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Abstract. Motivated by the notion of orthogonal frames, we describe sufficient conditions
for the construction of orthogonal MRA wavelet frames in L2(R) from a suitable scaling
function. These constructions naturally lead to filter banks in `2(Z) with similar orthogo-
nality relations and, through these filter banks, the orthogonal wavelet frames give rise to a
vector-valued discrete wavelet transform (VDWT). The novelty of these constructions lies in
their potential for use with vector-valued data, where the VDWT seeks to exploit correlation
between channels. Extensions to higher dimensions are natural and the constructions corre-
sponding to the bidimensional case are presented along with preliminary results of numerical
experiments in which the VDWT is applied to color image data.

1. Introduction

Wavelets are an important tool in a variety of data processing applications including com-
pression, smoothing, and feature detection. Frequently, the data to be processed is multicom-
ponent in nature in the sense that several data values may correspond to a common location
in space or time. It is natural to view such multicomponent data as being vector-valued.
Sources of such vector-valued data include digitized stereo audio and color images, and wire-
less multiuser communication. Moreover, sampling of vector and tensor fields in medical
imaging or geophysics give rise to true vector-valued data.

It is reasonable to expect that an advantage could be achieved by utilizing a wavelet
transform which is inherently vector-valued, in correspondence with the nature of the data.
A number of approaches to vector-valued wavelet transforms exist in the literature [20, 7, 11].
The defining feature of these wavelet transforms is that they require matrix coefficients in
the filterbanks. Wavelet transforms using multiwavelets is a specific example of such an
approach. Multiwavelets can be constructed with more flexibility than traditional scalar
wavelets, giving rise to wavelets with desirable properties that are not possible with scalar
wavelets [12, 6, 16, 5]. However, the refinement equation for multiwavelets involves matrix
coefficients, because the scaling functions interact with each other. Because of the matricial
nature of the filterbanks, it has been found [19] that prefiltering is required to fully utilize the
previously mentioned advantages of multiwavelets. Moreover, the matrix equations involved
can be difficult to handle.

We present in this paper a vector-valued wavelet transform built on filterbanks that have
scalar coefficients, and does not have a prefiltering stage. The construction presented here
leads to a vector-valued discrete wavelet transform (VDWT), which arises from a number of
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wavelet frames satisfying certain orthogonality relationships. A more technical description of
the orthogonality relationships will be given in the subsection entitled “Motivation” below.

There are two defining features of the VDWT presented here. The first is that the fil-
terbanks can be easily constructed from ordinary scalar wavelets or filter banks and thus is
very flexible. The second is that the refinement equation associated to the VDWT can be
regarded as having matrix coefficients which are diagonal. Therefore, there is no need to solve
a complicated matrix valued refinement equation.

The outline of the paper is as follows. The remainder of this section is devoted to back-
ground material regarding frames and wavelets: definitions and results from the literature;
a detailed description of the motivation; and a short description of the main results. The
second section develops in detail the VDWT in one spatial dimension by presenting results
and algorithms for constructing wavelet frames and the corresponding filter banks with the
necessary orthogonality properties. The third section then mimics the second section in the
setting of two spatial dimensions. The third section also includes a discussion of preliminary
numerical results obtained by applying the VDWT constructed in this paper to color image
data.

1.1. Definitions. Frames for (separable) Hilbert spaces were introduced by Duffin and Scha-
effer [10] in their work on non-harmonic Fourier series. Later, Daubechies, Grossmann, and
Meyer revived the study of frames in [8], and since then, frames have become the focus of
active research in both theory and applications.

Let H be a separable Hilbert space and J a countable index set. A sequence X := {xj}j∈J ⊂
H is a frame if there exist positive real numbers C1, C2 such that for all v ∈ H,

(1) C1‖v‖2 ≤
∑

j∈J
|〈v, xj〉|2 ≤ C2‖v‖2.

If X satisfies the second inequality, then X is called a Bessel sequence, or simply Bessel. Given
X which is Bessel, define the analysis operator

ΘX : H → l2(J) : v 7→ (〈v, xj〉)j;

and the synthesis operator

Θ∗
X : l2(J) → H : (cj)j 7→

∑

j∈J
cjxj.

The analysis operator is well-defined and bounded by the frame inequality (1). Additionally,
the sum

∑
j cjxj converges (see [10]), and so the synthesis operator is also well-defined and

bounded, and a simple computation shows that it is in fact the Hilbert space adjoint operator
of the analysis operator.

If the Bessel sequence X satisfies the condition that Θ∗
XΘX = I, we say that X is a Parseval

frame. This condition also goes by the names of normalized tight or 1-tight frames.
Given two Bessel sequences X and Y := {yj}j∈J, define the operator

Θ∗
YΘX : H → H : v 7→

∑

j∈J
〈v, xj〉yj;

this operator is sometimes called a “Mixed Dual Gramian”. Note that again by the Bessel
condition of both sequences, it is a well-defined and bounded operator. Typically in frame
theory, one wants the above operator to be the identity; if this is the case, then the Bessel
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sequences X and Y are actually frames and are called dual frames. Our motivation here is
for this operator to be the 0 operator.

Definition 1.1.1. Suppose X and Y are Bessel sequences in H and K, respectively, and both
are indexed by J. If

Θ∗
YΘX :=

∑

j∈J
〈·, xj〉yj = 0,

the Bessel sequences are said to be orthogonal.

This idea has been studied by Han and Larson [13], where the Bessel sequences were
assumed to be frames and were called strongly disjoint, and also by Balan, et. al. in [1] and
[2] for the Gabor (Weyl-Heisenberg) frame case.

Definition 1.1.2. For the purposes of this paper, we will define the Fourier transform for
f ∈ L1(Rd) ∩ L2(Rd) to be

f̂(ξ) =

∫
f(x)e−2πix·ξdx.

We shall consider the affine system in d spatial dimensions using dilation by 2 times the
identity matrix:

D : L2(Rd) → L2(Rd) : f(·) 7→
√

2
d
f(2·).

For α ∈ Rd, let Tα denote the unitary translation operator

Tα : L2(Rd) → L2(Rd) : f(·) 7→ f(· − α).

Definition 1.1.3. If {ψ1, . . . , ψr} ⊂ L2(Rd), the affine system generated by {ψ1, . . . , ψr} is
the collection {DnTlψk : n ∈ Z; l ∈ Zd; k = 1, . . . , r}. We shall say that {ψ1, . . . , ψr}
generates a wavelet frame if the affine system generated by it is a frame for L2(Rd). We say
{ψ1, . . . , ψr} generates an affine Bessel system if the affine system generated by it is a Bessel
sequence in L2(Rd).

