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Overview

This goal of this talk is to introduce students to an area of mathematics called
frame theory, which draws heavily on linear algebra and finds application in
many real-world settings. In essence, frames provide a means for storing the
numeric data found in digital signals, such as those originating from images,
audio, and video. Frames can be designed for a variety of uses, e.g., data
compression, noise reduction, frequency analysis, etc.
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Introduction

The Olden Days

AUDIO

Audio was recorded and stored in a continuous, or analog, format. The
earliest versions imprinted the signal in wax that could be retraced afterwards
to recover the recorded sound. Modern versions of analog recording imprint
the signal on magnetic tape (as shown below).

Figure: An 8mm tape reel from the early 1970’s.
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Introduction

The Olden Days

IMAGES

Early photography made use of silver compounds that would undergo a
chemical reaction when exposed to light. The image was then captured on a
copper plate. This later developed into modern film photography where the
silver compounds are bonded to a plastic sheet (as shown below).

Figure: An 35mm negative from the early 2000’s.
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Introduction

The Digital Revolution

AUDIO

A digital audio signal consists of a discrete sequence of numbers and a sample
rate. The sample rate describes how many digital samples are taken from the
analog signal in a given period of time.

Figure: 1000 of the 8,087,552 samples of the digitized version of the 1970’s tape
recording. This corresponds to about 0.0227 seconds.
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Introduction

The Digital Revolution

IMAGES

A digital image typically consists of a rectangular array of numbers. The
numeric values in the array describe the intensity of light in the image at the
corresponding location. For grayscale images the intensity ranges from 0
(black) to 255 (white), while color images combine three separate intensity
values (red, green, and blue channels).

Figure: Digitized version of previously shown film negative.
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Introduction

The Digital Revolution

SAMPLING

One obtains a discrete signal from a continuous one by a sampling procedure.
In the case of digital recording and digital photography the sampling is
typically performed by combining special hardware and software.

Figure: Representations of one- and two-dimensional sampling.

In either case, one ends up with a vector representation of the original signal.
This allows us to use our knowledge of Linear Algebra.
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Elements of Linear Algebra

Vector Spaces (Dimension 3)

VECTORS

A vector has the form x = x1~i + x2~j + x3~k.

INNER PRODUCTS

The inner product of two vectors x and y is given by

〈x, y〉 = x · y = x1y1 + x2y2 + x3y3 = ‖x‖ ‖y‖ cos θ,

where ‖x‖2 = x2
1 + x2

2 + x2
3 and θ is the angle between x and y.

BASIS

A basis consists of three linearly independent vectors {u, v,w}, where
linearly independent means: the only solution of c1u + c2v + c3w = 0 is
c1 = c2 = c3 = 0.
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Elements of Linear Algebra

Vector Spaces (Dimension 3)

Given a basis {u, v,w}, how can one find the coefficients of a given vector x?
I.e., what values c1, c2, c3 achieve

x = c1u + c2v + c3w?

Notice that one can write the above as a matrix equation:x1
x2
x3

 =

u1 v1 w1
u2 v2 w3
u3 v3 w3

c1
c2
c3

 .

Hence, one can find the coefficients by inverting the 3× 3 matrix. Note that
this is possible because the vectors are linearly independent, implying that the
determinant is nonzero.
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Elements of Linear Algebra

Vector Spaces (Dimension 3)

The basis is orthonormal if it satisfies

u · v = v · w = w · u = 0 (orthogonality)

and
u · u = v · v = w · w = 1. (unit length)

Orthogonality allows us to find the coefficients using the inner product:

x · u = c1u · u + c2v · u + c3w · u = c1.

x · v = c1u · v + c2v · v + c3w · v = c2.

x · w = c1u · w + c2v · w + c3w · w = c3.

Recall that the inner product x · y can also be written 〈x, y〉.
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Elements of Linear Algebra

Vector Spaces (Dimension 3)

The quantity ‖x‖2 = x2
1 + x2

2 + x2
3 = 〈x, x〉 is commonly referred to as the

squared length of the vector x. However, in many applications it is reasonable
to consider this quantity as a measure of the energy in the signal x.

