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Abstract. Many characterizations of euclidean spaces (real inner product spaces)
among metric spaces have been based on euclidean four point embeddability
properties. Related “intrinsic” four point properties have also been used to
characterize euclidean or hyperbolic spaces among a suitable class of metric
spaces. The present paper provides new characterizations of euclidean or hy-
perbolic spaces based on intrinsic four point properties which are related to
known four point embedding properties.

Mathematics Subject Classification (2000). Primary 51K05.

Keywords. Four point properties, hyperbolic spaces, euclidean spaces.

Introduction

The question of whether the (metric) embeddability of finite sets of points of
a metric space into euclidean space will imply the embeddability of the entire
metric space into euclidean space has a long history. In the late 1920’s and early
1930’s “distance” spaces were studied in which to every ordered pair of elements
of the space, a non-negative real number was assigned. The researchers may have
observed that an equivalent definition of a metric space to that emanating from the
work of Fréchet would be to require that for each triple of labels of points of such
a “distance” space there exists a one to one distance-preserving correspondence
between that triple and some Euclidean triple, i.e., an equivalent definition of a
metric space would be to require that triples of a distance space be congruently
embeddable in Euclidean space. Similarly, a semi-metric space could be defined
as a distance space in which all pairs of points are congruently embeddable in
Euclidean space.

Hence it was reasonable that in 1932, W. A. Wilson [15] showed that, defining
a space M to be (metrically) convex provided for all p, q in M , p 6= q, there exists
an x in M such that px + xq = pq, p 6= x 6= q (where juxtaposition of the letters
denotes the distance of the points); and defining a space M to be externally convex
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provided for all p, q in M , p 6= q, there exists an r in M such that pq + qr = pr,
p 6= r 6= q, then a complete, convex, externally convex metric space is congruent
to a generalized euclidean space if and only if each quadruple of its points is
congruently embeddable in euclidean space.

Thus the question arose, can a complete, convex, externally convex metric
space be shown to be embeddable in euclidean space if a restricted set of quadruples
are assumed embeddable. A result by Jordan and von Neumann [12] in 1935 gave
an answer to that question in the narrower class of normed linear spaces. The
metric space equivalent of what they showed was that in a metric space in which
every quadruple of points that contains a linear triple, one point of which is the
midpoint of the remaining two, was embeddable in a Euclidean space, then the
metric space was a generalized euclidean space, i.e., a real inner product space.

In 1953 Blumenthal [5] presented a proof that in the environment of com-
plete, convex, externally convex metric spaces, the embeddability of quadruples
containing a linear triple was sufficient to imply that the space is congruent with
a generalized euclidean space. Restated, using terminology that became common
at that time, Blumenthal showed that the weak euclidean four point property was
sufficient to show that a complete, convex, externally convex metric space was gen-
eralized euclidean. Using this terminology, we say that Jordan and von Neuman
used the feeble euclidean four point property to show that normed linear spaces
with that property are euclidean. It was later shown that the feeble euclidean four
point property was also sufficient to imply that a complete, convex, externally
convex metric space was generalized euclidean.

Some further investigations restricted those quadruples assumed to be em-
beddable in the euclidean space to quadruples containing an isosceles triple. Some
of the definitions and results from [3], [8] and earlier papers are collected here.

A metric quadruple p, q, r, s is said to be of type

T1 if and only if it contains a linear triple, i.e., a triple in which one distance
is the sum of the other two. (weak)

T2 if and only if r is between q and s and qr = rs. (feeble)

T3 if and only if q, r, s are linear and pq = ps. (isosceles weak)

T4 if and only if r is between q and s and qr = rs, pq = ps. (isosceles feeble)

T5 if and only if r is between q and s while qr = 2rs, pq = pr. (external
isosceles feeble)

T6 if and only if qr = pr = pq and q, r, s are linear. (equilateral weak)

T7 if and only if qr = pr = pq and s is between q and r and qs = rs.
(equilateral feeble)
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A metric space is said to have, respectively, the weak, feeble, isosceles weak,
isosceles feeble, external isosceles feeble, equilateral weak, equilateral feeble eu-
clidean four point property according as every quadruple of type T1,T2,T3,T4,
T5,T6,T7 is congruently embeddable in the (two dimensional) euclidean space.