Definition 1.1.4. By a filter we mean an element of L∞([0, 1)d); i.e. m is a filter if m ∈
L∞([0, 1)d). We shall call m a low-pass filter if m(0) = 1, and we shall call m a high-pass
filter if m(0) = 0. Though not necessary, we will assume that every filter is continuous on a
neighborhood of 0, so there will be no ambiguity in these definitions.

1.2. Motivation. The main motivation of the present paper is to construct a wavelet trans-
form for vector-valued data via orthogonal wavelet frames. Suppose we have a function
(signal) on R taking values in a finite dimensional space–for convenience, say CN . The func-
tion f can be identified with its scalar valued components: f = (f1, . . . , fN). Supposing that
the coordinate functions are measurable and square integrable, then f ∈ L2(R)⊕· · ·⊕L2(R)
(with N summands). The standard wavelet transform algorithm for f is to take a wavelet ba-
sis {DnTlψ : n, l ∈ Z} for L2(R) and perform the wavelet decomposition on each component.
Thus, the wavelet transform is

Θψ :
N⊕

k=1

L2(R) →
N⊕

k=1

l2(Z2) : f 7→ (〈f1, D
nTlψ〉, . . . , 〈fN , DnTlψ〉)n,l.
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Instead, we propose to do the following: construct N frame wavelets ψ1, . . . , ψN such that
each wavelet frame is Parseval and any two wavelet frames are orthogonal. Then, denoting
Ψ = (ψ1, . . . , ψN), the wavelet transform becomes

(2) ΘΨ :
N⊕

k=1

L2(R) → l2(Z2) : f 7→ (
N∑

k=1

〈fk, D
nTlψk〉)n,l.

So, we are doing N wavelet transforms, each one distinct on the components of f , and then
summing the outputs of those transforms based on scale and translation. The rationale for
doing this is the following theorem:

Theorem 1.2.1. Let Hk be a Hilbert space for k = 1, . . . , N ; and suppose {xk
j}j∈J ⊂ Hk is

a Bessel sequence for each k. Then the sequence {x1
j ⊕ · · · ⊕ xN

j }j∈J is a Parseval frame for
H1 ⊕ · · · ⊕HN if and only if the following two conditions hold:

1. for each k, {xk
j}j∈J is a Parseval frame for Hk;

2. for k, l = 1, . . . , N with k 6= l, {xk
j}j∈J and {xl

j}j∈J are orthogonal.

Proof. This is a known result, but we include the proof for completeness, since it is funda-
mental to the construction of the VDWT. For each coordinate k of H1 ⊕ · · · ⊕ HN , let Pk

denote the orthogonal projection onto 0⊕ · · · ⊕Hk ⊕ · · · ⊕ 0.
(⇒) If {x1

j ⊕ · · ·⊕xN
j }j∈J is a Parseval frame for H1⊕ · · ·⊕HN , then for each k, {xk

j}j∈J is

a Parseval frame for Hk, since {xk
j}j∈J is the image of a Parseval frame under the projection

Pk. Moreover, if l 6= k, then for every v ∈ H1 ⊕ · · · ⊕HN , we have

0 = PlPkv

= Pl

(∑

j∈Z
〈Pkv, (x1

j ⊕ · · · ⊕ xN
j )〉(x1

j ⊕ · · · ⊕ xN
j )

)

=
∑

j∈Z
〈Pkv, (0⊕ · · · ⊕ xk

j ⊕ · · · ⊕ 0)〉(0⊕ · · · ⊕ xl
j ⊕ · · · ⊕ 0)

= 0⊕ · · · ⊕
∑

j∈Z
〈Pkv, xk

j 〉xl
j ⊕ · · · ⊕ 0.

Whence, {xk
j} and {xl

j} are orthogonal frames.
(⇐) Conversely, if the conditions of both 1. and 2. are satisfied, then for every v ∈

H1 ⊕ · · · ⊕HN ,

∑

j∈Z
〈v, (x1

j ⊕ · · · ⊕ xN
j )〉(x1

j ⊕ · · · ⊕ xN
j ) =

(∑

j∈Z

N∑

k=1

〈Pkv, xk
j 〉x1

j ⊕ · · · ⊕
∑

j∈Z

N∑

k=1

〈Pkv, xk
j 〉xN

j

)

=

(∑

j∈J
〈P1v, x1

j〉x1
j ⊕ · · · ⊕

∑

j∈J
〈PNv, xN

j 〉xN
j

)

= v.

¤
We have therefore that, under the orthogonality assumptions on ψ1, . . . , ψN , the collection

{
√

2
n
(ψ1(2

n · −l), . . . , ψN(2n · −l)) : n, l ∈ Z}
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forms a Parseval frame for L2(R)⊕· · ·⊕L2(R). Hence, we can naturally think of Ψ as being a
vector-valued wavelet and ΘΨ as being a vector-valued wavelet transform, or more precisely,
a wavelet transform for vector-valued data.

For an alternate construction of wavelets in L2(R)⊕ · · · ⊕ L2(R), see [3].

1.3. Main Results. The two main results of the paper are an algorithm for the construction
of orthogonal wavelet frames and a construction of the VDWT. The construction of orthogonal
wavelet frames in one spatial dimension is given in Theorems 2.1.1 and 2.1.2, where the basic
ingredients consists of a fixed wavelet basis and a paraunitary matrix of an appropriate
size. The number of orthogonal wavelet frames that can be constructed is arbitrary, and is
determined by the size of the paraunitary matrix. Analogous constructions for two spatial
dimensions are given in Theorems 3.1.1 and 3.1.2.

Theorems 2.2.4 and 2.2.6 give parallel constructions for orthogonality of filterbanks. There
is a technical restriction, described in Theorem 2.2.3, about the low pass filter of a filterbank.
Despite this restriction, we construct the VDWT in Definition 2.2.5 using filterbanks which
satisfy the orthogonality condition of Definition 2.2.1. We note here that in Definition 2.2.5,
several of the filter outputs are summed together, which is not done in normal DWT’s. This
summation corresponds to the direct sum nature of vector-valued data (Equation 2 Theorem
1.2.1).

1.4. Background Results. We present in this subsection some previously published results
which we shall need on duality and orthogonality of wavelet frames.

