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Abstract:

In 1992, Mallat and Zhong published a paper presenting a numer-

ical technique for the characterization of one- and two-dimensional

discrete signals in terms of their multiscale edges [2]. With the appro-

priate choice of wavelet, the locations of edges correspond to modulus
maxima of the continuous wavelet transform at a given scale. In this

talk, we will explore the fundamentals of the Mallat-Zhong approach.




Overview:

e 1-D Edge Detection and Signal Characterization
smoothing functions and “wavelet derivatives”
stability of continuous wavelet transform
practical considerations

example

e 2-D Edge Detection
— Canny edge detector

— examples




The smoothing function:

We say 6(z) is a smoothing function if § € C?*(R), has a
fast decay (so that 6 is C2), and Jb(x) = 1. Under these
assumptions, § € LP(R), 1 < p < oc.

1 —z?

Prototypical example: the Gaussian, 0(x) = Vi

At scale s > 0, we have a dilated version of the smoothing func-

1
tion, Os(z) := —9(§), which also satisfies [, 0,(x) = 1.
s s

For f € L?(R), the convolution (f *60s)(x) is a smoothed version

of f (twice-differentiable) at the scale s > 0. Moreover,

lm(f *x0s)(x) = f(x) ae..

s—0

Interpretation: (f *6,) removes variation from f that occurs at

resolutions finer than s.



The smoothing function:
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Figure 1: Various dilations of the smoothing function 6 = ﬁe_ﬁ




The Fourier transform:
e The Fourier transform of f € L* N L?(R) is defined by

= / f(at)e_zmx'gdx.
R

e Relevant properties of the Fourier transform:
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e The Parseval formula for f,g € L' N L*(R):

(f.q) = /# M—/f




The wavelets:
e Given a smoothing function 6 as above, define

W)= T@) & )=o)

o % and v¢* are wavelets in the sense that

[ vrt@yda = [ vHw)da -

This is because 1)%(§) = (zmg)é(g) wb(g) — (27i€)20(¢), and
0(0) = 1, implying 1*(0) = ¢*(0) =




The wavelets:

Figure 2: The wavelets: (a) 1* and (b) 9" associated with the

smoothing function 6 = ﬁe‘xQ. The wavelet 1° is often referred to

as the Mexican hat function.




Continuous wavelet transform:

e The continuous wavelet transforms defined by ¥® and 9°, re-

spectively, are

WeF(2) = (F #45)(2) = s2o(F #0)(x)

W2 (@) = (] = ud)(x) = s ( 0,)(a)

o W2 f measures the derivative of the smoothed version of a signal
f at scale s, while W?f measures the second derivative.

e Wavelets work by and
0 = [ F@via — )y = (.70,

i.e., W2 f(x) is an inner product with a translation and dilation
of ). (The involution of f is f, given by f(z) = f(—z).)




Defining edges:

e An edge should correspond to a point where f(x) undergoes
rapid variation, i.e., maxima of f’(x). We cannot investigate
f'(x) directly, but we can instead study W2 f(x).

Loosely speaking, we will say that f(z) has an edge at x = a if
W, f(x) has a local maxima at z = a. (r = a should remain a

local maxima as s — 0)

The local extrema of W f(x) correspond to the zero crossings
of WP f(x) and the inflection points of (f * 6,)(z).

Thus, W& and WY can each be used to locate eges, but the
zero crossings of W? f fail to separate between the local maxima
and minima of f. The minima of WY f correspond to points of
smooth variation of f and will not give rise to edges.




Achieving a stable representation:

Mallat and Zhong want to use the modulus maxima of W f to

reconstruct f, but it is not even obvious that one can reconstruct

f from WZf.

Instead of consdering all scales s > 0 we will consider only dyadic
scales 27, j € Z.

Assume that ¢ satisfies a Calderén inequality:

A< (2P <B aeeR

jEZ

Define the Dyadic Wavelet Transform: W% : L?(R) — L*(Z,R),
f {ng-f}jez, where

Was f i= Wi f = (f % e (2).



Completeness of the wavelet transtorm:

Claim: A||f||> <) " ||[Wa fII> < BIf]I*.
JEZL

Proof: Observe that

S IWatE =Y [ Wors(@) do

JEZ JEZ

(Parseval) /|f | W%( )|2 d¢
JEZ

—Z/|f () 2[H(27€) 2 de

JEZL

= [1F©P( X 1@or) de

JEZ




Reconstruction:

e Suppose we find x(x) so that

Y (2R =1,

JEZL

then we can recover f from Wy, f via

f(x) = Z (Was f * x23 ) ().