Over a period of years it has been shown that in a normed linear space, the
embeddability of quadruples of types T1,T2,T3,T4,T5 or T6 is sufficient to show
that the space is generalized euclidean, whereas for complete, convex, externally
convex metric spaces, embeddability of quadruples of types T1,T2,T3, or T5 is
sufficient.

A counterexample by L.M. Kelly in [6] showed that, even in the environment
of normed linear spaces, assuming the embeddability of quadruples of type T7 was
not sufficient to imply that the normed linear space was generalized Euclidean and
thus not sufficient in metric spaces.

In 1983 it was shown in [3] that the equilateral weak euclidean four point
property was sufficient to imply that the space was generalized euclidean. That is,
in a complete, convex, externally convex metric space, if every quadruple consisting
of an equilateral triple and a fourth point linear with some two points of the triple
is embeddable in Euclidean space, then the metric space is also embeddable, where
three points are said to be linear provided one of the distances is the sum of the
other two distances.

In 1982, papers [9] and [11] presented characterizations of generalized eu-
clidean spaces among metric spaces and normed linear spaces, respectively, using
quadruples that contain a linear triple but adding the restriction that some three
of the six distances between the four points are equal. The particular properties
that were considered in those papers are given below. Note that Property P2 is
the equilateral weak euclidean four point property.

P1 If p, q, r, s are elements of M with pq = pr = rs and if betweenness qrs
holds, then p, q, r, s is congruently embeddable in E2 (the euclidean plane).

P2 If p, q, r, s are elements of M with pq = pr = qr and q, r, s are linear, then
p, q, r, s is congruently embeddable in E2.

P3 If p, q, r, s are elements of M with pr = qr = sr and if betweenness qrs
holds, then p, q, r, s is congruently embeddable in E2

P4 If p, q, r, s are elements of M with pq = pr = sr and if rqs or rsq holds,
then p, q, r, s is congruently embeddable in E2

Three results from [9] and [11] are:

A complete, convex, externally convex metric space is a generalized
euclidean space if and only if it satisfies one of the following three con-
ditions:

P1 and P2 or P1 and P3 or P1 and P4.
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1. Intrinsic Properties

While over the years, as we see above, many characterizations of real inner product
spaces among metric spaces have been based on euclidean four point embedding
properties [1]and [5], in 1941 Busemann [7] showed that a finitely compact metric
space with a unique metric line joining each pair of distinct points was euclidean or
hyperbolic if and only if the equidistant locus of each pair of points contained the
metric segment joining the pair of points. As a consequence of this characterization,
so-called intrinsic four point properties have been found to characterize euclidean
and hyperbolic spaces among an appropriate class of metric spaces. In general
a metric space is said to satisfy an intrinsic four point property provided that
whenever two triples of points of the space are congruent (isometric), say (p, q, r)
congruent to (p′, q′, r′), (denoted p, q, r ∼= p′, q′, r′), this congruence (or isometry)
can be extended to a congruence of quadruples (p, q, r, s) and (p′, q′, r′, s′) for some
suitable choice of points s, s′ in the space. Thus, for example, as points collinear
with q and r, q′ and r′, respectively, as in [14], or as metric midpoints of the pairs
q and r, q’ and r’ respectively as in [13]. In each of these instances, the intrinsic
four point property under consideration (the congruence extension postulate in
[14] or the intrinsic feeble four point property in [13]) was shown to characterize
hyperbolic and euclidean spaces among finitely compact, convex, externally convex
metric spaces in which the metric line joining two distinct points was unique. In
[2], Andalafte generalized the results in [14] by restricting the triples (p, q, r) and
(p′, q′, r′) to isosceles triples.

In [3] a partial answer is given to some of the questions raised in [2]. In one
characterization, s and s′ are assumed to be the feet of p and p′ on the metric
lines determined by the other two points of each triple, i.e., points on those lines
which are closest to p and p′ respectively. In a second characterization in [3] it is
shown that the congruent triples p, q, r and p′, q′, r′ may be restricted to equilateral
triples, with s on the line determined by q, r, and s′ on the line determined by
q′, r′, an analogy to the equilateral weak four point embedding property. A third
characterization generalizes the external isosceles feeble four point property of [8].