Theorem 1.4.1. Suppose {ψ1, . . . , ψr} and {η1, . . . , ηr} generate wavelet frames in L2(Rd).
The frames are dual if and only if

1.
r∑

k=1

∑

j∈Z
ψ̂k(2

jξ)η̂k(2jξ) = 1 a.e. ξ;

2. for every q ∈ Zd \ 2Zd,
r∑

k=1

∞∑
j=0

ψ̂k(2
jξ)η̂k(2j(ξ + q)) = 0 a.e. ξ.

In particular, {ψ1, . . . , ψr} generates a Parseval wavelet frame if the two equations hold for
ηk = ψk.

Proof. See [15, 4]. ¤
Theorem 1.4.2. Suppose {ψ1, . . . , ψr} and {η1, . . . , ηr} generate affine Bessel sequences in
L2(Rd); they are orthogonal if and only if

1.
r∑

k=1

∑

j∈Z
ψ̂k(2

jξ)η̂k(2jξ) = 0 a.e. ξ;

2. for every q ∈ Zd \ 2Zd,
r∑

k=1

∞∑
j=0

ψ̂k(2
jξ)η̂k(2j(ξ + q)) = 0 a.e. ξ.
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Proof. See [18]. ¤

The following theorem is stated for one spatial dimension only.

Theorem 1.4.3 (Unitary Extension Principle [9]). Suppose φ ∈ L2(R) is a refinable function,
with low pass filter m(ξ), which satisfies the following two conditions:

1. limξ→0 φ̂(ξ) = 1;

2.
∑

l∈Z |φ̂(ξ + l)|2 ∈ L∞(R).

Let m1(ξ), . . . , mr(ξ) ∈ L∞([0, 1)) such that the matrix

M(ξ) =




m(ξ) m(ξ + 1/2)
m1(ξ) m1(ξ + 1/2)

...
...

mr(ξ) mr(ξ + 1/2)




satisfies the matrix equation

M∗(ξ)M(ξ) = I2

for almost every ξ. Then, the affine system generated by {ψ1, . . . , ψr}, where

ψ̂k(2ξ) = mk(ξ)φ̂(ξ), k = 1, . . . , r,

is a Parseval wavelet frame.

2. Orthogonal Wavelet Frames in One Spatial Dimension

In this section we shall construct a vector-valued wavelet transform in one spatial dimen-
sion. We present characterization and construction results for orthogonal wavelet frames in
L2(R). We then discuss the analogous results for filter banks, and describe the VDWT.

We shall restrict our attention to dilation by 2. We assume that all refinable functions
φ ∈ L2(R) satisfy the conditions of the Unitary Extension Principle, and that all high pass
filters mk (k 6= 0) are such that the affine system generated by ψ, defined by

ψ̂k(2ξ) = mk(ξ)φ̂(ξ),

is a Bessel system. Given a collection of filters M = {m0,m1, . . . , mr} ⊂ L∞([0, 1)) let M(ξ)

and M̃(ξ) be the matrices

(3) M(ξ) =




m0(ξ) m0(ξ + 1/2)
m1(ξ) m1(ξ + 1/2)

...
...

mr(ξ) mr(ξ + 1/2)


 and M̃(ξ) =




m1(ξ) m1(ξ + 1/2)
m2(ξ) m2(ξ + 1/2)

...
...

mr(ξ) mr(ξ + 1/2)


 .

In the remainder of the paper, the filter banks will be composed of a single low-pass filter
(with index 0) and a number of high-pass filters.
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2.1. Construction of Orthogonal Wavelet Frames. We present an algorithm for the
construction of arbitrarily many orthogonal wavelet frames. The wavelet frames are MRA
based (sometimes called framelets [9]), and the construction utilizes the Unitary Extension
Principle.

Theorem 2.1.1. Suppose φ ∈ L2(R) be a refinable function which satisfies the conditions
of the unitary extension principle, and let m(ξ) be the associated low pass filter. Let M =
{m0(ξ), m1(ξ), . . . ,mr(ξ)} and N = {n0(ξ), n1(ξ), . . . , nr(ξ)} be filter banks with m0 = n0 =
m. Suppose that the following matrix equations hold:

1. M∗(ξ)M(ξ) = I2 for almost every ξ;
2. N∗(ξ)N(ξ) = I2 for almost every ξ;

3. M̃∗(ξ)Ñ(ξ) = 0 for almost every ξ.

Let ψ̂k(2ξ) = mk(ξ)φ̂(ξ) and η̂k(2ξ) = nk(ξ)φ̂(ξ), 1 ≤ k ≤ r. Then {ψ1, . . . , ψr} and
{η1, . . . , ηr} generate orthogonal Parseval wavelet frames.

Proof. That {ψ1, . . . , ψr} and {η1, . . . , ηr} generate Parseval wavelet frames follows from the
Unitary Extension Principle (Theorem 1.4.3). We use the characterization equations of The-
orem 1.4.2 to prove orthogonality. Consider

r∑

k=1

∑

j∈Z
ψ̂k(2

jξ)η̂k(2jξ) =
r∑

k=1

∑

j∈Z
mk(2

jξ)φ̂(2jξ)nk(2jξ)φ̂(2jξ)

=
∑

j∈Z
|φ̂(2jξ)|2

r∑

k=1

mk(2
jξ)nk(2jξ)

= 0

for almost every ξ by item 3 above. Note that the order of summation can be reversed since
the sum is absolutely summable: for each k, by Hölder’s inequality and by virtue of the fact
that ψk and ηk generate Bessel sequences,∑

j∈Z
|ψ̂k(2

jξ)η̂k(2jξ)| ≤
∑

j∈Z
|ψ̂k(2

jξ)|2
∑

j∈Z
|η̂k(2

jξ)|2 < ∞.

See [14, Theorem 8.3.2].
Likewise, for q odd,

r∑

k=1

∞∑
j=0

ψ̂k(2
jξ)η̂k(2j(ξ + q)) =

r∑

k=1

∞∑
j=0

mk(2
j−1ξ)φ̂(2j−1ξ)nk(2j−1(ξ + q))φ̂(2j−1(ξ + q))

=
∞∑

j=0

φ̂(2jω)φ̂(2j(ω + q/2))
r∑

k=1

mk(2
jω)nk(2jω + 2j−1q)

= 0

again by item 3, where ω = ξ/2. ¤
The above proof shows that each of the terms indexed over j in the sums of Theorem 2.1.1

is 0, i.e. for each j,
r∑

k=1

ψ̂k(2
jξ)η̂k(2jξ) = 0 and

r∑

k=1

ψ̂k(2
jξ)η̂k(2j(ω + q)) = 0.
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We call this a “local” orthogonality condition. In subsection 2.3 we shall discuss non-local
orthogonality.

