WAVELETS AND MULTISCALE EDGE DETECTION Brody Dylan Johnson SAINT LOUIS UNIVERSITY

Abstract:

In 1992, Mallat and Zhong published a paper presenting a numerical technique for the characterization of one- and two-dimensional discrete signals in terms of their multiscale edges [2]. With the appropriate choice of wavelet, the locations of edges correspond to modulus maxima of the continuous wavelet transform at a given scale. In this talk, we will explore the fundamentals of the Mallat-Zhong approach.

Overview:

- 1-D Edge Detection and Signal Characterization
	- smoothing functions and "wavelet derivatives"
	- stability of continuous wavelet transform
	- practical considerations
	- example
- 2-D Edge Detection
	- Canny edge detector
	- examples

The smoothing function:

• We say $\theta(x)$ is a smoothing function if $\theta \in C^2(\mathbb{R})$, has a fast decay (so that $\hat{\theta}$ is C^2 $\int_{\mathbb{R}} \theta(x) = 1$. Under these assumptions, $\theta \in L^p(\mathbb{R}), 1 \leq p \leq \infty$.

• Prototypical example: the Gaussian, $\theta(x) = \frac{1}{\sqrt{x}}$ $\equiv e^{-x^2}.$

- At scale $s > 0$, we have a dilated version of the smoothing func- $\text{tion}, \, \theta_s(x) := \frac{1}{\pi}$ s $\theta($ \overline{x} s), which also satisfies $\int_{\mathbb{R}} \theta_s(x) = 1$.
- For $f \in L^2(\mathbb{R})$, the convolution $(f * \theta_s)(x)$ is a smoothed version of f (twice-differentiable) at the scale $s > 0$. Moreover,

$$
\lim_{s \to 0} (f * \theta_s)(x) = f(x) \quad \text{a.e..}
$$

• Interpretation: $(f * \theta_s)$ removes variation from f that occurs at resolutions finer than s.

The smoothing function:

Figure 1: Various dilations of the smoothing function $\theta = \frac{1}{\sqrt{2}}$ $\frac{1}{\pi}e^{-x^2}$.

The Fourier transform:

• The Fourier transform of $f \in L^1 \cap L^2(\mathbb{R})$ is defined by

$$
\mathcal{F}f(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-2\pi ix \cdot \xi} dx.
$$

• Relevant properties of the Fourier transform:

1.
$$
(\mathcal{F}f'(x))(\xi) = (2\pi i\xi)\hat{f}(\xi)
$$

\n2.
$$
(\mathcal{F}xf(x))(\xi) = \frac{i}{2\pi}\hat{f}'(\xi)
$$

\n3.
$$
\hat{f}(0) = \int_{\mathbb{R}} f(x)dx
$$

• The Parseval formula for $f, g \in L^1 \cap L^2(\mathbb{R})$:

$$
\langle f, g \rangle = \int_{\mathbb{R}} f(x) \overline{g(x)} dx = \int_{\mathbb{R}} \hat{f}(\xi) \overline{\hat{g}(\xi)} d\xi = \langle \hat{f}, \hat{g} \rangle.
$$

The wavelets:

 $\bullet\,$ Given a smoothing function θ as above, define

$$
\psi^a(x) = \frac{d\theta}{dx}(x)
$$
 & $\psi^b(x) = \frac{d^2\theta}{dx^2}(x)$.

• ψ^a and ψ^b are wavelets in the sense that

$$
\int_{\mathbb{R}} \psi^a(x) dx = \int_{\mathbb{R}} \psi^b(x) dx = 0.
$$

This is because $\hat{\psi}^a(\xi) = (2\pi i \xi) \hat{\theta}(\xi), \ \hat{\psi}^b(\xi) = (2\pi i \xi)^2 \hat{\theta}(\xi),$ and $\hat{\theta}(0) = 1$, implying $\hat{\psi}^a(0) = \hat{\psi}^b(0) = 0$.

