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Overview

Overview

The torus (circle) will be denotedT and identified with[0,1).

The termperiodic waveletwas originally applied to an orthonormal
system forL2(T) obtained through the periodization of anL1-wavelet on
the line. (see, e.g., the texts of Meyer and Daubechies)
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Overview

Overview

The torus (circle) will be denotedT and identified with[0,1).

The termperiodic waveletwas originally applied to an orthonormal
system forL2(T) obtained through the periodization of anL1-wavelet on
the line. (see, e.g., the texts of Meyer and Daubechies)

In 1993, Chui & Mhaskar described a direct construction of MRAs in
L2(T) using trigonometric functions [1].

In 1994, Plonka & Tasche adapt shift-invariant theory to thetorus and
construct a more general notion of MRA [4]. (No explicit dilation
operation between scales.)

The goal of this talk is to explore another version of wavelettheory on
the torus which begins with explicit dilation and translation operators on
the torus.
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Preliminaries

Preliminary Definitions

Definition

An orthonormal waveletonR is a functionψ ∈ L2(R) such that the collection

X(ψ) = {DjTkψ : j, k ∈ Z}

is an orthonormal basis forL2(R).

Here,D andT are the unitary dilation and translation operators, i.e.,

Df (x) = 2
1
2 f (2x) Tf(x) = f (x− 1).
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Preliminaries

Motivation

Periodization:P : L1(R) → L1(T)

Pf(x) =
∑

k∈Z

f (x + k), x ∈ T.
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Motivation

Periodization:P : L1(R) → L1(T)

Pf(x) =
∑

k∈Z

f (x + k), x ∈ T.

Observe that

PDf(x) = 2−
1
2

∑

k∈Z

f (2−1(x+ k)) = 2−
1
2
[
Pf(2−1x) + Pf(2−1x + 2−1)

]
.
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Preliminaries

Motivation

Periodization:P : L1(R) → L1(T)

Pf(x) =
∑

k∈Z

f (x + k), x ∈ T.

Observe that

PDf(x) = 2−
1
2

∑

k∈Z

f (2−1(x+ k)) = 2−
1
2
[
Pf(2−1x) + Pf(2−1x + 2−1)

]
.

The above calculation motivates a notion of dilation for thetorus.
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Preliminaries

Dilation and Translation onT

Dilation: D : L2(T) → L2(T)

Df (x) = 2−1 (
f (2−1x) + f (2−1x + 2−1)

)
, x ∈ T.

This definition leads toPDf =
√

2DPf .
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√

2DPf .

Translation:TN : L2(T) → T

TNf (x) = f (x− N−1), x ∈ T.

The indexN will be referred to as theorder of the translation operation.
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Preliminaries

Dilation and Translation onT

Dilation: D : L2(T) → L2(T)

Df (x) = 2−1 (
f (2−1x) + f (2−1x + 2−1)

)
, x ∈ T.

This definition leads toPDf =
√

2DPf .

Translation:TN : L2(T) → T

TNf (x) = f (x− N−1), x ∈ T.

The indexN will be referred to as theorder of the translation operation.

The dilation and translation operators satisfy:

T2
ND = DTN.

This corresponds toT2D−1 = D−1T on the line.
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Mathematical Background

Fourier Analysis onT, Z, andZN

L2(T):

f̂ (k) =

∫

T

f (x)e−2πikx dx, k ∈ Z
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Mathematical Background

Fourier Analysis onT, Z, andZN

L2(T):

f̂ (k) =

∫

T

f (x)e−2πikx dx, k ∈ Z

ℓ2(Z):

f̂ (ξ) =
∑

k∈Z

f (k)e−2πikξ , ξ ∈ T

GivenN ∈ N, ZN denotesZ/NZ.

ℓ(ZN):

FNf (n) = f̂ (n) =
1√
N

∑

k∈ZN

f (k)e−2πikn/N, n ∈ ZN
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Mathematical Background

Another Look at Dilation on the Torus

Proposition

For f ∈ L2(T), D̂f (k) = f̂ (2k), k ∈ Z.
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Another Look at Dilation on the Torus

Proposition

For f ∈ L2(T), D̂f (k) = f̂ (2k), k ∈ Z.