The following theorem describes a general construction algorithm for locally orthogonal
wavelet frames.

Theorem 2.1.2. Suppose K(ξ) is a r×r paraunitary matrix with 1/2-periodic entries ai,j(ξ);
let Kj(ξ) denote the j-th column. Suppose m0 and m1 are low and high pass filters, respec-
tively, for an orthonormal wavelet basis with scaling function φ. For j = 1, . . . , r, define new
filters via 


nj

1(ξ)
...

nj
r(ξ)


 = Kj(ξ)m1(ξ).

Then, for j = 1, . . . , r, the affine systems generated by {ψj
l : l = 1, . . . , r} obtained via

(4) ψ̂j
l (2ξ) = nj

l (ξ)φ̂(ξ)

are Parseval frames and are pairwise orthogonal.

Proof. We verify that the construction satisfies the conditions of Theorem 2.1.1. We first
verify the unitary extension principle. Letting Mj = {m0, n

j
1, . . . , n

j
r}, we must show that

M∗
j (ξ)Mj(ξ) = I2, 1 ≤ j ≤ r,

where Mj is defined according to (3). We examine the entries of M∗
j (ξ)Mj(ξ) individually.

Since the columns of K(ξ) have length 1, it follows that

[
M∗

j (ξ)Mj(ξ)
]
1,1

= |m0(ξ)|2 +
r∑

k=1

|ak,j(ξ)m1(ξ)|2

= |m0(ξ)|2 +
r∑

k=1

|ak,j(ξ)|2|m1(ξ)|2

= |m0(ξ)|2 + |m1(ξ)|2
= 1.

Likewise,

[
M∗

j (ξ)Mj(ξ)
]
2,2

= |m0(ξ + 1/2)|2 +
r∑

k=1

|ak,j(ξ + 1/2)m1(ξ + 1/2)|2 = 1.

Now, since the entries of K(ξ) are 1/2-periodic,

[
M∗

j (ξ)Mj(ξ)
]
1,2

= m0(ξ)m0(ξ + 1/2) +
r∑

k=1

ak,j(ξ)m1(ξ)ak,j(ξ + 1/2)m1(ξ + 1/2)

= m0(ξ)m0(ξ + 1/2) +
r∑

k=1

|ak,j(ξ)|2m1(ξ)m1(ξ + 1/2)

= m0(ξ)m0(ξ + 1/2) + m1(ξ)m1(ξ + 1/2)

= 0.

Finally, the (2, 1)-entry must be zero by conjugate symmetry of M∗
j (ξ)Mj(ξ).
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For orthogonality, using the notation of Equation 3, we have for j = 1, . . . , r,

M̃j(ξ) =




nj
1(ξ) nj

1(ξ + 1/2)
...

...
nj

r(ξ) nj
r(ξ + 1/2)


 = Kj(ξ)

(
m1(ξ) m1(ξ + 1/2)

)
.

Thus, we have for j 6= j′

M̃∗
j (ξ)M̃j′(ξ) =

(
m1(ξ)

m1(ξ + 1/2)

)
K∗

j (ξ)Kj′(ξ)
(
m1(ξ) m1(ξ + 1/2)

)
= 0,

since the product of the middle two matrices is 0 by the orthogonality of the columns of
K(ξ). ¤

The following proposition is directly related to the construction algorithm in Theorem
2.1.2. The multiplication of the high pass filter by the entries of the paraunitary matrix
will increase the length of the filter and, consequently, the support of the wavelet frames,
which is undesirable. Theorem 2.1.2 assumes the entries of the paraunitary matrix are 1/2
periodic, increasing the length of the filter by at least 2. Except for constant entries, this 1/2
periodicity is necessary.

Proposition 2.1.3. If φ is compactly supported, the paraunitary matrix K in Theorem 2.1.2
must have entries which are 1/2-periodic.

Proof. The proof will follow the notation of Theorem 2.1.2. Since we require that the matrix

M(ξ) =




m0(ξ) m0(ξ + 1/2)
a1,1(ξ)m1(ξ) a1,1(ξ + 1/2)m1(ξ + 1/2)

...
...

a1,N(ξ)m1(ξ) a1,N(ξ + 1/2)m1(ξ + 1/2)




satisfy the equation

M∗(ξ)M(ξ) = I2 a.e. ξ,

we must have that for almost every ξ,

0 = m0(ξ)m0(ξ + 1/2) + m1(ξ)m1(ξ + 1/2)
N∑

j=1

a1,j(ξ)a1,j(ξ + 1/2).

Since we also have that

0 = m0(ξ)m0(ξ + 1/2) + m1(ξ)m1(ξ + 1/2),

we must have that either m1(ξ)m1(ξ + 1/2) = 0 or
∑N

j=1 a1,j(ξ)a1,j(ξ + 1/2) = 1. If φ
is compactly supported, then the first possibility is eliminated except possibly on a set of
measure 0, whence the second must hold almost everywhere. Now, the sum is precisely the
inner product of the two vectors (a1,j(ξ)) and (a1,j(ξ + 1/2)), each of which has length 1.
Applying Cauchy-Schwarz yields that the two vectors must be identical for almost every
ξ. ¤
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2.2. Vector-valued Discrete Wavelet Transform. This section is concerned with the dis-
crete implementation of the orthogonal wavelet frames discussed above, which will ultimately
lead to the definition of a vector-valued discrete wavelet transform for multichannel data.
Naturally, filter banks will play an important role in the developments of this section, so we
shall begin with essential notation before moving on to describe a notion of orthogonality for
filter banks and, shortly thereafter, filter bank counterparts to the results of Theorems 2.1.1
and 2.1.2.

Figure 1 depicts the block diagram for a filtering scheme with analysis filterbank M =
{m0,m1, . . . , mr} and synthesis filterbank N = {n0, n1, . . . , nr}. The notation ↓2 represents
downsampling by 2 in `2(Z). Similarly, ↑2 will represent upsampling by 2 in l2(Z). We
will succumb to a slight abuse of notation in that no distinction shall be made between the
sequence corresponding to a filter and its continuous domain counterpart.

f - m0 µ´
¶³
↓2

- g0

Analysis︷ ︸︸ ︷ Synthesis︷ ︸︸ ︷

- m1 µ´
¶³
↓2

- g1

...
...

...
...

...
...
- mr µ´

¶³
↓2

- gr

- ↑2µ´
¶³

n0
-

- ↑2µ´
¶³

n1
-

6

- ↑2µ´
¶³

nr

6...

j+

j+- ±°
²¯
×2 - f̃

Figure 1. Block-Diagram of a filter bank.

