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Overview

This goal of this talk is to provide a mathematical overview of filterbank
frame theory, much of which stems from literature in engineering. The talk
will begin by considering filterbanks with integer sampling and then move on
to consider work with rational sampling factors.
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Preliminaries

The Concept of a Frame

Definition
A frame for a separable Hilbert space H is a collection {ej}j∈Z for which there
exist constants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
∑
j∈Z
|〈x, ej〉|2 ≤ B‖x‖2 for all x ∈ H.

Any collection for which the right-hand inequality holds for some
B <∞ is called a Bessel system.

If it is possible to choose A = B then the frame is said to be tight.

For any Bessel system the frame operator is defined by

Sx =
∑
j∈Z
〈x, ej〉ej.
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Preliminaries

Frame Inversion

The frame coefficients {〈x, ej〉}j uniquely determine x ∈ H. One may recover
x from the frame coefficients as follows.

Tight frame: S = AIH, so x = A−1Sx.

General case:

Theorem (Frame Algorithm)

Given a frame {ej}j one may recover x from its frame coefficients as follows.
Define x0 = 0 and

xn = xn−1 +
2

A + B
S(x− xn−1).

Then, ‖x− xn‖ ≤
(

B−A
B+A

)n
‖x‖.

Note: Sx is completely determined by the frame coefficients.
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Preliminaries

Frame Inversion

One may also construct a dual frame, {ẽj}j such that

x =
∑
j∈Z
〈x, ej〉ẽj for all x ∈ H.

In fact, notice that one may choose ẽj = S−1ej, since∑
j∈Z
〈x, ej〉S−1ej = S−1Sx = x.

Moreover, Sẽj = ej, allowing one to iteratively approximate ẽj by modifying
the frame algorithm:

xn = xn−1 +
2

A + B
S(ẽj − xn−1) becomes xn = xn−1 +

2
A + B

(ej − Sxn−1)

and, now, xn → ẽj as n→∞.
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Preliminaries

The Hilbert Space - `2(Z)

Filterbanks act on sequences, so the Hilbert space in question is `2(Z).

Fourier transform:

x̂(ξ) =
∑
n∈Z

x(n)e−2πinξ, ξ ∈ T.

Convolution:

(x ∗ y)(n) =
∑
k∈Z

x(k)y(n− k) x̂ ∗ y(ξ) = x̂(ξ) ŷ(ξ).

An ideal filter is y such that ŷ = χE some E ⊆ T. Convolution of x with
y isolates the content of x̂ inside E. (filters out the rest)

Denote by x̃ the sequence such that x̃(n) = x(−n).
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Introduction

Filterbanks Frames - Ingredients

Filters: h0, h1, . . . , hM−1 ∈ `2(Z)
Note: Filters with finite support are often desired.

Candidate frame:

F = {h̃j(· − nN) : 0 ≤ j ≤ M − 1, n ∈ Z}.

Interpretation via convolution:

(x ∗ hj)(nN) =
∑
k∈Z

x(k) hj(nN − k) =
∑
k∈Z

x(k) h̃j(k − nN) = 〈x, h̃j(· − nN)〉

The frame coefficients are given by samples of the convolutions with hj.
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Introduction

Filterbanks Frames - Sampling

Downsampling & Upsampling

(↓N x)(n) = x(nN) (↑N x)(n) =

{
x(m) n = mN
0 otherwise

The two operators are adjoint.

The frame coefficients are captured by the coordinates of

wj =↓N (x ∗ hj), 0 ≤ j ≤ M − 1,

so that
M−1∑
j=0

∑
n∈Z

∣∣∣〈x, h̃j(· − nN)
〉∣∣∣2 =

M−1∑
j=0

‖wj‖2
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Introduction

Filterbanks Frames - Schematic

x

...
...

ĥ0 ���↓N w0

ĥ1 ���↓N w1

ĥM−1 ���↓N wM−1

ĝ0���↑N

ĝ1���↑N

ĝM−1���↑N

yj+
j+
...

Analysis Synthesis

When M = N the filterbank is said to be critically sampled. This case
seems to have garnered the greatest amount of attention.

