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Overview
Overview

The torus (circle) will be denotet and identified witHO, 1).

@ The termperiodic waveletvas originally applied to an orthonormal
system forL?(T) obtained through the periodization of Bh-wavelet on
the line. (see, e.g., the texts of Meyer and Daubechies)
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Overview
Overview

The torus (circle) will be denotet and identified witHO, 1).

@ The termperiodic waveletvas originally applied to an orthonormal
system forL?(T) obtained through the periodization of Bh-wavelet on
the line. (see, e.g., the texts of Meyer and Daubechies)

@ In 1993, Chui & Mhaskar described a direct construction of AdRn
L?(T) using trigonometric functions [1].

@ In 1994, Plonka & Tasche adapt shift-invariant theory tottras and
construct a more general notion of MRA [4]. (No explicit diitan
operation between scales.)

@ The goal of this talk is to explore another version of waviiebry on
the torus which begins with explicit dilation and trangatioperators on
the torus.
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Preliminaries

Preliminary Definitions

Definition

An orthonormal wavelebn R is a function € L2(R) such that the collectio
X(¢) = {DIT* - |,k € Z}

is an orthonormal basis fa?(R).

Here,D andT are the unitary dilation and translation operators, i.e.,

Df(x) = 22f(2x)  Tf(X) = f(x — 1).
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Preliminaries
Motivation

@ Periodization:P : LY(R) — LY(T)

Pf(X) = ) f(x+k), xeT.
kez
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Preliminaries
Motivation

@ Periodization:P : LY(R) — LY(T)

Pf(X) = ) f(x+k), xeT.
kez

o Observe that

PDf(x) =272 ) f(2 Y (x+k)) = 272 [Pf(271x) + Pf(2 2+ 271)] .
kez

@ The above calculation motivates a notion of dilation for tibris.
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Preliminaries

Dilation and Translation off

e Dilation: D : L?(T) — L?(T)
Df(x) =271 (f(2'x) +f(2x+271), xeT.

This definition leads t&@Df = /2DPf.
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e Translation:Ty : L3(T) — T
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The indexN will be referred to as therder of the translation operation.
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Preliminaries

Dilation and Translation off

e Dilation: D : L?(T) — L?(T)
Df(x) =271 (f(2'x) +f(2x+271), xeT.

This definition leads t&@Df = /2DPf.
e Translation:Ty : L3(T) — T

Tnf(X) =f(x—=N71), xeT.

The indexN will be referred to as therder of the translation operation.
@ The dilation and translation operators satisfy:

T2D = DTy.

This corresponds t#°D~! = D~1T on the line.
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Mathematical Background
Fourier Analysis oIT, Z, andZy

L?(T):

fk) = / f(x)e > dx, ke Z
T

Brody Dylan Johnson (St. Louis University) Another look at periodic wavelets 16 May 2009 6/31



Mathematical Background
Fourier Analysis oIT, Z, andZy

L?(T):

fk) = / f(x)e > dx, ke Z
T

02(Z):

f&)=> fke ™, ¢eT

keZ

Brody Dylan Johnson (St. Louis University) Another look at periodic wavelets 16 May 2009 6/31



Mathematical Background
Fourier Analysis oIT, Z, andZy

L?(T):

fk) = / f(x)e > dx, ke Z
T

02(Z):

f&)=> fke ™, ¢eT

keZ

GivenN € N, Zy denotesZ /NZ.

Brody Dylan Johnson (St. Louis University) Another look at periodic wavelets 16 May 2009 6/31



Mathematical Background
Fourier Analysis oIT, Z, andZy

L?(T):

= / f(x)e 2 dx, kez
T

02(Z):

f&)=> fke ™, ¢eT

keZ

GivenN € N, Zy denotesZ /NZ.
E(ZN)Z

Fnf(n) =f(n) = \F > f(ke N ne zZy

keZn
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Mathematical Background

Another Look at Dilation on the Torus

Proposition
For f € L(T), Df (k) = f(2K), k € Z.
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Mathematical Background

Another Look at Dilation on the Torus

For f € L(T), Df (k) = f(2K), k € Z.

