (A−B)) .

Notice, for example, that

cos2 x = cosx cosx =
1

2
(cos 2x+ 1)

and, after applying the angle addition to each term in this last sum, one finds that

cos3 x =
1

4
(cos 3x+ 3 cosx).

In general, cosn x can be written as a linear combination of cos kx, 0 ≤ k ≤ n, as follows,

cosn x = 2−(n−1) (αn,0 + αn,1 cosx+ · · ·+ αn,n cosnx) ,

where αn,n = 1, αn,n−1 = 0, and the remaining coefficients satisfy the recursive formulas

αn,0 = αn−1,1

αn,1 = 2αn−1,0 + αn−1,2

αn,k = αn−1,k−1 + αn−1,k+1, 2 ≤ k ≤ n− 2.

Thus, the rows of the matrix of powers in cosine can be written as linear combinations
of the rows of the matrix of frequencies of cosine. Only the highest frequency in each row
contributes to the determinant due to the linear dependence of the lower frequency terms on
the previous rows. Finally, each frequency n greater than or equal to 2 introduces a factor

of 2n−1 into the determinant, leading to an overall factor of 2
(s−2)(s−1)

2 , as claimed. �

Corollary 3. If x ∈ RN is s-sparse and the discrete cosine coefficients x̂(0), x̂(1), . . .,
x̂(s− 1) all vanish, then x ≡ 0.

Proof. Let x ∈ RN be an s-sparse vector for which the first s discrete cosine coefficients of
x vanish, i.e., x̂(m) = 0 for 0 ≤ m ≤ s − 1. Assume that the support of x is contained in
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S = {n1, n2, . . . , ns} ⊂ [N ], where n1 < n2 < · · · < ns. In order to apply Lemma 2, define
xk, 1 ≤ k ≤ s, by

xk =
2πnk

(2N − 1)
,

which leads to the matrix equation
0
0
...
0

 =


2 2 · · · 2

2 cosx1 2 cosx2 · · · 2 cosx3
...

...
. . .

...
2 cos ((s− 1)x1) 2 cos ((s− 1)x2) · · · 2 cos ((s− 1)xs)



xn1

xn2

...
xns

 .
Note that the first column in the matrix must be multiplied by a factor of 1

2 if n1 = 0,
but this is not essential to the argument. Because cosxk 6= cosxk′ when k 6= k′, Lemma 2
guarantees that the above matrix is invertible, forcing xnk = 0, 1 ≤ k ≤ s. �

This corollary is essential to the success of the main theorem, which states that the
support of an s-sparse vector can be determined from the first 2s coefficients of its discrete
cosine transform.

Theorem 4. Let x ∈ RN be s-sparse with 2s ≤ N . Suppose that q ∈ RN is such that its
discrete cosine transform satisfies q̂(0) = 1, q̂(j) = 0 for j > s, and

(1)



x̂(1) + x̂(1) x̂(2) + x̂(2) · · · x̂(s) + x̂(s)
x̂(0) + x̂(2) x̂(1) + x̂(3) · · · x̂(s− 1) + x̂(s + 1)
x̂(1) + x̂(3) x̂(0) + x̂(4) · · · x̂(s− 2) + x̂(s + 2)

...
...

...
x̂(s− 3) + x̂(s− 1) x̂(s− 4) + x̂(s) · · · x̂(2) + x̂(2s− 2)
x̂(s− 2) + x̂(s) x̂(s− 3) + x̂(s + 1) · · · x̂(1) + x̂(2s− 1)




q̂(1)
q̂(2)

...
q̂(s)

 = −


x̂(0)
x̂(1)

...
x̂(s− 1)

 ,

where x̂ denotes the discrete cosine transform of x. Then,

supp(x) ⊆ {j ∈ [N ] : q(j) = 0}.

Proof. The proof is an adaptation of the proof of Theorem 1, as presented in [1]. Let S
represent the support of x and define p ∈ RN by

p(j) =
∏
k∈S

[
1− sec

(
2π

2N − 1
k

)
cos

(
2π

2N − 1
j

)]
.

The reader can verify that cos
(

2π
2N−1j

)
can never vanish for k ∈ S, so p is well-defined.

Moreover, by construction, p is a polynomial in cos
(

2π
2N−1 t

)
of degree at most s and satisfies

p(j) = 0 for j ∈ S.
Let x̂ and p̂ represent the discrete cosine transforms of x and p, respectively. Notice

that p̂(m) = 0 for m > s. Recall that x and p are, up to a scalar multiple, equal to the
discrete cosine transforms of x̂ and p̂, so it is also possible to apply the convolution formula
of Section 2 to x̂ and p̂. Because p · x ≡ 0, it follows that x̂ ∗ p̂ ≡ 0, which leads to

(2) 0 =
2N−2∑
k=0

P̂ (k)X̂(m− k), 0 ≤ m ≤ 2N − 2,

where P̂ and X̂ denote the symmetric extensions of p̂ and x̂ to R2N−1. Using the symmetry
properties of P̂ and X̂, along with the fact that p̂(m) = 0 for m > s, equation (2) can be
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rewritten for 0 ≤ m ≤ s as

0 = P̂ (0)X̂(m) +

s∑
k=1

P̂ (k)X̂(m− k) +

2N−2∑
k=2N−s−1

P̂ (k)X̂(m− k)

= p̂(0)x̂(m) +

s∑
k=1

p̂(k)X̂(m− k) +

2N−2∑
k=2N−s−1

p̂(2N − 1− k)X̂(m− k)

= p̂(0)x̂(m) +

s∑
k=1

[
X̂(m− k) + X̂(m+ k)

]
p̂(k)

= p̂(0)x̂(m) +

m∑
k=1

[x̂(m− k) + x̂(m+ k)] p̂(k) +

s∑
k=m+1

[x̂(m− k) + x̂(m+ k)] p̂(k).

If this last expression is written in matrix form after dividing by p̂(0), one obtains equation
(1) for q := p/p̂(0). The zero set of q is the same as that of p and thus coincides with S.

Finally, suppose that q is any solution of (1) satisfying q̂(0) = 1 and q̂(m) = 0 for m > s.
The fact that x is s-sparse implies that q · x is s-sparse and (1) forces q̂ · x(m) = 0 for
0 ≤ m ≤ s− 1. Corollary 3 implies that q · x ≡ 0 and thus supp(x) ⊆ {j ∈ [N ] : q(j) = 0},
as claimed. Moreover, because q̂(m) = 0 for m > s, it follows that card({j ∈ [N ] : q(j) =
0} ≤ s. �
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