When M > N the filterbank is said to be oversampled, as, in some sense,
the analysis retains more samples than are necessary.
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Introduction

Some Remarks

If gj = hj, 0 ≤ j ≤ M − 1, then the synthesis stage is dual to the analysis
stage and y is merely Sx. (S being the frame operator.)

Typically, h0 is a low-pass filter, i.e., ĥ(ξ) is continuous and nonzero near
ξ = 0. The remaining filters will generally possess a zero at ξ = 0,
leading to many small coefficients when the original signal is smooth.

The signal w0 is a smoothed version of the input signal and is often
further analyzed using the same filterbank. (However, wavelet packets
allow analysis of any of the components wj, 0 ≤ j ≤ M − 1.)

Engineering literature [5] often focuses on perfect reconstruction, where
y = x. This corresponds to the class of Parseval frames (tight frames
with A = B = 1) or the class of dual frames when separate filters are
used in analysis and synthesis.
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Introduction

Fourier Identities

Standard arguments lead to the following identities.

Downsampling:

↓̂N x(ξ) =
1
N

N−1∑
k=0

x̂
(
ξ

N
+

k
N

)
Upsampling:

↑̂N x(ξ) = x̂(Nξ)

Translation: (Tkx)(n) = x(n− k)

T̂kx(ξ) = e−2πimξ x̂(ξ)
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The Polyphase Representation

Forward Polyphase Transform

x̂(ξ) =
N−1∑
k=0

∑
n∈Z

x(nN + k)e−2πi(nN+k)ξ

=
N−1∑
k=0

e−2πikξ
∑
n∈Z

x(nN + k)e−2πinNξ

=
N−1∑
k=0

e−2πikξ x̂k(Nξ),

where

x̂k(ξ) =
∑
n∈Z

x(nN + k)e−2πinξ.

x
T−1
���↓N x0

���↓N x1
...

...

T−1 ���↓N xN−1

The sequences xk, 0 ≤ k ≤ N − 1, are the polyphase components of x.
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The Polyphase Representation

Inverse Polyphase Transform

The Polyphase Transform is unitary, hence inversion comes via the adjoint.

x0 ���↑N
j+ x

T1

x1 ���↑N
j+

...
...

T1

xN−1 ���↑N

It is convenient to analyze filterbanks using polyphase components of both the
signal and the filters.
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The Polyphase Representation

Polyphase Matrix

The polyphase matrix for a filterbank is given by

H(ξ) =

 ĥ0,0(ξ) · · · ĥ0,N−1(ξ)
...

. . .
...

ĥM−1,0(ξ) · · · ĥM−1,N−1(ξ)

 ,

where hj,k is the kth polyphase component of filter hj.

Polyphase components are particularly convenient when the filters are
finitely supported.

If separate filters are used for analysis and synthesis one works with
corresponding analysis and synthesis polyphase matrices.
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The Polyphase Representation

Polyphase Representation of Analysis

The following diagrams are equivalent.

x

...
...

ĥ0 ���↓N w0

ĥ1 ���↓N w1

ĥM−1 ���↓N wM−1

x
T−1
���↓N w0

���↓N w1
...

...H(Nξ)

M × N

T−1 ���↓N wM−1

Observe

x̂(ξ)ĥj(ξ) = x̂(ξ)
N−1∑
k=0

ĥj,k(Nξ)e−2πikξ =
N−1∑
k=0

ĥj,k(Nξ) T̂−kx(ξ)

which is the jth row of H(Nξ) multiplied by the column vector of modulated
versions of x̂.
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The Polyphase Representation

Noble Identity (Analysis)

The following diagrams are equivalent.

x
T−1
���↓N w0

z0

z1

zN−1

z0

z1

zN−1

���↓N w1
...

...H(Nξ)

T−1 ���↓N wM−1

x
T−1
���↓N w0

���↓N w1
...

...H(ξ)

T−1 ���↓N wM−1

This is justified by the following calculation.

ŵj(ξ) =
1
N

N−1∑
`=0

N−1∑
k=0

ĥj,k(N(
ξ

N
+
`

N
)ẑk(

ξ

N
+
`

N
) =

N−1∑
k=0

ĥj,k(ξ)
1
N

N−1∑
`=0

ẑk(
ξ

N
+
`

N
)
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The Polyphase Representation

Polyphase Representation of Synthesis

Similar calculations show that the following diagrams are equivalent.

y
T1

���↑Nw0
e
e
+

+���↑Nw1
...