If {u, v,w} is an orthonormal basis, then

‖x‖2 = 〈x, x〉
= 〈c1u + c2v + c3w, c1u + c2v + c3w〉
= c2

1〈u, u〉+ c2
2〈v, v〉+ c2

3〈w,w〉+ (zero terms)

= c2
1 + c2

2 + c2
3

= 〈x, u〉2 + 〈x, v〉2 + 〈x,w〉2.

This shows that the inner products “capture” the energy of the signal.
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Elements of Linear Algebra

Vector Spaces (Arbitrary Dimension)

VECTORS:
x =

(
x1 x2 · · · xn

)

INNER PRODUCT:

〈x, y〉 = x1y1 + · · ·+ xnyn =
n∑

k=1

xkyk

BASES:
As in the case of dimension 3, bases consist of n linearly independent
vectors {v1, . . . , vn} and matrix inversion can be used to determine the
coefficients in a basis expansion of the form

x =
n∑

k=1

ckvk.
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Frame Fundamentals

Definition of a Frame

Consider the following alternative to a basis, which focuses on the idea of
capturing the energy of a signal through inner products.

Definition
A collection of vectors e1, e2, . . . , em is a frame for an n-dimensional vector
space if there exist 0 < A ≤ B <∞ such that for all vectors x,

A‖x‖2 ≤
m∑

k=1

〈x, ek〉2 ≤ B‖x‖2.

The numbers 〈x, ek〉 will be referred to as frame coefficients.

Okay, but so what? How can one know that this will be useful?
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Frame Fundamentals

Question #1:

Does this definition include bases?

Yes. Notice that for an orthonormal basis one has

‖x‖2 =
n∑

k=1

〈x, ek〉2,

which means the vectors form a frame with A = B = 1.

One can also prove the following result.

Proposition (see [1])
A collection of vectors is a frame for an n-dimensional vector space if and
only if it contains a basis.
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Frame Fundamentals

Question #2:

How does one use a frame to represent a signal?

Recall that if the basis is orthonormal and we write x = c1e1 + · · ·+ cmem,
then taking inner products with ej on both sides gives

〈x, ej〉 =
m∑

k=1

ck〈ek, ej〉 = cj〈ej, ej〉 = cj.

In other words,

x =
m∑

k=1

〈x, ek〉︸ ︷︷ ︸
coefficient

vector︷︸︸︷
ek

This motivates a slightly different question.
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Frame Fundamentals

Question #2: (modified)

How does one recover x from the frame coefficients {〈x, ek〉}m
k=1?

Well, we can try the same solution. Define the frame operator S by

Sx =
m∑

k=1

〈x, ek〉 ek.

If Sx = x, then it follows that A = B = 1 because

‖x‖2 = 〈x, x〉 = 〈Sx, x〉 =

〈
m∑

k=1

〈x, ek〉ek, x

〉
=

m∑
k=1

〈x, ek〉2.

Thus, when A 6= B recovery of x cannot be this easy.
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Frame Fundamentals

Question #2: (modified)

However, using a little bit of advanced linear algebra one can prove the
following theorem about recovery from frame coefficients.

Theorem (Frame Algorithm – see [1])

Given a frame {ek}m
k=1 one may recover x from its frame coefficients as

follows. Define x0 = 0 and

xj = xj−1 +
2

A + B
S(x− xj−1).

Then, ‖x− xj‖ ≤
(

B−A
B+A

)j
‖x‖.

Notice that we only need the coefficients 〈x, ek〉 to compute Sx.
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Frame Fundamentals

Some Remarks

The Frame Algorithm converges geometrically (error is reduced by the
same factor with each iteration) and in the case that A = B, convergence
is immediate. Frames where A = B are called tight frames.

It is also possible to construct a dual frame consisting of vectors {ẽk}m
k=1

so that for all signals x one has

x =
m∑

k=1

〈x, ek〉ẽk.