The purpose of this paper is to find other intrinsic four point properties which
will combine to establish that a finitely compact, convex, externally convex metric
space with unique metric lines is euclidean or hyperbolic. Some of the intrinsic
four point properties we shall discuss and investigate are:

Intrinsic Property IP1 If p 6∈ L, q, r, s ∈ L, p′ 6∈ L′, q′, r′, s′ ∈ L′, with pq =
pr = rs, p′q′ = p′r′ = r′s′ and with qrs and q′r′s′ holding, if p, q, r ∼= p′, q′, r′,
(and hence rs = r′s′,) then the congruence p, q, r ∼= p′, q′, r′ can be extended
to p, q, r, s ∼= p′, q′, r′, s′.

Intrinsic Property IP2 (also called the intrinsic equilateral weak four point
property) If p, q, r and p′, q′, r′ are congruent equilateral triples of points and
if s ∈ L(q, r) and s′ ∈ L′(q′, r′) satisfy qs = q′s′ and rs = r′s′ then the
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congruence p, q, r ∼= p′, q′, r′ can be extended to a congruence p, q, r, s ∼=
p′, q′, r′, s′.

It was shown in [4] that this characterizes euclidean or hyperbolic spaces.

Intrinsic Property IP3 If p, q, r and p′, q′, r′ are congruent equilateral triples
and q, s, r ∼= q′, s′, r′ with qsr holding, then the congruence p, q, r ∼= p′, q′, r′

can be extended to p, q, r, s ∼= p′, q′, r′, s′.

Intrinsic Property IP4 If p 6∈ L, q, r, s ∈ L, p′ 6∈ L′, q′, r′, s′ ∈ L′, with
pq = pr = rs, p′q′ = p′r′ = r′s′, and with ∼ qrs and ∼ q′r′s′ holding,
if p, q, r ∼= p′, q′, r′ (so that rs = r′s′ and qs = q′s′), then the congruence
p, q, r ∼= p′, q′, r′ can be extended to p, q, r, s ∼= p′, q′, r′, s′.

Note that each of these properties contains the restriction that three of the six
distances of the quadruple must be equal. The purpose of this paper is to show
how the intrinsic four point properties IP1, IP2, IP3, IP4 combine to imply that
a finitely compact, convex, externally convex metric space with unique metric lines
is euclidean or hyperbolic.

2. Intrinsic Four Point Property IP1

In this section we shall explore the consequences of the Intrinsic Four Point Prop-
erty IP1 in a complete, convex, externally convex metric space M in which every
two points lie on exactly one metric line.

Theorem 2.1. Given a metric line L, p 6∈ L, fp a foot of p on L, q, r ∈ L such that
pfp = qfp = rfp and qfpr, then pq = pr.

Proof. If fp is an endpoint of a segment of feet of p on L, let sn, tn be points of
this segment of feet such that sn approaches fp and tn approaches fp with sn 6= tn
for any n. Apply IP1 to p, sn, tn, qn and p, tn, sn, rn, where rn and qn are chosen
near r and q, respectively, so that IP1 applies. This leads to pqn = prn for each
n and since sn, tn → fp it follows that qn → q and rn → r and the result follows
from the continuity of the metric.

In the event that fp is not an endpoint of a segment of feet, then there exist
sequences {sn}, {tn} of L such that snfptn holds with psn = ptn for all n, with
both sequences converging to fp. Introducing qn, rn as above, one can again use
IP1 and the continuity of the metric to prove pq = pr. �

Theorem 2.2. Given L a metric line of M , p 6∈ L, with f1, f2 distinct feet of p on
L, then letting q, r, denote the two points of L with distance pf1 from f1 and s, t
denote the two points of L with distance pf2 from f2, then the points q, r, s, t all
have the same distance from p.

Proof. By Theorem 2.1, pq = pr and ps = pt. Furthermore since p, f1, f2 ∼= p, f2, f1
is isosceles, applying IP1 yields pq = pt which proves the theorem. �
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Theorem 2.3. In a space M , if p 6∈ L and there exist two feet f1, f2 of p on L,
then f1f2 ≤ pf1 = pf2.