...G(Nξ)T

T1���↑NwM−1

w0

w1

wM−1

ĝ0���↑N

ĝ1���↑N

ĝM−1���↑N

yj+
j+
...
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The Polyphase Representation

Noble Identity (Synthesis)

Finally, the following two diagrams are also equivalent.

y
T1

���↑Nw0
e
e
+

+���↑Nw1
...

...G(Nξ)T

T1���↑NwM−1

y
T1
���↑Nw0
e
e
+

+���↑Nw1
...

...G(ξ)T

T1���↑NwM−1
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The Polyphase Representation

Filterbank - Polyphase Reprsentation

x
T−1
���↓N w0

���↓N w1
...

... H(ξ)

T−1 ���↓N wM−1

︸ ︷︷ ︸
FPT

︸ ︷︷ ︸
IPT

y
T1
���↑N
e
e
+

+���↑N
...G(ξ)T

T1���↑N

Recall that the polyphase transform is a unitary transformation. Hence, the
frame properties of the filterbank are completely determined by the polyphase
matrix.
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Filterbank Frame Theory

Perfect Reconstruction

Cvetković and Vetterli made one of the early examinations of filterbank frame
properties using the polyphase representation [2].

Theorem
A filterbank has the perfect reconstruction property if and only if

G(ξ)∗H(ξ) = IN , a.e. ξ.

Proposition
Assume G = H. The filterbank implements a tight frame expansion if and only
if H(ξ) is paraunitary, i.e.,

H(ξ)∗H(ξ) = cIN , a.e. ξ.
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Filterbank Frame Theory

Frame Properties

Assume G = H.

Proposition
If the filters have finite support, then the corresponding filterbank implements
a frame expansion if and only if its polyphase matrix H is of full rank on T.

Theorem
The frame bounds for the filterbank are described by

A = ess inf
ξ∈T

λ(ξ) and B = ess sup
ξ∈T

Λ(ξ),

where λ(ξ) and Λ(ξ), respectively, are the minimum and maximum
eigenvalues of H∗(ξ)H(ξ).
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Filterbanks with Rational Sampling

Why Rational Sampling?

Integer sampling: Critically sampled filterbanks seek to decompose a
signal into components representing frequency bands.

Sampling by 2: Ideal filters

ĥ(ξ) = χ[− 1
4 ,

1
4 ]

(ξ) ĝ(ξ) = χ[− 1
2 ,−

1
4 ]∪[

1
4 ,

1
2 ]

(ξ)

Frequency spectrum is divided into two equal bands, the low-pass and
high-pass bands.

Sampling by larger integer factors results in smaller subbands, still with
one low-pass band and, now, multiple high-pass bands.

The goal of rational sampling is to achieve unequal widths for subbands
and to permit subbands of width greater than 1

2 .
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Filterbanks with Rational Sampling

Filterbanks with Rational Sampling

Kovačević and Vetterli [4]:

Motivated by applications where analysis via unequal subbands could be
useful, e.g., analysis of speech or music.

Given rational numbers r0, . . . , rM−1 whose sum is one, the goal of the
rational filterbank is to decompose into subbands of width rj,
0 ≤ j ≤ M − 1. The first channel will be low-pass.

Rational sampling is accomplished by combining downsampling and
upsampling operations with different integer rates.

Downsampling and upsampling operations commute when the rates are
relatively prime. This leads to many equivalent filterbanks.

Brody Dylan Johnson (St. Louis University) An Introduction to Filterbank Frames September 26, 2013 24 / 34



Filterbanks with Rational Sampling

Perfect Reconstruction - An Example

Consider the following ( 2
3 ,

1
3 ) filterbank.

x ���↑2 ĥ ���↓3 w0

ĝ ���↓3 w1

���↑3 ĥ ���↓2
e+

���↑3 ĝ

y

0 1 2 3 4 5 6 7

Ideal filters of Kovačević and Vetterli:

ĥ(ξ) = χ[− 1
6 ,

1
6 ]

(ξ) ĝ(ξ) = χ[− 1
2 ,−

1
3 ]∪[

1
3 ,

1
2 ]

(ξ)

Pictorially: (h0 = h & h1 = g)
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Filterbanks with Rational Sampling

Perfect Reconstruction - Step by Step

Perfect reconstruction will be justified through sketches.