Remark

Some Observations:

Dilation on the torus performs adownsamplingof the Fourier
coefficients.
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Mathematical Background

Another Look at Dilation on the Torus

Proposition

For f ∈ L2(T), D̂f (k) = f̂ (2k), k ∈ Z.

Remark

Some Observations:

Dilation on the torus performs adownsamplingof the Fourier
coefficients.

Dilation on the torus is not invertible, hence MRAs on the torus will be
one-sided.

Dilation of a trigonometric polynomial will eventually result in a
constant function, i.e., iff is a trigonometric polynomial thenDjf = f̂ (0)
for sufficiently largej ∈ N.
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Mathematical Background

The Bracket Product

Definition

Thebracket product of order Nof two functionsf ,g ∈ L2(T) is the vector
[f̂ , ĝ]N ∈ ℓ(ZN) defined by

[f̂ , ĝ]N(n) = N
∑

k∈Z

f̂ (n + kN) ĝ(n + kN), 0 ≤ n ≤ N − 1.
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The Bracket Product

Definition

Thebracket product of order Nof two functionsf ,g ∈ L2(T) is the vector
[f̂ , ĝ]N ∈ ℓ(ZN) defined by

[f̂ , ĝ]N(n) = N
∑

k∈Z

f̂ (n + kN) ĝ(n + kN), 0 ≤ n ≤ N − 1.

Proposition

For all f ,g ∈ L2(T),

FN

(
{〈f ,Tn

Ng〉}N−1
n=0

)
=

1√
N

[f̂ , ĝ]N.
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Mathematical Background

Shift-Invariant Spaces

Definition

Theprincipal shift-invariant space of order Ngenerated byφ ∈ L2(T) is the
finite-dimensional spaceVN(φ) = spanXN(φ), where

XN(Φ) = {Tn
Nφ : 0 ≤ n ≤ N − 1}.
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Mathematical Background

Shift-Invariant Spaces

Definition

Theprincipal shift-invariant space of order Ngenerated byφ ∈ L2(T) is the
finite-dimensional spaceVN(φ) = spanXN(φ), where

XN(Φ) = {Tn
Nφ : 0 ≤ n ≤ N − 1}.

Proposition

The collection XN(φ) forms an orthonormal basis for VN(Φ) if and only if

[φ̂, φ̂]N(n) = 1, n ∈ ZN.
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Multiresolution Analysis on T

Refinable functions onT

Definition

A functionφ ∈ L2(T) is said to berefinable of order N(N ∈ N) if there exists
amask c∈ ℓ(ZN) such that

Dφ =
∑

n∈ZN

c(n)Tn
Nφ. (1)
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Multiresolution Analysis on T

Refinable functions onT

Definition

A functionφ ∈ L2(T) is said to berefinable of order N(N ∈ N) if there exists
amask c∈ ℓ(ZN) such that

Dφ =
∑

n∈ZN

c(n)Tn
Nφ. (1)

Lemma

Suppose thatφ ∈ L2(T) is refinable of order N, then there exists m∈ ℓ(ZN)
such that

φ̂(2k) = m(k)φ̂(k), k ∈ Z. (2)
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Multiresolution Analysis on T

Multiresolution Analysis

Definition

A multiresolution analysis (MRA) of order N= 2J (J ∈ N) is a collection of
closed subspaces ofL2(T), {Vj}J

j=0, satisfying
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ii) For 0≤ j ≤ J − 1, f ∈ Vj if and only if Df ∈ Vj+1;
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iv) There exists ascaling functionϕ ∈ V0 such thatX2−jN(2
j
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Multiresolution Analysis on T

Multiresolution Analysis

Definition

A multiresolution analysis (MRA) of order N= 2J (J ∈ N) is a collection of
closed subspaces ofL2(T), {Vj}J

j=0, satisfying

i) For 0≤ j ≤ J − 1, Vj+1 ⊆ Vj;

ii) For 0≤ j ≤ J − 1, f ∈ Vj if and only if Df ∈ Vj+1;

iii) VJ is the subspace of constant functions;

iv) There exists ascaling functionϕ ∈ V0 such thatX2−jN(2
j
2 Djϕ) is an

orthonormal basis forVj.