One can even find the ẽk vectors using the Frame Algorithm, since
ẽk = S−1ek, or, ek = Sẽk.
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k=1

so that for all signals x one has

x =
m∑

k=1

〈x, ek〉ẽk.
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A Simple Tight Frame

A tight-frame for R2

Define {e1, e2, e3} by

e1 = (1, 0) e2 = (−1
2
,

√
3

2
) e3 = (−1

2
,−
√

3
2

).
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A Simple Tight Frame

A tight-frame for R2

To see that the collection is a frame, let x = (x1, x2).

3∑
k=1

〈x, ek〉2 = 〈x, e1〉2 + 〈x, e2〉2 + 〈x, e3〉2

= x2
1 +

(
−1

2
x1 +

√
3

2
x2

)2

+

(
−1

2
x1 −

√
3

2
x2

)2

= x2
1 +

1
4

x2
1 −
√

3
2

x1x2 +
3
4

x2
2 +

1
4

x2
1 +

√
3

2
x1x2 +

3
4

x2
2

=
3
2
(x2

1 + x2
2)

=
3
2
‖x‖2.

So, it’s actually a tight frame.
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x2
1 −
√

3
2

x1x2 +
3
4

x2
2 +

1
4

x2
1 +

√
3

2
x1x2 +

3
4

x2
2

=
3
2
(x2

1 + x2
2)

=
3
2
‖x‖2.

So, it’s actually a tight frame.
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A Bigger Example

A Random Frame of R10 of Size 25

The first 15 vectors:
-0.29 0.24 -0.18 0.33 0.61 -0.11 0.95 -0.29 0.70 -0.85 -0.91 -0.47 -0.81 0.64 -0.66

-0.62 -0.51 -0.43 0.45 0.66 -0.27 -0.56 -0.90 -0.58 -0.60 0.20 1.00 -0.97 -0.47 0.08

-0.02 0.17 -0.21 -0.44 -0.67 -0.39 0.41 0.51 -0.09 -0.90 0.90 -0.58 -0.42 0.51 0.25

-0.18 0.01 0.01 -0.48 -0.21 0.70 0.04 0.79 -0.84 0.13 -0.42 -0.00 0.63 0.32 0.37

-0.07 -0.07 0.44 0.42 0.04 0.52 0.87 -0.43 0.70 -0.76 0.78 -0.42 0.97 -0.57 0.35

0.22 0.08 -0.39 0.57 0.44 0.90 0.43 -0.50 0.12 0.04 -0.80 0.35 -0.97 0.20 0.75

-0.86 0.88 -0.78 0.97 0.14 0.12 -0.54 0.87 -0.36 -0.77 -0.87 0.92 0.64 0.21 -0.97

-0.37 -0.32 -0.11 -0.05 -0.08 -0.97 -0.10 -0.74 -0.25 0.54 -0.53 0.53 0.24 0.32 -0.38

0.22 -0.20 -0.07 0.81 -0.11 0.19 -0.66 0.88 0.74 -0.25 0.87 0.33 0.12 -0.63 0.56

-0.65 -0.38 -0.97 -0.10 -0.82 0.63 0.94 0.40 -0.26 0.65 -0.87 -0.74 -0.51 0.27 -0.39

The last 10 vectors:
0.85 0.02 0.90 0.30 -0.32 0.06 0.94 0.04 -0.20 0.33

0.36 -0.85 0.66 0.51 -0.07 -0.64 -0.95 0.79 -0.28 -0.73

-0.85 -0.61 0.84 0.33 0.83 0.00 0.74 0.88 -0.43 -0.96

-0.86 -0.24 -0.77 0.77 -0.54 -0.16 -0.95 -0.33 0.74 -0.48

-0.98 -0.45 0.62 -0.46 0.72 0.32 0.04 -0.13 0.25 -0.77

-0.55 0.54 0.82 -0.16 0.31 0.35 -0.62 -0.06 -0.52 -0.86

0.03 -0.37 -0.69 -0.57 0.78 0.91 0.43 -0.70 0.96 0.71

-0.08 0.28 -0.76 -0.93 -0.02 -0.62 -0.50 -0.73 0.28 -0.64

0.41 0.97 0.53 -0.84 0.99 -0.78 0.87 0.06 -0.54 -0.94

0.16 0.01 0.44 0.70 -0.25 0.13 -0.73 0.45 0.36 0.47
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A Bigger Example

A frame of R10 of size 25

Let F be the 10× 25 matrix having these vectors as its columns.