Adding the two signals after stage 6 recovers the original signal.
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Filterbanks with Rational Sampling

A Few Remarks

Further remarks on the work of Kovačević and Vetterli:

Direct methods (as above) are not successful in all cases. While the
( 2

3 ,
1
3 ) case is solvable using ideal filters, the ( 1

3 ,
2
3 ) case is not.

Indirect methods were used which involved the study of equivalent
filterbanks.

The “analysis” stage can be expressed as a combination of
integer-sampled analysis and synthesis components, e.g., 3-channel
analysis followed by 2-channel synthesis.
Existing perfect reconstruction filters could then be used which have finite
support.

Only perfect recontruction filterbanks were considered.
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Filterbanks with Rational Sampling

Equivalent Low-Pass Channels

x ���↑2 ĥ ���↓3 y

x ĥ0 ���↓3 ���↑2
e+

ĥ1 ���↓3 ���↑2 T1

y
w0

w1

Bayram and Selesnick [1] noticed that a modified polyphase representation is
convenient:

h0(n) = h(2n) h1(n) = h(2n + 3)

It is sufficient to show that w0(n) = y(2n) and w1(n) = y(2n + 1).
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Filterbanks with Rational Sampling

Equivalent Low-Pass Channels (proof)

y(n) = (↑2 x ∗ h)(3n)

=
∑
m∈Z

(↑2 x)(m)h(3n− m)

=
∑
m∈Z

x(m)h(3n− 2m)

w0(n) = (x ∗ h0)(3n)

=
∑
m∈Z

x(m)h0(3n− m)

=
∑
m∈Z

x(m)h(6n− 2m)

= y(2n)

w1(n) = (x ∗ h1)(3n)

=
∑
m∈Z

x(m)h1(3n− m)

=
∑
m∈Z

x(m)h(6n− 2m + 3)

=
∑
m∈Z

x(m)h(3(2n + 1)− 2m)

= y(2n + 1)
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Filterbanks with Rational Sampling

Equivalent Filterbanks

This shows that the following filterbanks are equivalent.

x ���↑2 ĥ ���↓3 w0

ĝ ���↓3 w1

x ĥ0 ���↓3 ���↑2
e+

ĥ1 ���↓3 ���↑2 T1

w0

ĝ ���↓3 w1
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Filterbanks with Rational Sampling

Observations

The merging of the two low-pass components is a unitary transformation
and, as such, does not affect frame properties.

The frame properties are determined by the standard 3-band polyphase
matrix,

H(ξ) =

ĥ0,0(ξ) ĥ0,1(ξ) ĥ0,2(ξ)

ĥ1,0(ξ) ĥ1,1(ξ) ĥ1,2(ξ)
ĝ0(ξ) ĝ1(ξ) ĝ2(ξ)

 .

Thus, any paraunitary H will lead to perfect reconstruction.

Bayram and Selesnick have used this approach to construct critically
sampled perfect reconstruction filterbanks, although the low-pass filters
become somewhat rough upon iteration [1].

Bayram and Selesnick [1] then showed that oversampling leads to perfect
reconstruction filterbanks which behave better under multiple iterations.
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Further Exploration

Areas for Further Exploration

Connecting filterbanks and function systems:

Daubechies [3] discussed the relationship between or-
thonormal wavelet systems using dilation 3

2 and ( 2
3 ,

1
3 ) per-

fect reconstruction filterbanks. Such wavelets cannot have
compact support, yet filterbanks with finite support do ex-
ist. Can such filterbanks be associated with some kind of
function system?

Along the same lines, the oversampled rational filterbanks
of Bayram and Selesnick may lead to compactly supported
frame wavelets for L2(R) with rational dilations.
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Further Exploration

Areas for Further Exploration

Understanding iterated filterbank frames:

Bayram and Selesnick restrict attention to filterbanks with
perfect reconstruction. In the critically sampled case, is it
possible to obtain filters which perform well under multi-
ple iterations by considering non-tight filterbank frames?

In general, how does one evaluate the performance of a
generic filterbank frame under multiple iterations? (Per-
fect reconstruction makes this a trivial concern.)
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Further Exploration
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