Remark

Notice that MRA properties i, ii, and iv imply that a scaling functionϕ is
necessarily refinable of orderN. Moreover, it follows from MRA properties
iii and iv thatDJϕ must be constant and nonzero, implying thatϕ̂(0) 6= 0.
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Multiresolution Analysis on T

Some Observations

Remark

If ϕ ∈ L2(T) is refinable of orderN = 2J (J ∈ N) with filter m0 ∈ ℓ(ZN) then

Dj+1ϕ =
∑

n∈Z2−j N




2j
−1∑

ℓ=0

c(n + ℓ2−jN)



 Tn
2−jNDjϕ,

i.e.,Djϕ is refinable of order 2−jN.
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Multiresolution Analysis on T

Some Observations

Remark

If ϕ ∈ L2(T) is refinable of orderN = 2J (J ∈ N) with filter m0 ∈ ℓ(ZN) then

Dj+1ϕ =
∑

n∈Z2−j N




2j
−1∑

ℓ=0

c(n + ℓ2−jN)



 Tn
2−jNDjϕ,

i.e.,Djϕ is refinable of order 2−jN.

It is not difficult to show thatm0(2j ·) is a low-pass filter forDjϕ.
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Multiresolution Analysis on T

A Characterization of Scaling Functions

Theorem

Supposeϕ ∈ L2(T) is a refinable function of order N= 2J (J ∈ N) with
ϕ̂(0) 6= 0. Thenϕ is the scaling function of an MRA of order N if and only if

|m0(n)|2 + |m0(n + 2−1N)|2 = 1, n ∈ ZN, (3)

and
[ϕ̂, ϕ̂]N(n) = 1, n ∈ ZN. (4)
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Multiresolution Analysis on T

Existence of Scaling Functions

Theorem

Fix N = 2J, J ∈ N. Suppose m0 ∈ ℓ(ZN) satisfies(3) with m0(0) = 1. Then
m0 is the low-pass filter of a trigonometric polynomial scalingfunction of
order N.

Brody Dylan Johnson (St. Louis University) Another look at periodic wavelets 16 May 2009 14 / 31



Multiresolution Analysis on T

Existence of Scaling Functions

Theorem

Fix N = 2J, J ∈ N. Suppose m0 ∈ ℓ(ZN) satisfies(3) with m0(0) = 1. Then
m0 is the low-pass filter of a trigonometric polynomial scalingfunction of
order N.

The construction:

1. Let ϕ̂(0) = 1√
N
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Multiresolution Analysis on T

Existence of Scaling Functions

Theorem

Fix N = 2J, J ∈ N. Suppose m0 ∈ ℓ(ZN) satisfies(3) with m0(0) = 1. Then
m0 is the low-pass filter of a trigonometric polynomial scalingfunction of
order N.

The construction:

1. Let ϕ̂(0) = 1√
N

.

2. For−2J−2 ≤ k ≤ 2J−2 − 1, let ϕ̂(2k + 1) = 1√
N

.
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Multiresolution Analysis on T

Existence of Scaling Functions

Theorem

Fix N = 2J, J ∈ N. Suppose m0 ∈ ℓ(ZN) satisfies(3) with m0(0) = 1. Then
m0 is the low-pass filter of a trigonometric polynomial scalingfunction of
order N.

The construction:

1. Let ϕ̂(0) = 1√
N

.

2. For−2J−2 ≤ k ≤ 2J−2 − 1, let ϕ̂(2k + 1) = 1√
N

.

