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Abstract:
In 1992, Mallat and Zhong published a paper presenting a numer-
ical technique for the characterization of one- and two-dimensional
discrete signals in terms of their multiscale edges [2]. With the appro-
priate choice of wavelet, the locations of edges correspond to modulus
maxima of the continuous wavelet transform at a given scale. In this
talk, we will explore the fundamentals of the Mallat-Zhong approach.
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Overview:
• 1-D Edge Detection and Signal Characterization

– smoothing functions and “wavelet derivatives”

– stability of continuous wavelet transform

– practical considerations

– example

• 2-D Edge Detection

– Canny edge detector

– examples
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The smoothing function:
• We say θ(x) is a smoothing function if θ ∈ C2(R), has a

fast decay (so that θ̂ is C2), and
∫
R θ(x) = 1. Under these

assumptions, θ ∈ Lp(R), 1 ≤ p ≤ ∞.

• Prototypical example: the Gaussian, θ(x) = 1√
π
e−x2

.

• At scale s > 0, we have a dilated version of the smoothing func-

tion, θs(x) :=
1
s
θ(

x

s
), which also satisfies

∫
R θs(x) = 1.

• For f ∈ L2(R), the convolution (f ∗ θs)(x) is a smoothed version
of f (twice-differentiable) at the scale s > 0. Moreover,

lim
s→0

(f ∗ θs)(x) = f(x) a.e..

• Interpretation: (f ∗ θs) removes variation from f that occurs at
resolutions finer than s.
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The smoothing function:
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Figure 1: Various dilations of the smoothing function θ = 1√
π
e−x2

.
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The Fourier transform:
• The Fourier transform of f ∈ L1 ∩ L2(R) is defined by

Ff(ξ) = f̂(ξ) =
∫

R
f(x)e−2πix·ξdx.

• Relevant properties of the Fourier transform:

1. (Ff ′(x))(ξ) = (2πiξ)f̂(ξ)

2. (Fxf(x))(ξ) = i
2π f̂ ′(ξ)

3. f̂(0) =
∫

R
f(x)dx

• The Parseval formula for f, g ∈ L1 ∩ L2(R):

〈f, g〉 =
∫

R
f(x)g(x)dx =

∫

R
f̂(ξ)ĝ(ξ)dξ = 〈f̂ , ĝ〉.
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The wavelets:
• Given a smoothing function θ as above, define

ψa(x) =
dθ

dx
(x) & ψb(x) =

d2θ

dx2
(x).

• ψa and ψb are wavelets in the sense that
∫

R
ψa(x)dx =

∫

R
ψb(x)dx = 0.

This is because ψ̂a(ξ) = (2πiξ)θ̂(ξ), ψ̂b(ξ) = (2πiξ)2θ̂(ξ), and
θ̂(0) = 1, implying ψ̂a(0) = ψ̂b(0) = 0.
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The wavelets:
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Figure 2: The wavelets: (a) ψa and (b) ψb associated with the
smoothing function θ = 1√

π
e−x2

. The wavelet ψb is often referred to
as the Mexican hat function.
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Continuous wavelet transform:
• The continuous wavelet transforms defined by ψa and ψb, re-

spectively, are

W a
s f(x) = (f ∗ ψa

s )(x) = s
d

dx
(f ∗ θs)(x)

and

W b
s f(x) = (f ∗ ψb

s)(x) = s2 d2

dx2
(f ∗ θs)(x).

• W a
s f measures the derivative of the smoothed version of a signal

f at scale s, while W b
s f measures the second derivative.

• Wavelets work by translation and dilation:

W a
s f(x) =

∫

R
f(y)ψa

s (x− y)dy = 〈f, Txψ̃a
s 〉,

i.e., W a
s f(x) is an inner product with a translation and dilation

of ψ̃a
s . (The involution of f is f̃ , given by f̃(x) = f(−x).)
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Defining edges:
• An edge should correspond to a point where f(x) undergoes

rapid variation, i.e., maxima of f ′(x). We cannot investigate
f ′(x) directly, but we can instead study W a

s f(x).