Proof. Supposing the contrary, there exist two feet f1, f2 of p such that f1f2 > pf1.
The set of feet of p on L is bounded, so without loss of generality, we may assume
that these two feet have the largest distance of any two feet. Then the function
f2t − pt, for t ∈ S(f1, f2) is positive at t = f1 and negative at t = f2. Therefore,
there exists an x ∈ S(f1, f2) such that px = xf2. If px = pf1, then let y denote the
point of L such that yf1x and yf1 = xf2. Therefore by IP1 since p, x, f1 ∼= p, f1, x
with xf2 = yf1 on L, it follows that py = pf2 and therefore y is a foot of p with
yf2 > f1f2, contrary to f1, f2 being feet of maximum distance. If px > pf1, then,
since the function pt − px is a continuous function for t ∈ L which is negative at
t = f1 and positive for tx > 2px and tf1f2, it follows that there exists a y ∈ L
such that yf1x, py = px and px = xf2. Therefore p, y, x ∼= p, x, y and hence by
IP1, letting z be a point of L such that zyx and zy = xf2, it follows that z is a
foot of p, a contradiction, which proves the theorem. �

Theorem 2.4. In a space M , the foot of a point p on a line L is unique.

Proof. Supposing the contrary, let f1, f2 be points of L that are distinct feet of p.
Then by Theorem 2.2, there exists q1, r1, s1, t1 of L such that q1s1 = q1f2−s1f2 =
f1f2 = r1t1 and pq1 = pr1 = ps1 = pt1. Since f1f2 ≤ pf1 by Theorem 2.3,
f1r1t1 and f1f2r1 hold. Since p, q1, r1 ∼= p, r1, q1 and choosing q2 ∈ L such that
q2q1f1 and q2q1 = pq1, it follows by applying IP1 to p, q1, r1, q2, there exists an
r2 ∈ L such that p, q2, r2 ∼= p, r2, q2. Similarly, p, s1, t1 ∼= p, t1, s1 implies there
exist s2, t2 ∈ L such that s2s1 = ps1 = t1t2. The labeling may be assumed so that
the points occur on L in the order q2s2q1s1f1f2r1t1r2t2, and, as in Theorem 2.2,
pq2 = pr2 = ps2 = pt2 with r1t1 = r2t2 = q1s1 = q2s2.

In general for arbitrary n ≥ 2, there exists qn, rn, sn, tn points of L following
the above pattern, where qn and rn are the points such that qnqn−1 = qn−1p =
rnrn−1 = rn−1p with qnqn−1f1 and f2rn−1rn holding, and similarly for sn, tn.
Thus it follows from IP1 that for each n, pqn = prn = psn = ptn , and that
tn−1rn = tntn−1− f1f2. Note also that tiri = f1f2, for all i ≥ 2. Then ptn− pr1 =
ptn−prn +prn−ptn−1 +ptn−1−prn−1 +prn−1−ptn−2 +ptn−2−prn−2 +prn−2−
ptn−3 + ptn−3 − prn−3 + · · ·+ pr3 − pt2 + pt2 − pr2 + pr2 − pt1. Note the equality
holds since pr1 = pt1. Hence ptn−pr1 = 0 +prn−ptn−1 + 0 +prn−1−ptn−2 + 0 +
prn−2−ptn−3 +0+ · · ·+pr3−pt2 +0+pr2−pt1 < rntn−1 +rn−1tn−2 +rn−2tn−3 +
· · ·+ r3t2 + r2t1 = tntn−1− f1f2 + tn−1tn−2− f1f2 + tn−2tn−3− f1f2 + · · ·+ t3t2−
f1f2 +t2t1−f1f2 = t1tn−(n−1)f1f2 = r1tn−(n−1)f1f2−f1f2 = r1tn−(n)f1f2.
Since tnr1 − pr1 < ptn, then tnr1 − 2pr1 < ptn − pr1 < r1tn − nf1f2. This implies

−2pr1 < −(n)f1f2, which fails for n >
2pr1
f1f2

, resulting in a contradiction. �

Theorem 2.5. In a space M , if p is a point not on a line L, then the distance px
between p and a point x ∈ L is monotone increasing as x recedes from a foot f of
p on L. (monotone property)
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Proof. If the contrary is assumed, there exist points q, r, s ∈ L which satisfy the
betweenness qrs and for which pq = pr = ps. Observe that the continuity of the
metric and the uniqueness of the foot of a point on a line (Theorem 2.4) imply
that the foot of x ∈ S(q, p)∪S(p, s) varies continuously with x. Moreover, the feet
of q and s, respectively, are q, s and, therefore, it follows that there is a point t
between p and q or between p and s whose foot on L is r. But then, assuming
betweenness ptq, we would have pr < pt + tr < pt + tq = pq, a contradiction to
pq = pr. A similar contradiction results if pts holds, completing the proof. �

Theorem 2.6. If L is a line of M , p 6∈ L, f the foot of p on L, then if fx1x2 holds,
then x2y(x2) < x2y(x1), where y(x) is the point of L with distance px from x in
the direction of f from x.