F =

 | | |
e1 e2 · · · e25
| | |

 .

To compute the frame coefficients one multiplies the transpose by a
given vector:

FTx =


− e1 −
− e2 −

...
− e25 −


 |x
|

 =


〈x, e1〉
〈x, e2〉

...
〈x, e25〉

 .
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A Bigger Example

A frame of R10 of size 25

The frame operator can also be computed using F. In fact, S = FFT and is
shown below: (to two decimal places)
8.18 0.30 0.83 -3.62 -0.68 1.36 0.70 -1.75 -1.04 1.94

0.30 9.67 0.86 -0.88 -0.69 2.38 -1.75 0.62 -0.00 -0.21

0.83 0.86 8.79 -0.74 3.20 0.41 -2.32 -2.85 2.20 -0.07

-3.62 -0.88 -0.74 7.05 -0.35 -0.18 0.87 0.66 -3.39 2.17

-0.68 -0.69 3.20 -0.35 7.89 1.34 -0.66 -1.27 2.33 -1.99

1.36 2.38 0.41 -0.18 1.34 7.20 -1.59 -0.27 1.04 1.21

0.70 -1.75 -2.32 0.87 -0.66 -1.59 12.34 1.05 -0.55 -0.26

-1.75 0.62 -2.85 0.66 -1.27 -0.27 1.05 6.16 -0.75 -1.10

-1.04 -0.00 2.20 -3.39 2.33 1.04 -0.55 -0.75 9.83 -3.82

1.94 -0.21 -0.07 2.17 -1.99 1.21 -0.26 -1.10 -3.82 7.78

The minimum and maximum eigenvalues of this matrix (Matlab) actually
determine the frame bounds.

1.725 2.785 3.777 5.413 6.72 8.69 11.00 11.94 14.32 18.50
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A Bigger Example

Implementing the Frame Algorithm

The movie below shows 20 iterations of the frame algorithm.

The convergence is slow because
B− A
B + A

≈ 0.8294.
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A Bigger Example

Another frame of R10 of size 25

The first 15 vectors:
1.00 0.97 0.87 0.72 0.52 0.28 0.03 -0.22 -0.46 -0.67 -0.84 -0.95 -1.00 -0.98 -0.90

1.00 0.87 0.52 0.03 -0.46 -0.84 -1.00 -0.90 -0.57 -0.10 0.40 0.80 0.99 0.93 0.62

1.00 0.72 0.03 -0.67 -1.00 -0.76 -0.10 0.62 0.99 0.80 0.16 -0.57 -0.98 -0.84 -0.22

1.00 0.52 -0.46 -1.00 -0.57 0.40 0.99 0.62 -0.35 -0.98 -0.67 0.28 0.97 0.72 -0.22

1.00 0.28 -0.84 -0.76 0.40 0.99 0.16 -0.90 -0.67 0.52 0.97 0.03 -0.95 -0.57 0.62

1.00 0.03 -1.00 -0.10 0.99 0.16 -0.98 -0.22 0.97 0.28 -0.95 -0.35 0.93 0.40 -0.90

1.00 -0.22 -0.90 0.62 0.62 -0.90 -0.22 1.00 -0.22 -0.90 0.62 0.62 -0.90 -0.22 1.00

1.00 -0.46 -0.57 0.99 -0.35 -0.67 0.97 -0.22 -0.76 0.93 -0.10 -0.84 0.87 0.03 -0.90

1.00 -0.67 -0.10 0.80 -0.98 0.52 0.28 -0.90 0.93 -0.35 -0.46 0.97 -0.84 0.16 0.62

1.00 -0.84 0.40 0.16 -0.67 0.97 -0.95 0.62 -0.10 -0.46 0.87 -1.00 0.80 -0.35 -0.22