JEZ
e This follows from the Fourier transform:

> FOD@ R = F(©)) (7€) %(27¢) = f(9).

JEZL JEZL

e Reconstruction from modulus maxima is another story, however,
which will be addressed briefly below.




Practical considerations:

e In practice one encounters discretely defined functions, not func-
tions of a continuous variable. Hence, we need a discrete version

of the continuous wavelet transform.

e Let 0, ¢, and x be refinable, i.e., there exists mg,mi,my €
L>°(T) such that

with the additional assumption (perfect reconstruction condi-
tion) that

mo(€)|° 4+ ma(§)ma() = 1.

e We now replace the continuous wavelet transform with a discrete

wavelet transform known as the a trous algorithm.




The a trous algorithm:

e The refinability of the smoothing function and wavelets provides

usetul relationships between the values of the wavelet transform
across scales:

<f7 Tk92j_1> — Z Oéf<f7 Tk—|—2j£92j>7

LeZ

<f7 Tkaj_1> — Z 5£<f7 Tk—|—2j€02j>7

(€7,
where mg (&) = Y,z cve™ 2™ and mq(§) = >, Bee 2™,

The a trous algorithm uses these relationships to compute f *
05;-1 and Wy;-1 f from fx65;. In practice a signal is interpreted
as f * 050 in this algorithm. Reconstruction is similar.




Reconstruction from modulus maxima:

o A frame for a Hilbert space H is a collection {z;};cy for which
there exists 0 < A < B < oo so that for each x € H

Allzl” <) [, z;) > < Bll=||*.

J€eJ

e The reconstruction described above amounts to the existence of
a dual frame {y;}; which for each = € H satisfies

L = Z<x>xj>yj'

Jjed

e By considering only modulus maxima in reconstruction we are
attempting to recover z using only {(x,z; )} for some subse-
quence {jx} C J.




Reconstruction from modulus maxima:

e It has been shown that different functions can have the same
modulus maxima (see [1] for references), but these signals tend to
be very similar and for this reason fairly accurate reconstructions

are possible using modulus maxima.

A dual frame can no longer be used for reconstruction. Instead,
the original function is recovered using the frame algorithm,
which is an iterative algorithm for inverting the partial frame
operator [1].

e The frame operator associated to {x;} is defined by

Sx = Z(az,xj}xj.

J€EJ




A natural signal
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Figure 3: The 1-D continuous wavelet transform of a natural signal.
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Smoothing across scales:
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Figure 4: The smoothed versions of the signal at various scales.




Modulus of the wavelet transform:
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Figure 5: The modulus of the continuous wavelet transform at vari-

ous scales.




Modulus maxima:
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Figure 6: The modulus maxima of the continuous wavelet transform

at various scales.




Reconstruction from modulus maxima:

— original
— reconstructed
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Figure 7: The comparison of the original signal and the signal re-

constructed from the modulus maxima.




T'wo-dimensions:
e Smoothing function: 8(x,y) = 0()6(y), where 6 is a 1-D smooth-

ing function.
e Define two wavelets: !(x,y) = %é(:ﬁ,y) = ¢Y*(x)f(y) and
YH(z,y) = 5 0(x,y) = 0(x)y*(y), where ¢*(z) = 7 0(x).

o Let ¢ (z,y) = 32¢1(_ Y) and o (z,y) = 32¢2(Z %) and for
s =21, j € Z, consider the dyadic wavelet transforms:

W, f(@,y) = (f xg)(x,y) and W f(z,y) = (f*v7)(z,y).

o If \!(z,y) and x?(z,y) satisfy:
D M€ )R (€, G) + P (€1, &)X (61, &) =

JEZL

then the two-dimensional wavelet transform will allow recon-

struction as above.




The Canny edge detector:

e Observe that

Wi f(x,y)
Wef(x,y)

_ = sV (f *x05)(z,y).

e The Canny algorithm defines (xg,yo) to belong to an edge if
|V f(x,y)| is locally maximum at (zg,yo) in the direction of

Vf(x(), yO)

e According to [1], it remains an open problem as to whether or
not such edges yield a complete and stable representation in two
dimensions. The algorithm of [2] does provide numerical support

for this hypothesis.




A natural image:

A snow leopard from the St. Louis Zoo.




Scale s = —1:

Modulus Maxima
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Modulus maxima: scale = -




Modulus maxima:




Modulus maxima: scale = -




Modulus maxima: scale = -5




Reconstructed image:

(Some “small” modulus maxima were ignored in reconstruction.)




Original image:
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Mandrill example




Lena example
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