Proof. By the monotone property px2 > px1 but px2 − px1 < x1x2. Therefore
x2y(x2) = px2 < px1 +x1x2 = x1y(x1) +x1x2 = x2y(x1), as was to be shown. �

Theorem 2.7. If L is a line of M , p 6∈ L , then there exists a pair of points s, t ∈ L
such that the triple p, s, t is equilateral.

Proof. Let f denote the foot of p on L and let q, r denote the points of L such that
betweenness qfr holds and qf = rf = pf . Hence by Theorem 2.1, pq = pr. Then,
letting q∗, r∗ be points of L such that frr∗ and q∗qf with qq∗ = rr∗ = pq = pr,
by IP1, pq∗ = pr∗. For x ∈ S(f, r∗) denote by g(x) the point of L lying in the
direction of f from x such that g(x)x = xp. Consider the continuous function of x
given by g(x)p− xp. At x = f , since g(f) = q, the function is positive. At x = r∗,
we determine that g(r∗) ∈ S(r∗, q) since pr∗ < pr+ rr∗ < pf +fr+ rr∗ = qr∗ and
hence by the monotone property pg(r∗) < pr∗, and hence the function g(x)p− xp
is negative at x = r∗. Therefore there exist points s and t(= g(s)) for which p, s, t
is an equilateral triple, as required. �

In the next section, properties IP3 and IP4 will be introduced in addition to
IP1 to establish further results leading to new characterization results for euclidean
or hyperbolic spaces.

3. Intrinsic Four Point Properties IP1, IP3, IP4

Throughout this section, let M∗ denote a finitely compact, convex, externally
convex metric space with unique metric lines.

Theorem 3.1. In a space M∗, given an equilateral triple p, q, r with L the line
determined by q, r, then the midpoint of q, r is the foot of p on L.

Proof. Let x be any point in S(q, r) other than the midpoint of q, r. Then since
p, q, r ∼= p, r, q then by IP3, that congruence can be extended to a congruence
p, q, r, x ∼= p, r, q, x′ where qx′ = rx, qx = rx′, px = px′. (The point x′ is the
reflection of x about the midpoint of q, r.) It follows from the monotone property
that the base xx′ of every such isosceles triple pxx′ must contain the foot f . The
only point contained in every such segment is the midpoint of q, r. �
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Theorem 3.2. If L is a line of M∗, p 6∈ L, then there exists a pair of points s, t ∈ L,
unique except for order, such that the triple p, s, t is equilateral.

Proof. Given L a line and p 6∈ L, then by Theorem 2.7, there exists a pair of points
s, t ∈ L such that the triple p, s, t is equilateral. To show uniqueness, suppose
p, q′, r′ is another equilateral triple. Theorem 3.1 implies that the foot f of p on
L must be both the midpoint of q, r and the midpoint of q′, r′. Without loss of
generality we may assume betweenness r′q′q (so that q′r′r holds), which leads to
pq < pq′ + q′q = qq′ + q′r′ = qr′ < qr, a contradiction. �

Theorem 3.3. Given an equilateral triple p, q, r, if x, x′ ∈ S(q, r) such that xf =
x′f , where f is the foot of p on L(q, r), then px = px′.

Proof. Since f is the midpoint of q, r by Theorem 3.1, then by appropriate labeling
qx = qr − rx = rx′ = qr − qx′. Since x, x′ ∈ S(q, r), then by IP3 the congruence
p, q, r ∼= p, r, q can be extended so that p, q, r, x ∼= p, r, q, x′, which proves the
theorem. �

Theorem 3.4. In a space M∗ the Intrinsic property IP2 holds.

Proof. The proof will be broken down into a number of steps.