Some Observations:

@ Dilation on the torus performsd@downsamplingf the Fourier
coefficients.

N
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Mathematical Background

Another Look at Dilation on the Torus

For f € L2(T), Df (k) = f(2k), k € Z.

Some Observations:

@ Dilation on the torus performsd@downsamplingf the Fourier
coefficients.

o Dilation on the torus is not invertible, hence MRAs on theusowill be
one-sided.

o Dilation of a trigonometric polynomial will eventually rek in a
constant function, i.e., if is a trigonometric polynomial thelif = f(0)
for sufficiently largg € N.

N
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Mathematical Background
The Bracket Product

Thebracket product of order Mf two functionsf, g € L?(T) is the vector
[f,0]n € 4(Zn) defined by

[f,oln() =N> f(n+kN)gn+kN), 0<n<N-1
kez
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Mathematical Background
The Bracket Product

Thebracket product of order Mf two functionsf, g € L?(T) is the vector
[f,0]n € 4(Zn) defined by

[f,oln() =N> f(n+kN)gn+kN), 0<n<N-1
kez

v

Forall f,g € L(T),

Fu (10 TRONS) = B O
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Mathematical Background
Shift-Invariant Spaces

Definition

Theprincipal shift-invariant space of order Nenerated by € L?(T) is the
finite-dimensional spacéy(¢) = sparXn(¢), where

Xn(®) = {TR¢: 0<n<N-—1}.
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Mathematical Background
Shift-Invariant Spaces

Definition

Theprincipal shift-invariant space of order Nenerated by € L?(T) is the
finite-dimensional spacéy(¢) = sparXn(¢), where

Xn(®) = {TR¢: 0<n<N-—1}.

Proposition
The collection X(¢) forms an orthonormal basis for(®) if and only if

[6,d]n(N) =1, ne Zy.
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Multiresolution Analysison T
Refinable functions offf

Definition

A function ¢ € L2(T) is said to beefinable of order NN € N) if there exists
amask ce ¢(Zy) such that

D¢ = Y c(m)TRe. @)

NEZN
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Multiresolution Analysison T
Refinable functions offf

A function ¢ € L2(T) is said to beefinable of order NN € N) if there exists
amask ce ¢(Zy) such that

D¢ = Y c(m)TRe. @)

NEZN

v
Lemma

Suppose thap € L?(T) is refinable of order N, then there existsan/(Zy)
such that

$(2k) = m(K)p(K), ke Z. (2))
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Multiresolution Analysison T
Multiresolution Analysis

A multiresolution analysis (MRA) of order N 2J (J € N) is a collection of
closed subspaces bf(T), {V;};_,, satisfying
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) Foro<j<J-—1,Vi1CVi
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i) Vjis the subspace of constant functions;
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Multiresolution Analysis

A multiresolution analysis (MRA) of order N 2J (J € N) is a collection of
closed subspaces bf(T), {V;};_,, satisfying
) For0<j<J—1,Vi1CVi;
i) Foro<j<J-—1,f eVjifandonly if Df € Vj 1,
i) Vjis the subspace of constant functions;
iv) There exists acaling functionp € Vg such thab(z_jN(ZJé Diyp) is an
orthonormal basis fov].
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Multiresolution Analysison T
Multiresolution Analysis

A multiresolution analysis (MRA) of order N 2J (J € N) is a collection of
closed subspaces bf(T), {V;};_,, satisfying
) ForO<j<J-1,Vi1 CV;
i) Foro<j<J-—1,f eVjifandonly if Df € Vj 1,
i) Vjis the subspace of constant functions;
iv) There exists acaling functionp € Vg such thaD(z_jN(ZJé Diyp) is an
orthonormal basis fov].