3. For−2J−2 ≤ k ≤ 2J−2 − 1 and 1≤ j ≤ J − 1, defineϕ̂(2j(2k + 1))
according to (4.2), i.e.,

ϕ̂(2j(2k + 1)) = m0(2
j−1(2k + 1)) ϕ̂(2j−1(2k + 1)).
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Multiresolution Analysis on T

Borrowing from the Line

Proposition

Suppose c∈ ℓ2(Z) is an absolutely summable sequence whose Fourier
transform m= ĉ satisfies

|m(ξ)|2 + |m(ξ + 2−1)|2 = 1, ξ ∈ T,

If c0 ∈ ℓ(ZN) is defined by

c0(n) =
√

N
∑

k∈Z

c(n + kN), n ∈ ZN,

where N= 2J (J ∈ N), then m0 =
√

Nĉ0 satisfies(3).
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Multiresolution Analysis on T

The Haar Scaling Function

Example

Fix N = 8 and letc ∈ ℓ(ZN) be given byc(0) = c(1) = 1
2 with c(n) = 0 for

n 6= 0,1. The low-pass filterm0 ∈ ℓ(ZN) is given by

m0(n) = e−πin/8 cos(nπ/8), n ∈ Z8.
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Multiresolution Analysis on T

The Haar Scaling Function

ϕ̂(−3) =
1√
8

−→ ϕ̂(−6) = ϕ̂(−3)m0(5) −→ ϕ̂(−12) = ϕ̂(−6)m0(5)m0(2),

ϕ̂(−1) =
1√
8

−→ ϕ̂(−2) = ϕ̂(−1)m0(7) −→ ϕ̂(−4) = ϕ̂(−2)m0(7)m0(6),

ϕ̂(0) =
1√
8
,

ϕ̂(1) =
1√
8

−→ ϕ̂(2) = ϕ̂(1)m0(1) −→ ϕ̂(4) = ϕ̂(1)m0(1)m0(2),

ϕ̂(3) =
1√
8

−→ ϕ̂(6) = ϕ̂(3)m0(3) −→ ϕ̂(12) = ϕ̂(6)m0(3)m0(6).

Each “strand” terminates becausem0(4) = 0.
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Multiresolution Analysis on T

The Haar Scaling Function (N = 64)
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MRA wavelets on T

Orthonormal Wavelets

Definition

Let {Vj}J
j=0 be an MRA of orderN = 2J (J ∈ N). A functionψ ∈ V0 is a

waveletfor the MRA if the collection

{2
j
2 Tn

2−jNDj−1ψ : 1 ≤ j ≤ J, n ∈ Z2−jN}

is an orthonormal basis forV0 ⊖ VJ.
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MRA wavelets on T

Orthonormal Wavelets

Definition

Let {Vj}J
j=0 be an MRA of orderN = 2J (J ∈ N). A functionψ ∈ V0 is a

waveletfor the MRA if the collection

{2
j
2 Tn

2−jNDj−1ψ : 1 ≤ j ≤ J, n ∈ Z2−jN}

is an orthonormal basis forV0 ⊖ VJ.

This construction rests on a decomposition ofVj asVj = Vj+1 ⊕ Wj+1,
0 ≤ j ≤ J − 1, whereWj is of the form

Wj+1 = V2−(j+1)N(Djψ).
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MRA wavelets on T

The High-Pass Filter

Theorem

Suppose thatϕ is the scaling function of an MRA of order N= 2J (J ∈ N)
and defineψ ∈ V0 by

ψ̂(k) = m1(k)ϕ̂(k), k ∈ Z,

where m1 ∈ ℓ(ZN) is chosen as

m1(n) = m0(n + 2−1N) e−2πin/N, n ∈ ZN. (5)

Thenψ is a wavelet for the MRA.
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MRA wavelets on T

The Haar Wavelet (N = 64)
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MRA wavelets on T

Approximation inL2(T)

Lemma

Suppose thatϕ is a scaling function for an MRA of order N= 2J (J ∈ N).
The orthogonal projection onto V0 = VN(ϕ) is described by