1. Let p, q, r and p′, q′, r′ be congruent equilateral triples of points and s ∈ L(q, r),
s′ ∈ L′(q′, r′) satisfying qs = q′s′ and rs = r′s′. It must be shown that the
congruence p, q, r ∼= p′, q′, r′ can be extended to a congruence p, q, r, s ∼= p′, q′, r′, s′,
that is, ps = p′s′.

Let f denote the foot of p on L(q, r) and f ′ denote the foot of p′ on L′(q′, r′).
Recall that, by Theorem 3.1, f is the midpoint of q, r and f ′ is the midpoint of
q′, r′. Define points u, u′ in L,L′, respectively, to be in the same direction from f
as s, s′ with fu = f ′u′ = pf . Note that pf = p′f ′ follows immediately from an
application of IP3 to equilateral triples p, q, r and p′, q′, r′ together with f, f ′. Let
v, v′ be the reflections of u, u′ about f, f ′. Similarly, let t, t′ be the reflections of
s, s′ about f, f ′. This basic setup will be used throughout the remainder of the
proof.

In the event that qsr holds, ps = p′s′ follows immediately by application of
IP3. It is, therefore, sufficient to show that the extension is possible when qrs
holds, which will be accomplished by examining the cases where rsu holds, s = r,
and rus holds.

2. It will first be shown that the congruence may be extended in the event that rsu
(and thus r′s′u′) holds. Consider the function zs− pz for z ∈ S(q, r) and observe
that this function is positive at z = q (because qs > qr = pq) and negative at
z = r (because pr > fp = fu > ru > rs). Thus, there exists x ∈ S(q, r) such
that xs = px. The fact that xs = px > pf = fu > fs implies the betweenness
qxf . Choose y ∈ S(f, r) so that Theorem 3.3 applies, which yields py = px.
Since p, x, y ∼= p, y, x and xs = yt, the application of IP4 leads to ps = pt.
Now, let x′, y′ ∈ L′ correspond to x, y ∈ L. It follows directly from IP3 that
p′x′ = px = py = p′y′, but x was chosen so that xs = px (and x′s′ = p′x′), so that
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xs = x′s′. Finally, as px = p′x′ = py = p′y′ = xs = x′s′, application of IP4 yields
ps = p′s′, as desired.

3. If s = u (so that s′ = u′), choose a sequence of points {sn} such that rsnu holds
and sn → u. Letting {s′n} be the corresponding sequence in L′ (so that s′n → u′), it
follows from the continuity of the metric and the preceding argument that ps = pt
and ps = p′s′.

4. In the remaining case both fus and f ′u′s′ hold. Relabel s1 = s and s′1 = s′

and observe that there must exist a point x such that fxs1 holds with px = xs1.
(The function px − xs1 is positive at x = s1 and negative at x = f .) Denote
this point by s2. If s2f > uf then by continuity of the metric, there exists a
point x such that fxs2 holds with px = xs2. Denote this point s3. This pro-
cess can be continued, determining unique points s1, s2, s3, s4, . . . , sn as long as
snf > uf . Notice that sn+1sn = psn+1 > pf > 0, so the process must ter-
minate in a finite number of steps. Let sn+1 be the first member of the se-
quence such that sn+1f ≤ uf = pf . Note that sn+1 cannot be f for then sn
must be u and hence its distance from f is not greater than uf . Given the
points s1, s2, s3, s4, . . . , sn, u, sn+1, f in the half-line of L determined by f, s1, let
t1, t2, t3, t4, . . . , tn, v, tn+1, f be a congruent set of points in the other half-line of L,
i.e. s1, s2, s3, s4, . . . , sn, u, sn+1, f ∼= t1, t2, t3, t4, . . . , tn, v, tn+1, f . Since qs = q′s′

and rs = r′s′ by hypothesis, and since by Theorem 3.1, f is the midpoint of
q, r and f ′ is the midpoint of q′, r′, it follows that the congruence of q, f, r with
q′, f ′, r′ can be extended to a congruence of L with L′ with “primed” points of L′

corresponding to “unprimed” points of L.

The point sn+1 must satisfy fsn+1r, sn+1 = r, rsn+1u, or sn+1 = u. These
subcases will be treated below to complete the proof of the theorem.

a. Suppose fsn+1r holds. Property IP3 implies psn+1 = p′s′n+1 and by Theorem
3.3, ptn+1 = psn+1. Now, by construction, psn+1 = sn+1sn and since ptn+1 =
psn+1 = tntn+1, it follows from IP1 that ptn = psn. Again, with ptn = psn =
tntn−1 = snsn−1, it follows that ptn−1 = psn−1. Continuing this process eventually
yields pti = psi for all i = 1, 2, . . . , n, n + 1.