Notice that MRA properties i, ii, and iv imply that a scalingntctiony is
necessarily refinable of orddl. Moreover, it follows from MRA properties
iii and iv thatD”y must be constant and nonzero, implying tiié®) +# 0.
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Multiresolution Analysison T
Some Observations

If ¢ € L2(T) is refinable of ordeN = 2’ (J € N) with filter my € £(Zy) then

2-1
ot ¥ (Saoeem) oo

neZ,—jy \ =0

i.e.,Diy is refinable of order 2N.
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Multiresolution Analysison T
Some Observations

If ¢ € L2(T) is refinable of ordeN = 2’ (J € N) with filter my € £(Zy) then

2-1
ot ¥ (Saoeem) oo

neZ,—jy \ =0

i.e.,Diy is refinable of order 2N.

It is not difficult to show thatng(2'-) is a low-pass filter fobl .
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Multiresolution Analysison T

A Characterization of Scaling Functions

Theorem
Supposey € L%(T) is a refinable function of order N= 27 (J € N) with
$¢(0) # 0. Theny is the scaling function of an MRA of order N if and only if
mo(n)[? + [mo(n+27'N)[* =1, neZ, (3)
and
6.l =1, neZy. (4)
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Multiresolution Analysison T
Existence of Scaling Functions

Fix N = 27, J € N. Suppose e /(Zy) satisfieg(3) with my(0) = 1. Then
my is the low-pass filter of a trigonometric polynomial scalifugction of
order N.
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Fix N = 27, J € N. Suppose e /(Zy) satisfieg(3) with my(0) = 1. Then
my is the low-pass filter of a trigonometric polynomial scalifugction of
order N.

The construction:

1. Let $(0) = ﬁ
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Multiresolution Analysison T
Existence of Scaling Functions

Fix N = 27, J € N. Suppose e /(Zy) satisfieg(3) with my(0) = 1. Then
my is the low-pass filter of a trigonometric polynomial scalifugction of
order N.

The construction:

1. Let $(0) = ﬁ

2. For—22 <k <272 -1, letp(2k + 1) = L.

3. For—2)2<k< 22 _1and 1<j < J — 1, definep(2 (2k + 1))
according to (4.2), i.e.,

$(2(2k+ 1)) = mo(271(2k + 1)) (27 1(2k + 1)).
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Multiresolution Analysison T
Borrowing from the Line

Suppose & ¢?(Z) is an absolutely summable sequence whose Fourier
transform m= ¢ satisfies

M)+ mg +2712 =1, €e€T,
If co € ¢(Zn) is defined by

co(n) = VN “c(n+kN), nezZy,

keZ

where N= 2’ (J € N), then m = /NG satisfie3).
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Multiresolution Analysison T
The Haar Scaling Function

Fix N = 8 and letc € ¢(Zy) be given byc(0) = c(1) = 3 with ¢(n) = 0 for
n# 0,1. The low-pass filtemy € ¢(Zn) is given by

mo(n) = e ™8 cos(nr/8), ne Zs.
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Multiresolution Analysison T
The Haar Scaling Function

Each “strand” terminates becausg(4) = 0.
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Multiresolution Analysison T

The Haar Scaling FunctiomN(= 64)
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MRA waveletson T
Orthonormal Wavelets

Definition

Let {Vj})_, be an MRA of ordeN = 2’ (J € N). A functiony € Vpis a
waveletfor the MRA if the collection

(25T, DM 1 1< <3, ne Zyy)

is an orthonormal basis fofy © V3.
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MRA waveletson T
Orthonormal Wavelets

Definition

Let {Vj})_, be an MRA of ordeN = 2’ (J € N). A functiony € Vpis a
waveletfor the MRA if the collection

(25T, DM 1 1< <3, ne Zyy)

is an orthonormal basis fofy © V3.

