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Abstract

These notes provide an introduction to the theory of frames for Rn. We
begin by recalling some basic facts about the inner product on Rn. We then
introduce the notion of a frame for Rn and show how frames may be used to
reconstruct a vector from its inner products with the elements of the frame.
We show that a ¯nite collection of vectors in Rn is a frame if and only if it
contains a basis. We conclude by considering an iterative method by which a
vector can be approximated from its inner products with the frame elements.

For general treatments of frames the reader is referred to [1], [2], [3], and [4]. We
now recall some important facts about Rn.

De¯nition 1. Let ~x = (x1; : : : ; xn); ~y = (y1; : : : ; yn) 2 Rn. Then

(i) ~x ¢ ~y = h~x; ~yi :=
nX

k=1

xkyk (inner product),

(ii) k~xk :=
p
h~x; ~xi =

³ nX

k=1

x2
k

´ 1
2

(length of a vector).

Lemma 1. Let ~x = (x1; : : : ; xn); ~y = (y1; : : : ; yn) 2 Rn. Then

(i) k~x+ ~yk · k~xk+ k~yk (triangle inequality),

(ii) jh~x; ~yij · k~xk k~yk (Cauchy-Schwarz inequality).
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Proof: We begin with the Cauchy-Schwarz inequality. If ~y = 0 the result holds, so
assume ~y6= 0. We have for t 2 R

0 · k~x¡ t~yk2 = h~x¡ t~y; ~x¡ t~yi = k~xk2 ¡ 2th~x; ~yi+ t2k~yk2:

Choosing t = h~x;~yi
k~yk2 we then have

k~xk2 ¡ 2
(h~x; ~yi)2

k~yk2 +
(h~x; ~yi)2

k~yk2
¸ 0;

which implies k~xk2 k~yk2 ¸ (h~x; ~yi)2. This proves (ii).

Now for (i), we observe that

k~x+ ~yk2 = k~xk2 + 2h~x; ~yi+ k~yk2 + 2k~xk k~yk ¡ 2k~xk k~yk
· (k~xk+ k~yk)2: 2

De¯nition 2. Let V = f~v1; : : : ; ~vNg ½ Rn. V is a frame for Rn if and only if there
exists A;B > 0 such that for each ~x 2 Rn we have

Ak~xk2 ·
NX

k=1

¯̄
h~x;~vki

¯̄2 · Bk~xk2: (1)

Proposition 2. Suppose V = f~v1; : : : ; ~vNg ½ Rn contains a basis for Rn, then there
exists U = f~u1; : : : ; ~uNg ½ Rn (not necessarily unique) such that for all ~x 2 Rn

~x =
NX

k=1

h~x; ~uki~vk: (2)

Proof: Without loss of generality we may assume that ~v1; : : : ; ~vn is a basis for Rn.
Thus, the n£ n matrix

~F :=

0
B@

v1;1 ¢ ¢ ¢ vn;1
...

. . .
...

v1;n ¢ ¢ ¢ vn;n

1
CA

is invertible and the equation ~F~c = ~x has the solution ~c = ~F¡1~x for every ~x 2 Rn.
Using the notation ~c = (c1; : : : ; cn) we see that

~x =
nX

k=1

ck~vk:
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For 1 · k · n, let ~uk = ( ~F¡1
k;1 ; : : : ;

~F¡1
k;n), i.e. ~uk is the kth row of ~F¡1. Notice that

ck = h~x; ~uki and setting ~uk = 0 for n+ 1 · k · N we have shown that

~x =
NX

k=1

h~x; ~uki~vk: 2

The vectors ~uk, 1 · k · N in Proposition 2 are said to be dual to the vectors ~vk,
1 · k · N .

Theorem 3. Let V = f~v1; : : : ; ~vNg ½ Rn. V is a frame if and only if V contains a
basis for Rn.

Proof: ()) Suppose by way of contradiction that V does not contain a basis. Then
the rank of

F =

0
B@

v1;1 ¢ ¢ ¢ v1;n
...