The last 10 vectors:
-0.76 -0.57 -0.35 -0.10 0.16 0.40 0.62 0.80 0.93 0.99

0.16 -0.35 -0.76 -0.98 -0.95 -0.67 -0.22 0.28 0.72 0.97

0.52 0.97 0.87 0.28 -0.46 -0.95 -0.90 -0.35 0.40 0.93

-0.95 -0.76 0.16 0.93 0.80 -0.10 -0.90 -0.84 0.03 0.87

0.93 -0.10 -0.98 -0.46 0.72 0.87 -0.22 -1.00 -0.35 0.80

-0.46 0.87 0.52 -0.84 -0.57 0.80 0.62 -0.76 -0.67 0.72

-0.22 -0.90 0.62 0.62 -0.90 -0.22 1.00 -0.22 -0.90 0.62

0.80 0.16 -0.95 0.72 0.28 -0.98 0.62 0.40 -1.00 0.52

-1.00 0.72 0.03 -0.76 0.99 -0.57 -0.22 0.87 -0.95 0.40

0.72 -0.98 0.93 -0.57 0.03 0.52 -0.90 0.99 -0.76 0.28
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A Bigger Example

Implementing the Frame Algorithm

The movie below shows 20 iterations of the frame algorithm.

The convergence is faster because
B− A
B + A

≈ 0.1723. (This frame was not

chosen randomly.)
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Intuition for 2-D signals

Vector Spaces for 2-D Signals

The following representation is used for two-dimensional signals, e.g.,
images.

Vectors:

x =

x11 · · · x1n
...

. . .
...

xm1 · · · xmn


Inner Product:

〈x, y〉 =
m∑

j=1

n∑
k=1

xj,k yj,k

Basis: A collection {uj,k : 1 ≤ j ≤ m, 1 ≤ k ≤ n} is a basis provided that
the only solution of

m∑
j=1

n∑
k=1

cj,k uj,k = 0

is the trivial solution cj,k = 0, 1 ≤ j ≤ m, 1 ≤ k ≤ n.
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Intuition for 2-D signals

3× 3 Image Space

An example signal:

x =

0.95 0.49 0.45
0.23 0.89 0.02
0.61 0.76 0.82



An orthonormal basis:
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Show & Tell

Wavelet Basis

Below we see an image and its wavelet basis coefficients. (no redundancy)

Original

Single Scale Full

The gray pixels correspond to coefficients close to zero. Black and white
pixels correspond to - and + coefficients, respectively.
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Show & Tell

Wavelet Basis – Compression

By ignoring small coefficients one can “compress” the image.

Original

Reconstructed

The compression ratio here is 33.8 with a mean-squared error of 2.66.
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Show & Tell

Wavelet Frame – Algorithme À Trous

Below we see an image and its wavelet frame coefficients (highly redundant).

Original

Single Scale

Each component of the coefficient image has the same size as the original.
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Show & Tell

Wavelet Frame – Denoising

By ignoring small coefficients one can remove noise from the image. The
greater redundancy helps preserve the original signal features.

Noisy

Reconstructed

As the level of the noise increases denoising will begin to affect important
signal features, resulting in a blurring of the image.
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Show & Tell

Discrete Cosine Transform (DCT) – Basis

The JPEG image standard originally made use of a basis whose elements are
described by discrete cosine functions. (Newer JPEG standards use wavelets.)

Original

DCT

The periodic nature of the basis elements lends itself to representation of
signals with repeating patterns.
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Conclusion

Concluding Remarks

The rise of computers has opened new avenues of research in
mathematics and other fields. Frame theory is just one example.

Frame theory is very accessible to students with some exposure to linear
algebra. A little analysis doesn’t hurt.

Computational platforms like Matlab are great for working with real data
(like audio or images). There is also an open-source Matlab emulator
called Octave:

http://www.octave.org/

THANK YOU!
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Conclusion

References

B.D. Johnson,
Frames in Rn, expository notes,
http://mathcs.slu.edu/~johnson/public/maths/frames.pdf.

Brody Dylan Johnson (St. Louis University) An Introduction to Frames 12 October 2010 36 / 36


	Outline
	Introduction
	Elements of Linear Algebra
	Frame Fundamentals
	A Simple Tight Frame
	A Bigger Example
	Intuition for 2-D signals
	Show & Tell
	Conclusion