This construction rests on a decompositionV/pasV; = V11 ® W41,
0 <j <J-—1,whereW, is of the form

Wii1 =V, gy (D).
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The High-Pass Filter

Suppose thap is the scaling function of an MRA of orderN 2J (J € N)
and define) € Vg by

(k) = my(K)@(k), keZ,
where m € ¢(Zn) is chosen as
my(n) = mp(n+ 2-IN) e 2""/N ' ne zy. (5)

Theny is a wavelet for the MRA.
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MRA waveletson T

The Haar WaveletN = 64)
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Approximation inL?(T)

Suppose thap is a scaling function for an MRA of order N 2’ (J € N).
The orthogonal projection ontog= V() is described by

Pi(k) = [f, 2In(@(K), ke Z.
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MRA waveletson T

Approximation of Trigonometric Monomials

Suppose that is a trigonometric monomial, i.ef(k) = o for somer € Z,
then[f, &\ is given by

. gln(n) = {ﬁlm )
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MRA waveletson T

Approximation of Trigonometric Monomials

Suppose that is a trigonometric monomial, i.ef(k) = o for somer € Z,
then[f, &\ is given by

. gln(n) = {ﬁlm )

The error of approximation is thus given by

~ 2 ~ ~
IPf— ][> = (NJG(N)? = 1)+ > ING(r)2(r + kN)[?,
k40
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MRA waveletson T

Approximation of Trigonometric Monomials

BecauseXy(y) is an orthonormal basis,

1= (2, @) = NG+ N3 [3(r + kN)P.
k£0

Brody Dylan Johnson (St. Louis University) Another look at periodic wavelets 16 May 2009 24/31



MRA waveletson T

Approximation of Trigonometric Monomials

BecauseXy(y) is an orthonormal basis,

1= (2, @) = NG+ N3 [3(r + kN)P.
k£0

Thus, the approximation error can be rewritten as

IPf —£[12 = 1= N(r) 2.
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MRA waveletson T
Approximation Error

Definition
The error of approximation, denoté&g(k), is defined as

Ex(k) = (1- N[g(K)?)?, keZ

Hence En (k) represents the approximation erf@f — f|| wheref = 27
andP is the orthogonal projection onié\().
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MRA waveletson T
An Approximation Result

If m(¢) is a continuous function on the torus witl{0) = 1 and satisfying (3),
one can define a scaling function associateoh tuf orderN = 27 for each

J> 0.
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MRA waveletson T
An Approximation Result

If m(¢) is a continuous function on the torus witl{0) = 1 and satisfying (3),
one can define a scaling function associateoh tuf orderN = 27 for each

J> 0.

Proposition

Fix r € Nande > 0. Then there exists N- 27 (J € N) such that (k) < ¢
for |k| < r, whereyp is constructed as above.
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MRA waveletson T
The Shannon Scaling Function

Letmg € ¢(Zn) be defined by

1, n<forn> 3
1 N 3N
mo(n) =47 N=3z0n=7, nel,

0, otherwise

whereN = 2J for a natural numbed > 2.
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MRA waveletson T
The Shannon Scaling Function

Example

Letmg € ¢(Zn) be defined by

N 3N
1, n<zorn>T,

1 N 3N
mp(n) = 73 N=gorn=-, ne Zn,

0, otherwise

whereN = 2J for a natural numbed > 2.
If ¢ is constructed as in Theorem 4.7, thek) = wheneveﬂk| <N

Hence En(K) is zero for|k| < Y
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MRA waveletson T

The Shannon Scaling FunctioN & 64)
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MRA waveletson T

The Shannon WaveleN(= 64)
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MRA waveletson T
Shannon Wavelet on the Line

LetVj,j € Z, be the collection of functions ib?(R) such thaf is supported

inside 2[— 1, 1]. These sets form an MRA associated with

sin(mx) sin(27x) + cog7x)
=———= and ¢y =-2
X v m(2x+ 1)
@ G
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MRA waveletson T
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