For f ∈ `2(Z), it is well known that the outputs from the analysis stage may be expressed
as

ĝ`(ξ) = 1/2
[
f̂(ξ/2)m`(ξ/2) + f̂(ξ/2 + 1/2)m`(ξ/2 + 1/2)

]
, 0 ≤ ` ≤ r,

while the output of the filter bank after synthesis is given by

ˆ̃f(ξ) = 2
r∑

`=0

ĝ`(2ξ)n`(ξ).

Expanding this last equality in terms of f̂ and the filter bank M, we arrive at

(5) ˆ̃f(ξ) =
r∑

`=0

[
m`(ξ)n`(ξ)f̂(ξ) + m`(ξ + 1/2)n`(ξ)f̂(ξ + 1/2)

]
.

Definition 2.2.1. We say that the filter banks M and N are orthogonal if, for any input
vector, the composition of the analysis stage of M with the synthesis stage of N yields 0, i.e.
for any input f ∈ `2(Z), f̃ = 0.

Given a filter bank M = {m0,m1, . . . ,mr}, the matrices M(ξ) and M̃(ξ) will again be
defined according to (3). The following characterization of orthogonality for the filterbanks
M and N follows immediately from (5) and the 1-periodicity of the filters.

Theorem 2.2.2. The filter banks M = {m0, . . . ,mr} and N = {n0, . . . , nr} are orthogonal
if and only if M∗(ξ)N(ξ) = 0 holds a.e. ξ.
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The following result shows that we cannot hope to achieve complete orthogonality for filter
banks that include a single low pass filter, as is the case of our construction of orthogonal
wavelet frames.

Theorem 2.2.3. Suppose M = {m0, . . . , mr},N = {n0, . . . , nr} are filter banks in which m0

and n0 are low pass filters and m` and n` are high pass filters, 1 ≤ ` ≤ r. If each filter is
continuous on a neighborhood of ξ = 0, then the filter banks M and N cannot be orthogonal.

Proof. It follows from Theorem 2.2.2 that a necessary condition for orthogonality is
r∑

`=0

m`(ξ)n`(ξ) = 0 a.e. ξ.

The definitions of low and high pass filters imply that the above sum is 1 for ξ = 0. Moreover,
the fact that each filter is continuous on a neighborhood of ξ = 0 guarantees that the sum is
non-zero on some set of positive measure. ¤

It is natural to consider the counterparts to Theorems 2.2.2 and 2.2.3 for undecimated filter
banks. In the undecimated case, the condition for orthogonality in Theorem 2.2.2 is replaced
by

r∑

`=0

m`(ξ)n`(ξ) = 0 a.e. ξ,

from which a counterpart to Theorem 2.2.3 follows immediately. We leave the details to the
reader.

In the absence of complete orthogonality we can still desire that the high-pass portions
of two filter banks be orthogonal and, in fact, we can attempt to simultaneously achieve
perfect reconstruction following the model provided by the orthogonal wavelet frames of
Theorem 2.1.1. It is a familiar fact that a filter bank M = {m0, . . . , mr} has the perfect

reconstruction property (in the sense that f̃ = f in Figure 1 with n` = m`, 0 ≤ ` ≤ r)
provided that M∗(ξ)M(ξ) = I2 for almost every ξ. Combining this fact with Theorem 2.2.2
we have the foundation for a discrete wavelet transform for multichannel data.

Theorem 2.2.4. Let M = {m0, . . . , mr} and N = {n0, . . . , nr} be filterbanks in which m0

and n0 are low pass filters and m` and n` are high pass filters for ` = 1, . . . , r. Suppose that
M and N satisfy the following matrix equalities:

1. M∗(ξ)M(ξ) = I2 for almost every ξ;
2. N∗(ξ)N(ξ) = I2 for almost every ξ;

3. M̃∗(ξ)Ñ(ξ) = 0 for almost every ξ.

Then the filter banks M and N each have the perfect reconstruction property and the high-pass
filters {m1, . . . , mr} and {n1, . . . , nr} form orthogonal filter banks.

Comparison of the hypotheses of Theorem 2.2.4 with those of Theorem 2.1.1 reveals the
fact that we are indeed describing the discrete counterpart to the orthogonal wavelet frames
of Theorem 2.1.1. In fact, from Theorem 2.2.4 comes the notion of a Vector-valued Discrete
Wavelet Transform (VDWT).

Definition 2.2.5. Let M` = {m`
0, . . . , m

`
s} be filterbanks for 1 ≤ ` ≤ r. Let f0 = ⊕r

`=1f0,` ∈
⊕r

`=1`
2(Z). The Vector-valued Discrete Wavelet Transform (VDWT) of f0 to scale J > 0
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consists of:
fJ = ⊕r

`=1fJ,` and gj,k, 1 ≤ j ≤ J, 1 ≤ k ≤ s,

where

(6) fj+1,` =↓2 (fj,` ∗ m̃`
0) and gj+1,k =

r∑

`=1

↓2 (fj,` ∗ m̃`
k).

In Definition 2.2.5, m̃`
k is the involution of the filter m`

k in the `2(Z) sense, which corresponds
to conjugation under the Fourier transform. Note that the involution of a sequence h =
{hk}k∈Z is h̃ = {h−k}k∈Z.

Now suppose that each filterbank, M`, in Definition 2.2.5 has the perfect reconstruction
property and, moreover, that the high-pass portions of the filter banks are pairwise orthogonal,

i.e., M̃∗
` (ξ)M̃`′(ξ) = 0 for almost every ξ whenever ` 6= `′. In this case, the VDWT may be

inverted using the identity:

(7) fj−1,` = 2

[
↑2 fj,` ∗m`

0 +
s∑

k=1

↑2 gj,k ∗m`
k

]
, 1 ≤ j ≤ J, 1 ≤ ` ≤ r.

Theorem 2.2.6. Suppose M` = {m`
0, . . . ,m

`
s}, 1 ≤ ` ≤ r are filterbanks which pairwise

satisfy the hypotheses of Theorem 2.2.4. For any f0 = ⊕r
`=1f0,` ∈ ⊕r

`=1`
2(Z),

f0,` = 2

[
↑2 f1,` ∗m`

0 +
s∑

k=1

↑2 g1,k ∗m`
k

]
, 1 ≤ ` ≤ r

where f1,` and g1,k are given in Equation 6.