Figure 2: The wavelets: (a) ψ^a and (b) ψ^b associated with the smoothing function $\theta = \frac{1}{\sqrt{2}}$ $\frac{1}{\pi}e^{-x^2}$. The wavelet ψ^b is often referred to as the Mexican hat function.

Continuous wavelet transform:

• The continuous wavelet transforms defined by ψ^a and ψ^b , respectively, are

$$
W_s^a f(x) = (f * \psi_s^a)(x) = s \frac{d}{dx} (f * \theta_s)(x)
$$

and

$$
W_s^b f(x) = (f * \psi_s^b)(x) = s^2 \frac{d^2}{dx^2} (f * \theta_s)(x).
$$

- $W_s^a f$ measures the derivative of the smoothed version of a signal f at scale s, while $W_s^b f$ measures the second derivative.
- Wavelets work by translation and dilation:

$$
W_s^a f(x) = \int_{\mathbb{R}} f(y) \psi_s^a(x - y) dy = \langle f, T_x \tilde{\psi}_s^a \rangle,
$$

i.e., $W_s^a f(x)$ is an inner product with a translation and dilation of $\tilde{\psi}_s^a$. (The involution of f is \tilde{f} , given by $\tilde{f}(x) = \overline{f(-x)}$.)

Defining edges:

- An edge should correspond to a point where $f(x)$ undergoes rapid variation, i.e., maxima of $f'(x)$. We cannot investigate $f'(x)$ directly, but we can instead study $W_s^a f(x)$.
- Loosely speaking, we will say that $f(x)$ has an edge at $x = a$ if $W_s f(x)$ has a local maxima at $x = a$. $(x = a$ should remain a local maxima as $s \to 0$)
- The local extrema of $W_s^a f(x)$ correspond to the zero crossings of $W_s^b f(x)$ and the inflection points of $(f * \theta_s)(x)$.
- Thus, W_s^a and W_s^b can each be used to locate eges, but the zero crossings of $W_s^b f$ fail to separate between the local maxima and minima of f. The minima of $W_s^b f$ correspond to points of smooth variation of f and will not give rise to edges.

Achieving a stable representation:

- Mallat and Zhong want to use the modulus maxima of $W_s^a f$ to reconstruct f , but it is not even obvious that one can reconstruct f from $W_s^a f$.
- Instead of consdering all scales $s > 0$ we will consider only dyadic scales $2^j, j \in \mathbb{Z}$.
- Assume that ψ satisfies a Calderón inequality:

$$
A\leq \sum_{j\in\mathbb{Z}}|\hat{\psi}(2^j\xi)|^2\leq B \quad \text{a.e. } \xi\in\mathbb{R}.
$$

• Define the Dyadic Wavelet Transform: $W^{\psi}: L^{2}(\mathbb{R}) \to L^{2}(\mathbb{Z}, \mathbb{R}),$ $f \mapsto \{W_{2i}^{\psi}$ $\{y_j^{\omega}\}_{j\in\mathbb{Z}}, \text{ where}$

$$
W_{2^j}f := W_{2^j}^{\psi}f = (f * \psi_{2^j})(x).
$$

Completeness of the wavelet transform: Claim: $A||f||^2 \leq$ $\overline{}$ $j\in\mathbb{Z}$ $||W_{2^j}f||^2 \leq B||f||^2.$

Proof: Observe that

$$
\sum_{j\in\mathbb{Z}} \|W_{2^j}f\|^2 = \sum_{j\in\mathbb{Z}} \int_{\mathbb{R}} |W_{2^j}f(x)|^2 dx
$$

(Parseval)
$$
= \sum_{j\in\mathbb{Z}} \int_{\mathbb{R}} |\hat{f}(\xi)|^2 |\hat{\psi}_{2^j}(\xi)|^2 d\xi
$$

$$
= \sum_{j\in\mathbb{Z}} \int_{\mathbb{R}} |\hat{f}(\xi)|^2 |\hat{\psi}(2^j\xi)|^2 d\xi
$$

$$
= \int_{\mathbb{R}} |\hat{f}(\xi)|^2 \left(\sum_{j\in\mathbb{Z}} |\hat{\psi}(2^j\xi)|^2\right) d\xi.
$$