P̂f(k) = [f̂ , ϕ̂]N(k)ϕ̂(k), k ∈ Z.
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MRA wavelets on T

Approximation of Trigonometric Monomials

Suppose thatf is a trigonometric monomial, i.e.,f̂ (k) = δrk for somer ∈ Z,
then[f̂ , ϕ̂]N is given by

[f̂ , ϕ̂]N(n) =

{
0, n 6≡ r,

Nϕ̂(r), n ≡ r.
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MRA wavelets on T

Approximation of Trigonometric Monomials

Suppose thatf is a trigonometric monomial, i.e.,f̂ (k) = δrk for somer ∈ Z,
then[f̂ , ϕ̂]N is given by

[f̂ , ϕ̂]N(n) =

{
0, n 6≡ r,

Nϕ̂(r), n ≡ r.

The error of approximation is thus given by

‖Pf − f‖2 =
(
N|ϕ̂(r)|2 − 1

)2
+

∑

k6=0

|Nϕ̂(r)ϕ̂(r + kN)|2,
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MRA wavelets on T

Approximation of Trigonometric Monomials

BecauseXN(ϕ) is an orthonormal basis,

1 = [ϕ̂, ϕ̂]N(r) = N|ϕ̂(r)|2 + N
∑

k6=0

|ϕ̂(r + kN)|2.
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MRA wavelets on T

Approximation of Trigonometric Monomials

BecauseXN(ϕ) is an orthonormal basis,

1 = [ϕ̂, ϕ̂]N(r) = N|ϕ̂(r)|2 + N
∑

k6=0

|ϕ̂(r + kN)|2.

Thus, the approximation error can be rewritten as

‖Pf − f‖2 = 1− N|ϕ̂(r)|2.
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MRA wavelets on T

Approximation Error

Definition

The error of approximation, denotedEN(k), is defined as

EN(k) =
(
1− N|ϕ̂(k)|2

) 1
2 , k ∈ Z.

Hence,EN(k) represents the approximation error‖Pf − f‖ wheref = e2πikx

andP is the orthogonal projection ontoVN(ϕ).
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An Approximation Result

If m(ξ) is a continuous function on the torus withm(0) = 1 and satisfying (3),
one can define a scaling function associated tomof orderN = 2J for each
J > 0.
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MRA wavelets on T

An Approximation Result

If m(ξ) is a continuous function on the torus withm(0) = 1 and satisfying (3),
one can define a scaling function associated tomof orderN = 2J for each
J > 0.

Proposition

Fix r ∈ N andε > 0. Then there exists N= 2J (J ∈ N) such that EN(k) < ε
for |k| < r, whereϕ is constructed as above.
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The Shannon Scaling Function

Example

Let m0 ∈ ℓ(ZN) be defined by

m0(n) =






1, n< N
4 or n> 3N

4 ,
1√
2
, n = N

4 or n = 3N
4 ,

0, otherwise,

n ∈ ZN,

whereN = 2J for a natural numberJ > 2.
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The Shannon Scaling Function

Example

Let m0 ∈ ℓ(ZN) be defined by

m0(n) =






1, n< N
4 or n> 3N

4 ,
1√
2
, n = N

4 or n = 3N
4 ,

0, otherwise,

n ∈ ZN,

whereN = 2J for a natural numberJ > 2.
If ϕ is constructed as in Theorem 4.7, thenϕ̂(k) = 1√

N
whenever|k| < N

2 .

Hence,EN(k) is zero for|k| < N
2 .
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The Shannon Scaling Function (N = 64)
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The Shannon Wavelet (N = 64)
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Shannon Wavelet on the Line

Let Vj, j ∈ Z, be the collection of functions inL2(R) such that̂f is supported
inside 2j [−1

2,
1
2]. These sets form an MRA associated with

ϕ =
sin(πx)
πx

and ψ = −2
sin(2πx) + cos(πx)

π(2x + 1)
.
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