Proof. Fix `0 such that 1 ≤ `0 ≤ r. We reconstruct f0,`0 via a filter scheme similar to that
of Figure 1 in which g0 = f1,`0 and gk = g1,k, 1 ≤ k ≤ s, where the synthesis filters nk

are replaced by m`0
k of the filter bank M`0 . The filter output in this case is then described

analogously to that of (5),

ˆ̃f0,`0(ξ) = 2

[
f̂1,`0(ξ)m

`0
0 (ξ) +

s∑

k=1

ĝ1,k(ξ)m
`0
k (ξ)

]

= m`0
0 (ξ)m`0

0 (ξ)f̂0,`0(ξ) + m`0
0 (ξ + 1/2)m`0

0 (ξ)f̂0,`0(ξ + 1/2)

+
s∑

k=1

r∑

`=1

[
m`

k(ξ)m
`0
k (ξ)f̂0,`(ξ) + m`

k(ξ + 1/2)m`0
k (ξ)f̂0,`(ξ + 1/2)

]

=
s∑

k=0

[
m`0

k (ξ)m`0
k (ξ)f̂0,`0(ξ) + m`0

k (ξ + 1/2)m`0
k (ξ)f̂0,`0(ξ + 1/2)

]

= f̂0,`0(ξ).

In this calculation the second to last equality uses the pairwise orthogonality of the high-pass
portions of the filterbanks and the last equality uses the perfect reconstruction property of
M`0 . ¤

In Definition 2.2.5 we have allowed for the possibility that the number of high-pass filters
is not equal to the number of channels of the data. This allows room for redundant filterbank
representations through the VDWT. (Note the following theorem, which establishes a lower
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bound on the number of filters based on the number of channels.) It is also perfectly reason-
able to consider different sets of filters for analysis and synthesis; however, we have omitted
any discussion of such dual filterbanks for clarity of presentation. We note that Theorem
2.1.2 provides a simple and flexible method for constructing filterbanks for use in the VDWT
from any standard orthonormal wavelet filterbank. This approach will be discussed in greater
detail below.

Theorem 2.2.7. If the VDWT corresponding to the filterbanks M` = {m`
0, . . . , m

`
s}, 1 ≤ ` ≤

r on ⊕r
k=1`

2(Z) has perfect reconstruction via Equation 7, then s ≥ r.

Proof. The fact that the filter banks provide perfect reconstruction via (7) implies that,
pairwise, the filter banks satisfy the filter conditions of Theorem 2.2.4. Namely, for almost

every ξ, M∗
` (ξ)M`(ξ) = I2, 1 ≤ ` ≤ r, and M̃∗

` (ξ)M̃`′(ξ) = 0 when 1 ≤ ` 6= `′ ≤ r. For
ξ ∈ [0, 1] let

v`(ξ) =




m`
0(ξ)
...

m`
s(ξ)


 ∈ Cs+1 and ṽ`(ξ) =




m`
1(ξ)
...

m`
s(ξ)


 ∈ Cs, 1 ≤ ` ≤ r.

The perfect reconstruction property guarantees for almost every ξ that v`(ξ) and v`(ξ + 1/2)
form an orthonormal pair of vectors in Cs+1. Moreover, the pairwise orthogonality condition
on the filter banks M`, 1 ≤ ` ≤ r implies that the collection {ṽ`(ξ)}r

`=1 ⊆ Cs is orthogonal
for almost every ξ. Provided that each of the vectors ṽ`(ξ) is nonzero almost everywhere,
it follows from dimensional considerations that s ≥ r. Suppose by way of contradiction it
happens that some ṽ`(ξ) is zero for almost every ξ. Then m`

0(ξ) = 1 on a set of positive
measure for some fixed `, contradicting the fact that v`(ξ) and v`(ξ + 1/2) are orthonormal
almost everywhere. Thus, the collection {ṽ`(ξ)}r

`=1 consists of r nonzero, orthogonal vectors
for almost every ξ, implying s ≥ r. ¤

Let us illustrate the differences for the VDWT versus the ordinary DWT for two-channel
data on Z, as one might find in stereo audio applications. Let f1 ⊕ f2 ∈ `2(Z) ⊕ `2(Z). To
apply an ordinary Discrete Wavelet Transform (DWT), induced by filters M = {m0,m1}, to
f1 ⊕ f2, one applies the analysis stage of the filtering scheme of Figure 1 to both f1 and f2.
The result after the first stage of analysis consists of four `2(Z) sequences:

↓2 (f1 ∗ m̃0), ↓2 (f2 ∗ m̃0), ↓2 (f1 ∗ m̃1), ↓2 (f2 ∗ m̃1).

On the other hand, utilizing orthogonal filter banks, suppose {m0,m1,m2} and {n0, n1, n2}
satisfy the conditions of Theorem 2.2.4. The output of the analysis part of the first stage
filter bank here also consists of four `2(Z) sequences:

(8) ↓2 (f1 ∗ m̃0), ↓2 (f2 ∗ ñ0), ↓2 (f1 ∗ m̃1)+ ↓2 (f2 ∗ ñ1), ↓2 (f1 ∗ m̃2)+ ↓2 (f2 ∗ ñ2).

The block-diagram for the analysis and synthesis stages of this two-channel VDWT are pre-
sented in Figure 2. In order to relate (8) to the block-diagram, observe that f 1

j+1 =↓2 (f 1
j ∗m̃0),

f 2
j+1 =↓2 (f 2

j ∗ ñ0), gj+1,1 =↓2 (f 1
j ∗ m̃1)+ ↓2 (f 2

j ∗ ñ1), and gj+1,2 =↓2 (f 1
j ∗ m̃2)+ ↓2 (f 2

j ∗ ñ2).
Upon first glance it is a point of curiosity that each of these transforms uses the same

amount of information, especially when we recall that we began with redundant filter banks
for each channel. The key observation here comes from the fact that by summing the outputs
of the appropriate pairs of high pass filters, the redundancy is eliminated. Whence, the output
described in (8) corresponds to an orthonormal basis. Given sufficient correlation between
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f 1
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-
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j+
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j

Figure 2. Interscale analysis and synthesis with the two-channel VDWT.

the two channels it is reasonable to expect that appropriately chosen filters may lead to a
more efficient representation through the VDWT than is possible by analyzing each channel
independently.

The elimination of redundancy possible with the VDWT goes beyond the above example.
In particular, whenever the number of high-pass filters introduced is equal to the number
of channels the resulting VDWT will not be redundant. The following theorem makes this
claim rigorous by showing that the synthesis stage of the VDWT is injective provided that
s = r in the statement of Theorem 2.2.7.