. . .
...

vN;1 ¢ ¢ ¢ vN;n

1
CA

is strictly less than n. Thus, F TF has rank strictly less than n (see [5]) and is,
therefore, not invertible. This implies the existence of ~x 6= 0 such that F TF~x = 0
and

0 = hF TF~x; ~xi =
NX

k=1

jh~x;~vkij2;

a contradiction of the frame equation (1).

(() We begin by demonstrating the upper bound. Let ~x 2 Rn and observe that
by the Cauchy-Schwarz inequality we have

nX

k=1

jh~x;~vkij2 ·
NX

k=1

k~xk2 k~vkk2 =
³ NX

k=1

k~vkk2
´
k~xk2:

Letting B :=
PN

k=1 k~vkk2 we have the right inequality of (1).

Let ~uk, 1 · k · N , be as guaranteed by Proposition 2. By repeating the argument
above we obtain the inequality

nX

k=1

jh~x; ~ukij2 · ~Bk~xk2; (3)
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for all ~x 2 Rn and where ~B :=
PN

k=1 k~ukk2. By taking inner products with ~x on each
side of (2) we obtain

k~xk2 =
NX

k=1

h~x; ~ukih~x;~vki

·
³ NX

k=1

jh~x; ~ukij2
´ 1

2
³ NX

k=1

jh~x;~vkij2
´ 1

2

·
p

~Bk~xk
³ NX

k=1

jh~x;~vkij2
´ 1

2
;

from which we conclude

1
~B
k~xk2 ·

NX

k=1

jh~x;~vkij2:

This shows that V is a frame. 2

Theorem 3 says that every frame for Rn contains a basis. The \extra" vectors in
the frame, i.e. those not needed for the basis, make the representation redundant.
The redundancy of frames is important in many applications, e.g. noise reduction.

Example 1. Suppose V = f~v1; : : : ; ~vng ½ Rn comprises an orthonormal basis for
Rn. By considering the relationship between the inner products of the basis vectors
and the matrix FF T , where F is as above, we see that FF T = F TF = In£n. This
means for each x 2 Rn,

k~xk2 = h~x; ~xi = hF TF~x; ~xi =

nX

k=1

jh~x;~vkij2:

We conclude that any orthonormal basis for Rn is a frame with A = B = 1. This is
an example of a tight frame with constant one.

Proposition 2 provides one method of reconstructing a vector from knowledge of
its inner products with elements of a frame, but the dual frame constructed in the
proof fails to take advantage of the redundancy inherent in frames. The following
iterative algorithm for frame inversion is better in this sense.

Theorem 4 (Frame algorithm [2]). Let f~vkgNk=1 be a frame for Rn with frame
bounds A and B. Given ~x 2 Rn, de¯ne ~x0 = ~0 and for j ¸ 1

~xj = ~xj¡1 +
2

A+B
F TF (~x¡ ~xj¡1); (4)
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where F is as above. Then ~xj ! ~x as j !1 in Rn and

k~x¡ ~xjk ·
³B ¡ A
B +A

´j
k~xk: (5)

Proof: Using the frame equation (1) we obtain for each ~x 2 Rn the inequalities

¡B ¡ A
B +A

k~xk2 ·
D¡
In£n ¡

2F TF

B +A

¢
~x; ~x
E
· B ¡ A
B +A

k~xk2:

Letting U = In£n ¡ 2
A+B

F TF we see that U is also self-adjoint (symmetric) and,

hence, kUk · B¡A
B+A

< 1. Now by (4) we have

~x¡ ~xj = ~x¡ ~xj¡1 ¡
2

A+B
F TF (~x¡ ~xj¡1)

=
³
In£n ¡

2

A+B
F TF

´
(~x¡ ~xj¡1)

=
³
In£n ¡

2

A+B
F TF

´j
(~x¡ ~x0)

=
³
In£n ¡

2

A+B
F TF

´j
~x;

from which we conclude

k~x¡ ~xnk ·
³B ¡ A
B +A

´j
k~xk:

This establishes both the convergence and the error estimate (5). 2
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