Reconstruction:

• Suppose we find $\chi(x)$ so that

$$
\sum_{j\in\mathbb{Z}} \hat{\psi}(2^j \xi) \hat{\chi}(2^j \xi) = 1,
$$

then we can recover f from W_{2} f via

$$
f(x) = \sum_{j \in \mathbb{Z}} \left(W_{2^j} f * \chi_{2^j} \right)(x).
$$

• This follows from the Fourier transform:

$$
\sum_{j\in\mathbb{Z}}\hat{f}(\xi)\,\hat{\psi}(2^j\xi)\,\hat{\chi}(2^j\xi)=\hat{f}(\xi)\sum_{j\in\mathbb{Z}}\hat{\psi}(2^j\xi)\,\hat{\chi}(2^j\xi)=\hat{f}(\xi).
$$

• Reconstruction from modulus maxima is another story, however, which will be addressed briefly below.

Practical considerations:

- In practice one encounters discretely defined functions, not functions of a continuous variable. Hence, we need a discrete version of the continuous wavelet transform.
- Let θ , ψ , and χ be refinable, i.e., there exists $m_0, m_1, m_2 \in$ $L^{\infty}(\mathbb{T})$ such that

$$
\hat{\theta}(2\xi) = m_0(\xi)\hat{\theta}(\xi), \ \hat{\psi}(2\xi) = m_1(\xi)\hat{\theta}(\xi), \text{ and } \hat{\chi}(2\xi) = m_2(\xi)\hat{\theta}(\xi)
$$

with the additional assumption (perfect reconstruction condition) that

$$
|m_0(\xi)|^2 + \overline{m_1(\xi)}m_2(\xi) = 1.
$$

• We now replace the continuous wavelet transform with a discrete wavelet transform known as the α trous algorithm.

The λ trous algorithm:

• The refinability of the smoothing function and wavelets provides useful relationships between the values of the wavelet transform across scales:

$$
\langle f, T_k \theta_{2^{j-1}} \rangle = \sum_{\ell \in \mathbb{Z}} \alpha_{\ell} \langle f, T_{k+2^{j} \ell} \theta_{2^{j}} \rangle,
$$

and

$$
\langle f, T_k \psi_{2^{j-1}} \rangle = \sum_{\ell \in \mathbb{Z}} \beta_\ell \langle f, T_{k+2^j \ell} \theta_{2^j} \rangle,
$$

where $m_0(\xi) = \sum_{\ell \in \mathbb{Z}} \alpha_{\ell} e^{-2\pi i \ell \xi}$ and $m_1(\xi) = \sum_{\ell \in \mathbb{Z}} \beta_{\ell} e^{-2\pi i \ell \xi}$.

• The à trous algorithm uses these relationships to compute $f *$ $\theta_{2^{j-1}}$ and $W_{2^{j-1}}f$ from $f * \theta_{2^j}$. In practice a signal is interpreted as $f * \theta_{20}$ in this algorithm. Reconstruction is similar.

Reconstruction from modulus maxima:

• A frame for a Hilbert space $\mathbb H$ is a collection $\{x_j\}_{j\in\mathbb J}$ for which there exists $0 < A \leq B < \infty$ so that for each $x \in \mathbb{H}$

$$
A||x||^2 \le \sum_{j\in \mathbb{J}} |\langle x, x_j\rangle|^2 \le B||x||^2.
$$

• The reconstruction described above amounts to the existence of a dual frame $\{y_j\}_j$ which for each $x \in \mathbb{H}$ satisfies

$$
x = \sum_{j \in \mathbb{J}} \langle x, x_j \rangle y_j.
$$

• By considering only modulus maxima in reconstruction we are attempting to recover x using only $\{\langle x, x_{j_k}\rangle\}$ for some subsequence $\{j_k\} \subset \mathbb{J}$.