Theorem 2.2.8. Let Mk = {mk
0, . . . m

k
r}, 1 ≤ k ≤ r be filterbanks which satisfy the condi-

tions of Theorem 2.2.4 pairwise. Let {wk
0 , wk : 1 ≤ k ≤ r} ⊆ `2(Z) be inputs to the synthesis

stage of the VDWT associated to the filterbanks Mk, 1 ≤ k ≤ r. If

(9)
(↑2 wk

0

) ∗mk
0 +

r∑
j=1

(↑2 wj) ∗mk
j = 0, 1 ≤ k ≤ r,

then wk
0 = wk = 0 for 1 ≤ k ≤ r.

Proof. Computing the Fourier transform of Equation (9) yields for almost every ξ:

ŵk
0(2ξ)m

k
0(ξ) +

r∑
j=1

ŵj(2ξ)m
k
j (ξ) = 0, 1 ≤ k ≤ r.

By considering the above equation both as is and after substituting the variable ξ with ξ+1/2,
one obtains 2r independent equations. Writing these equations in matrix form and noting
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the 1/2-periodicity of the upsampled Fourier transforms results in



m1
0(ξ) m1

1(ξ) · · · m1
r(ξ)

. . .
...

. . .
...

mr
0(ξ) mr

1(ξ) · · · mr
r(ξ)

m1
0(ξ + 1

2) m1
1(ξ + 1

2) · · · m1
r(ξ + 1

2)
. . .

...
. . .

...
mr

0(ξ + 1
2) mr

1(ξ + 1
2) · · · mr

r(ξ + 1
2)







ŵ1
0(2ξ)
...

ŵr
0(2ξ)

ŵ1(2ξ)
...

ŵr(2ξ)




=




0
...
0


 ,

where the omitted entries are zero. The matrix conditions of Theorem 2.2.4 imply that
the rows of the above 2r × 2r matrix are orthogonal, whence we must have wk

0 = wk = 0,
1 ≤ k ≤ r, as required. ¤

2.3. Non-Local Orthogonality. The local orthogonality of the wavelet frames constructed
in Theorem 2.1.2 is a strong condition. Indeed, it says essentially (but not exactly) that the
orthogonality of the wavelet frames is independent of the scale, that none of the cancellations
occur across different scales. Strictly speaking, for orthogonal wavelet frames, this local
orthogonality is not necessary, as Example 2.3.1 demonstrates. However, Theorem 2.3.3
shows for the orthogonality of the corresponding discrete wavelet transforms, or filter banks,
the local orthogonality of the wavelet frames is necessary.

Example 2.3.1. Consider φ the scaling function for the Shannon wavelet: φ̂ = χ(−1/2,1/2).
Let m1(ξ) = n1(ξ) = χ(−1/2,−1/4)∪(1/4,1/2), and let m2(ξ) = −n2(ξ) = χ(−1/4,−1/8)∪(1/8,1/4). Let

ψ̂k(2ξ) = mk(ξ)φ̂(ξ), and ηk(2ξ) = nk(ξ)φ̂(ξ). One then verifies that

∑

j∈Z

2∑

k=1

ψ̂k(2
jξ)η̂k(2jξ) = 0

and

∑

j∈Z

2∑

k=1

ψ̂k(2
jξ)η̂k(2j(ξ + q)) = 0

for q odd, so that the wavelet frames are orthogonal. However, they are not strongly locally
orthogonal since m1(ξ)n1(ξ) + m2(ξ)n2(ξ) is not identically 0.

Definition 2.3.2. Suppose the affine systems generated by {ψ1, . . . , ψr} and {η1, . . . , ηr} are
both frames for L2(R), which are MRA based, and suppose {m0,m1, . . . , mr} and {n0, n1, . . . , nr}
are the corresponding filter banks. We say that the discrete wavelet transforms of {ψ1, . . . , ψr}
and {η1, . . . , ηr} are orthogonal if the filter banks {m1, . . . , mr} and {n1, . . . , nr} are orthog-
onal as in Definition 2.2.1.

Our motivation is to apply the VDWT to discrete vector-valued data implemented by filter
banks. Thus, for our purposes, we require that wavelet frames {ψ1, . . . , ψr} and {η1, . . . , ηr}
not only satisfy the orthogonality condition as frames, but also possess orthogonal discrete
wavelet transforms. Therefore, the corresponding high pass filters must also satisfy the or-
thogonality condition of Theorem 2.2.4, which in turn implies that the wavelet frames must
in fact be locally orthogonal. Thus, for discrete wavelet transforms, non-local orthogonality
is not possible, as we have just demonstrated and which proves the following statement.
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Theorem 2.3.3. Suppose the affine systems generated by {ψ1, . . . , ψr} and {η1, . . . , ηr} are
orthogonal frames in L2(R) and both are MRA based. If the corresponding discrete wavelet
transforms are orthogonal, then the wavelet frames are locally orthogonal.

3. The VDWT in Multiple Spatial Dimensions

The main purpose of this section is to describe the construction of orthogonal wavelet
frames and filterbanks in higher dimensions, analogous to those used in Theorems 2.1.2 and
2.2.4. There is no obstruction in generalizing the results to dimension 2 and higher, yet, for
convenience, our discussion here will be limited to the bidimensional case. Color image data
provides a natural testing ground for the VDWT in the context of two spatial dimensions
and three independent channels and, for this reason, the last section will be used to present
preliminary results with the VDWT motivated by the problem of color image compression.

Before delving into the details of the construction of orthogonal wavelet frames in higher
dimensions we pause to consider two fundamentally different approaches to this problem.
For the purposes of this discussion, let the term “orthogonalization” refer to the process of
multiplying the high pass filters by the columns of a paraunitary matrix, as in Theorem 2.1.2.
Ultimately, our constructions will make use of tensor products of one-dimensional filters and
it is natural to consider the order of the orthogonalization and tensor product operations.

First, we could construct orthogonal wavelet frames in one-dimension and then form the
tensor products in two-dimensions. If we begin with filters m0 and m1 and extend for r
channels using m0 and high-pass filters n1, n2, . . . , nr then form tensor products, we will wind
up with (r + 1)2 filters for each of the r channels of the VDWT. Second, we could begin
with m0 and m1, form the four filters for two-dimensions via the tensor product and then
orthogonalize, leading to a total of 3r + 1 filters in each of the r channels of the VDWT. It is
rather curious that the first approach leads to a redundant representation. The explanation
behind this curiosity is that one could actually construct orthogonal wavelet frames over
r2 channels using the approach of orthogonalization for r channels followed by the tensor
product. Since we seek a non-redundant representation over three channels in two-dimensions
the first approach is undesirable. Hence, we shall adopt the latter approach below, in which
filters are first constructed in two dimensions via the tensor product and then orthogonalized
over three channels.