• Loosely speaking, we will say that f(x) has an edge at x = a if
Wsf(x) has a local maxima at x = a. (x = a should remain a
local maxima as s → 0)

• The local extrema of W a
s f(x) correspond to the zero crossings

of W b
s f(x) and the inflection points of (f ∗ θs)(x).

• Thus, W a
s and W b

s can each be used to locate eges, but the
zero crossings of W b

s f fail to separate between the local maxima
and minima of f . The minima of W b

s f correspond to points of
smooth variation of f and will not give rise to edges.
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Achieving a stable representation:
• Mallat and Zhong want to use the modulus maxima of W a

s f to
reconstruct f , but it is not even obvious that one can reconstruct
f from W a

s f .

• Instead of consdering all scales s > 0 we will consider only dyadic
scales 2j , j ∈ Z.

• Assume that ψ satisfies a Calderón inequality:

A ≤
∑

j∈Z
|ψ̂(2jξ)|2 ≤ B a.e. ξ ∈ R.

• Define the Dyadic Wavelet Transform: Wψ : L2(R) → L2(Z,R),
f 7→ {Wψ

2j f}j∈Z, where

W2j f := Wψ
2j f = (f ∗ ψ2j )(x).
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Completeness of the wavelet transform:

Claim: A‖f‖2 ≤
∑

j∈Z
‖W2j f‖2 ≤ B‖f‖2.

Proof: Observe that
∑

j∈Z
‖W2j f‖2 =

∑

j∈Z

∫

R
|W2j f(x)|2 dx

(Parseval) =
∑

j∈Z

∫

R
|f̂(ξ)|2|ψ̂2j (ξ)|2 dξ

=
∑

j∈Z

∫

R
|f̂(ξ)|2|ψ̂(2jξ)|2 dξ

=
∫

R
|f̂(ξ)|2

( ∑

j∈Z
|ψ̂(2jξ)|2

)
dξ.
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Reconstruction:
• Suppose we find χ(x) so that

∑

j∈Z
ψ̂(2jξ)χ̂(2jξ) = 1,

then we can recover f from W2j f via

f(x) =
∑

j∈Z

(
W2j f ∗ χ2j

)
(x).

• This follows from the Fourier transform:
∑

j∈Z
f̂(ξ) ψ̂(2jξ) χ̂(2jξ) = f̂(ξ)

∑

j∈Z
ψ̂(2jξ) χ̂(2jξ) = f̂(ξ).

• Reconstruction from modulus maxima is another story, however,
which will be addressed briefly below.
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Practical considerations:
• In practice one encounters discretely defined functions, not func-

tions of a continuous variable. Hence, we need a discrete version
of the continuous wavelet transform.

• Let θ, ψ, and χ be refinable, i.e., there exists m0,m1,m2 ∈
L∞(T) such that

θ̂(2ξ) = m0(ξ)θ̂(ξ), ψ̂(2ξ) = m1(ξ)θ̂(ξ), and χ̂(2ξ) = m2(ξ)θ̂(ξ)

with the additional assumption (perfect reconstruction condi-
tion) that

|m0(ξ)|2 + m1(ξ)m2(ξ) = 1.

• We now replace the continuous wavelet transform with a discrete
wavelet transform known as the à trous algorithm.
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The à trous algorithm:
• The refinability of the smoothing function and wavelets provides

useful relationships between the values of the wavelet transform
across scales:

〈f, Tkθ2j−1〉 =
∑

`∈Z
α`〈f, Tk+2j`θ2j 〉,

and
〈f, Tkψ2j−1〉 =

∑

`∈Z
β`〈f, Tk+2j`θ2j 〉,

where m0(ξ) =
∑

`∈Z α`e
−2πi`ξ and m1(ξ) =

∑
`∈Z β`e

−2πi`ξ.