Reconstruction from modulus maxima:

- It has been shown that different functions can have the same modulus maxima (see [1] for references), but these signals tend to be very similar and for this reason fairly accurate reconstructions are possible using modulus maxima.
- A dual frame can no longer be used for reconstruction. Instead, the original function is recovered using the frame algorithm, which is an iterative algorithm for inverting the partial frame operator [1].
- The frame operator associated to $\{x_j\}$ is defined by

$$
Sx = \sum_{j \in \mathbb{J}} \langle x, x_j \rangle x_j.
$$

Smoothing across scales:

Figure 4: The smoothed versions of the signal at various scales.

Modulus of the wavelet transform:

Figure 5: The modulus of the continuous wavelet transform at various scales.

Modulus maxima:

Figure 6: The modulus maxima of the continuous wavelet transform at various scales.

Reconstruction from modulus maxima:

Figure 7: The comparison of the original signal and the signal reconstructed from the modulus maxima.

Two-dimensions:

- Smoothing function: $\tilde{\theta}(x, y) = \theta(x)\theta(y)$, where θ is a 1-D smoothing function.
- Define two wavelets: $\psi^1(x, y) := \frac{\partial}{\partial x} \tilde{\theta}(x, y) = \psi^a(x) \theta(y)$ and $\psi^1(x, y) := \frac{\partial}{\partial y} \tilde{\theta}(x, y) = \theta(x) \psi^a(y)$, where $\psi^a(x) = \frac{d}{dx} \theta(x)$.
- Let ψ^1_s $\frac{1}{s}(x,y) = \frac{1}{s^2}\psi^1(\frac{x}{s})$ $\frac{x}{s}$, $\frac{y}{s}$ $\frac{y}{s}$) and ψ_s^2 $s^2(x,y) = \frac{1}{s^2} \psi^2(\frac{x}{s})$ $\frac{x}{s}$, $\frac{y}{s}$ $\frac{y}{s}$) and for $s = 2^j, j \in \mathbb{Z}$, consider the dyadic wavelet transforms:

 $W_s^1 f(x, y) = (f * \psi_s^1)$ $s^1(x, y)$ and $W_s^2 f(x, y) = (f * \psi_s^2)$ $_{s}^{2})(x,y).$

• If
$$
\chi^1(x, y)
$$
 and $\chi^2(x, y)$ satisfy:

$$
\sum_{j\in\mathbb{Z}} \hat{\psi}^1(\xi_1,\xi_2)\hat{\chi}^1(\xi_1,\xi_2) + \hat{\psi}^2(\xi_1,\xi_2)\hat{\chi}^2(\xi_1,\xi_2) = 1,
$$

then the two-dimensional wavelet transform will allow reconstruction as above.

The Canny edge detector:

• Observe that

$$
\begin{pmatrix} W_s^1 f(x,y) \\ W_s^2 f(x,y) \end{pmatrix} = s \begin{pmatrix} \frac{\partial}{\partial x} (f * \theta_s)(x,y) \\ \frac{\partial}{\partial y} (f * \theta_s)(x,y) \end{pmatrix} = s \nabla (f * \theta_s)(x,y).
$$

- The Canny algorithm defines (x_0, y_0) to belong to an edge if $\|\nabla f(x, y)\|$ is locally maximum at (x_0, y_0) in the direction of $\nabla f(x_0, y_0).$
- According to [1], it remains an open problem as to whether or not such edges yield a complete and stable representation in two dimensions. The algorithm of [2] does provide numerical support for this hypothesis.

A natural image:

A snow leopard from the St. Louis Zoo.

The modulus of the wavelet transform:

Reconstructed image:

(Some "small" modulus maxima were ignored in reconstruction.)

Original image:

Monarch example:

Mandrill example:

Lena example:

References

- [1] Stéphane Mallat. A wavelet tour of signal processing. Associated Press, 1998.
- [2] Stéphane Mallat and Sifen Zhong. Characterization of signals from multiscale edges. IEEE Trans. Patt. Anal. and Mach. Intell., 14(7):710–732, 1992.