Since sn+1 and tn+1 are elements of S(q, r), several applications of IP3

show that p, q, r, sn+1, tn+1
∼= p′, q′, r′, s′n+1, t

′
n+1. Then from p′s′n+1 = p′t′n+1 =

t′nt
′
n+1 = s′ns

′
n+1, it follows by IP1 that psn = p′t′n = p′s′n. Again from tn−1tn =

ptn = psn = sn−1sn and t′n−1t
′
n = p′t′n = p′s′n = s′n−1s

′
n, it follows from IP1 that

p′s′n−1 = psn−1. Repeating this process leads to ps1 = p′s′1, as desired.

b. Suppose sn+1 = r. We have the congruence p, sn+1, tn+1
∼= p′, s′n+1, t

′
n+1 since

sn+1 = r and tn+1 = q. The remainder of the argument follows as in the previous
scenario.

c. Suppose rsn+1u holds. The identities psn+1 = p′s′n+1 and ptn+1 = psn+1 follow
from the argument given in Step 2. As before, tntn+1 = snsn+1, so IP1 can be
used to prove psn = ptn and, repeating the argument, that psi = pti for all
i = 1, 2, . . . , n− 1.
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Incorporating the corresponding points on L′, from s′n+1s
′
n = sn+1sn =

tn+1tn = t′n+1t
′
n it follows by IP1 that psn = p′s′n. Using p′, s′n+1, t

′
n+1
∼= p′, t′n+1, s

′
n+1

and s′n+1s
′
n = t′n+1t

′
n we conclude from IP1 that ptn = p′t′n. Continuing this pro-

cess we obtain p′s′i = psi, for i = 1, 2, . . . , n− 1 and thus ps1 = p′s′1.

d. Suppose sn+1 = u. The identities psn+1 = p′s′n+1 and ptn+1 = psn+1 follow
from the argument given in Step 3. The remainder of the argument follows as in
the previous scenario. �

4. Characterization theorems

Since it was shown in [4] that in a space M the Intrinsic property IP2 characterizes
euclidean or hyperbolic space, Theorem 3.4 leads to the following result.

Theorem 4.1. In a complete, convex, externally convex metric space with unique
metric lines, Intrinsic Properties IP1, IP3, IP4 together characterize euclidean
or hyperbolic space.

We can define a stronger version of IP4 by replacing the restriction rs =
pq = pr, by rs ≤ pq = pr, namely: Intrinsic Property IP∗4: If p 6∈ L, q, r, s ∈ L, p′ 6∈
L′, q′, r′, s′ ∈ L′, with rs ≤ pq = pr, p′q′ = p′r′, and with ∼ qrs and ∼ q′r′s′

holding, if p, q, r ∼= p′, q′, r′ and both qs = q′s′ and rs = r′s′, then the congruence
p, q, r ∼= p′, q′, r′ can be extended to p, q, r, s ∼= p′, q′, r′, s′.

Then it is easily shown that a space M∗, that possesses property IP∗4 also
possesses property IP3. Thus we have the additional characterization theorem
below.

Theorem 4.2. In a complete, convex, externally convex metric space with unique
metric lines, properties IP1 and IP∗4 characterize euclidean or hyperbolic space.

If IP∗4 is further strengthened by eliminating the restriction concerning qrs
or ∼ qrs on L, we obtain Intrinsic Property IP∗∗4 : If p 6∈ L, q, r, s ∈ L, p′ 6∈
L′, q′, r′, s′ ∈ L′, with rs ≤ pq = pr, p′q′ = p′r′, if p, q, r ∼= p′, q′, r′ and both
qs = q′s′ and rs = r′s′ hold, then the congruence p, q, r ∼= p′, q′, r′ can be extended
to p, q, r, s ∼= p′, q′, r′, s′.

Then we observe that intrinsic property IP∗∗4 actually implies IP1 and we
thus obtain our final theorem.

Theorem 4.3. In a complete, convex, externally convex metric space with unique
metric lines, intrinsic property IP∗∗4 characterizes euclidean or hyperbolic space.
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