• The à trous algorithm uses these relationships to compute f ∗
θ2j−1 and W2j−1f from f ∗θ2j . In practice a signal is interpreted
as f ∗ θ20 in this algorithm. Reconstruction is similar.
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Reconstruction from modulus maxima:
• A frame for a Hilbert space H is a collection {xj}j∈J for which

there exists 0 < A ≤ B < ∞ so that for each x ∈ H

A‖x‖2 ≤
∑

j∈J
|〈x, xj〉|2 ≤ B‖x‖2.

• The reconstruction described above amounts to the existence of
a dual frame {yj}j which for each x ∈ H satisfies

x =
∑

j∈J
〈x, xj〉yj .

• By considering only modulus maxima in reconstruction we are
attempting to recover x using only {〈x, xjk

〉} for some subse-
quence {jk} ⊂ J.
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Reconstruction from modulus maxima:
• It has been shown that different functions can have the same

modulus maxima (see [1] for references), but these signals tend to
be very similar and for this reason fairly accurate reconstructions
are possible using modulus maxima.

• A dual frame can no longer be used for reconstruction. Instead,
the original function is recovered using the frame algorithm,
which is an iterative algorithm for inverting the partial frame
operator [1].

• The frame operator associated to {xj} is defined by

Sx =
∑

j∈J
〈x, xj〉xj .
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A natural signal
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Figure 3: The 1-D continuous wavelet transform of a natural signal.
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Smoothing across scales:
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Figure 4: The smoothed versions of the signal at various scales.
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Modulus of the wavelet transform:
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Figure 5: The modulus of the continuous wavelet transform at vari-
ous scales.
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Modulus maxima:
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Figure 6: The modulus maxima of the continuous wavelet transform
at various scales.
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Reconstruction from modulus maxima:
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Figure 7: The comparison of the original signal and the signal re-
constructed from the modulus maxima.
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Two-dimensions:
• Smoothing function: θ̃(x, y) = θ(x)θ(y), where θ is a 1-D smooth-

ing function.

• Define two wavelets: ψ1(x, y) := ∂
∂x θ̃(x, y) = ψa(x)θ(y) and

ψ1(x, y) := ∂
∂y θ̃(x, y) = θ(x)ψa(y), where ψa(x) = d

dxθ(x).

• Let ψ1
s(x, y) = 1

s2 ψ1(x
s , y

s ) and ψ2
s(x, y) = 1

s2 ψ2(x
s , y

s ) and for
s = 2j , j ∈ Z, consider the dyadic wavelet transforms:

W 1
s f(x, y) = (f ∗ ψ1

s)(x, y) and W 2
s f(x, y) = (f ∗ ψ2

s)(x, y).

• If χ1(x, y) and χ2(x, y) satisfy:
∑

j∈Z
ψ̂1(ξ1, ξ2)χ̂1(ξ1, ξ2) + ψ̂2(ξ1, ξ2)χ̂2(ξ1, ξ2) = 1,

then the two-dimensional wavelet transform will allow recon-
struction as above.
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The Canny edge detector:
• Observe that


W 1

s f(x, y)

W 2
s f(x, y)


 = s




∂
∂x (f ∗ θs)(x, y)
∂
∂y (f ∗ θs)(x, y)


 = s∇(f ∗ θs)(x, y).

• The Canny algorithm defines (x0, y0) to belong to an edge if
‖∇f(x, y)‖ is locally maximum at (x0, y0) in the direction of
∇f(x0, y0).

• According to [1], it remains an open problem as to whether or
not such edges yield a complete and stable representation in two
dimensions. The algorithm of [2] does provide numerical support
for this hypothesis.
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A natural image:

A snow leopard from the St. Louis Zoo.
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Scale s = −1:

∂f
∂x

∂f
∂y

‖∇f‖ Modulus Maxima
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The modulus of the wavelet transform:

27



Modulus maxima: scale = -2
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Modulus maxima: scale = -3
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Modulus maxima: scale = -4
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Modulus maxima: scale = -5
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Reconstructed image:

(Some “small” modulus maxima were ignored in reconstruction.)
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Original image:
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Monarch example:

34



Mandrill example:
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Lena example:
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