If M = {m0,m1, . . . , mr} ⊂ L∞([0, 1)× [0, 1)), we construct the following matrices:

M(ξ, ω) =




m0(ξ, ω) m0(ξ + 1/2, ω) m0(ξ, ω + 1/2) m0(ξ + 1/2, ω + 1/2)
...

...
...

...
mr(ξ, ω) mr(ξ + 1/2, ω) mr(ξ, ω + 1/2) mr(ξ + 1/2, ω + 1/2)




and

M̃(ξ, ω) =




m1(ξ, ω) m1(ξ + 1/2, ω) m1(ξ, ω + 1/2) m1(ξ + 1/2, ω + 1/2)
...

...
...

...
mr(ξ, ω) mr(ξ + 1/2, ω) mr(ξ, ω + 1/2) mr(ξ + 1/2, ω + 1/2)


 .

These filter matrices will play the same role as in one dimension.

3.1. Construction. In two spatial dimensions, the orthogonality relations of Theorem 2.1.1
are unchanged, with the above matrices replacing those in the statement of Theorem 2.1.1.
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We state the result explicitly for the direct sum of three copies of L2(R2), the (continuous)
model for color image data.

Theorem 3.1.1. Suppose M1 = {m0,m
1
1, . . . , m

1
r}, M2 = {m0,m

2
1, . . . , m

2
r}, and M3 =

{m0,m
3
1, . . . , m

3
r} are collections of filters that satisfy for almost every (ξ, ω) the following

matrix equations:

1. M∗
j (ξ, ω)Mj(ξ, ω) = I4, j = 1, 2, 3;

2. M̃∗
j (ξ, ω)M̃j′(ξ, ω) = 0, 1 ≤ j, j′ ≤ 3, j 6= j′.

Suppose φ ∈ L2(R2) is a refinable function which satisfies the Unitary Extension Principle
and has low pass filter m0. Define for j = 1, 2, 3 and k = 1, . . . , r

ψ̂j
k(2ξ, 2ω) = mj

k(ξ, ω)φ̂(ξ, ω).

Then the affine system

{2n(ψ1
k(2

n · −l), ψ2
k(2

n · −l), ψ3
k(2

n · −l)) : n ∈ Z; l ∈ Z2; k = 1, . . . , r}
is a Parseval wavelet frame for L2(R2)⊕ L2(R2)⊕ L2(R2).

Theorem 3.1.2. Let φ ∈ L2(R2) be an orthonormal scaling function with low pass filter
m0, and suppose {m1,m2,m3} are corresponding high pass filters. Suppose P (ξ, ω) is a 3 ×
3 paraunitary matrix, with entries ai,j(ξ, ω) which are 1/2-periodic in both variables. For
i, j, k = 1, 2, 3, define the filters

(10) mj
i+3k−3 = ai,jmk

and for l = 1, . . . , 9, the wavelets

ψ̂j
l (2ξ, 2ω) = mj

l (ξ, ω)φ̂(ξ, ω).

Then, for j = 1, 2, 3, the affine systems generated by {ψj
1, . . . , ψ

j
9} are Parseval wavelet frames

and are pairwise orthogonal. Therefore,

{2n(ψ1
k(2

n · −l), ψ2
k(2

n · −l), ψ3
k(2

n · −l)) : n ∈ Z; l ∈ Z2; k = 1, . . . , 9}
is a Parseval wavelet frame for L2(R2)⊕ L2(R2)⊕ L2(R2).

Proof. We simply need to verify that the filters defined in Equation 10 satisfy the matrix
equations of Theorem 3.1.1. For Mj = {mj

0,m
j
1, . . . , m

j
9}, we have that the 1, 1 entry of the

matrix M∗
j (ξ, ω)Mj(ξ, ω) is:

[M∗
j (ξ, ω)Mj(ξ, ω)]1,1 = |mj

0(ξ, ω)|2 +
9∑

l=1

|mj
l (ξ, ω)|2

= |m0(ξ, ω)|2 +
3∑

i=1

3∑

k=1

|ai,j(ξ, ω)mk(ξ, ω)|2

= |m0(ξ, ω)|2 +
3∑

k=1

|mk(ξ, ω)|2

= 1,



18 GHANSHYAM BHATT, BRODY DYLAN JOHNSON, AND ERIC WEBER

since the columns of P (ξ, ω) have length 1. Likewise, the 1, 2 entry of the matrix is:

[M∗
j (ξ, ω)Mj(ξ, ω)]1,2 = mj

0(ξ, ω)mj
0(ξ + 1/2, ω) +

9∑

l=1

mj
l (ξ, ω)mj

l (ξ + 1/2, ω)

= m0(ξ, ω)m0(ξ + 1/2, ω)

+
3∑

i=1

3∑

k=1

ai,j(ξ, ω)mk(ξ, ω)ai,j(ξ + 1/2, ω)mk(ξ + 1/2, ω)

= m0(ξ, ω)m0(ξ + 1/2, ω) +
3∑

i=1

|ai,j(ξ, ω)|2
3∑

k=1

mk(ξ, ω)mk(ξ + 1/2, ω)

= m0(ξ, ω)m0(ξ + 1/2, ω) +
3∑

k=1

mk(ξ, ω)mk(ξ + 1/2, ω)

= 0,

since the entries of P (ξ, ω) are 1/2-periodic. Similar computations show that the off-diagonal
entries of M∗

j (ξ, ω)Mj(ξ, ω) are 0 and the diagonal entries are 1. Moreover, the orthogonality
conditions follow analogously. ¤

We see from these two theorems that the building blocks for the VDWT for three channel
data in two dimensions consist of filters corresponding to an orthonormal wavelet basis (which
we will take to be a tensor product of one dimensional filters) and a 3×3 paraunitary matrix
P . The VDWT in two dimensions is analogous to the VDWT in one dimension given in
Definition 2.2.5. Using the columns of P to orthogonalize (Equation 10) the three high pass
filters of the wavelet basis, we have three low pass filters and 27 high pass filters. However,
using the orthogonality of P , we sum the outputs of the high pass filters corresponding to
each column of P , thus reducing the actual high pass outputs to 9. Hence, we end up with 12
outputs after 1 stage of the VDWT, so just as in Theorem 2.2.8, the VDWT here corresponds
to a basis, i.e. there is no redundancy.

3.2. Construction of the Paraunitary Matrix. We saw in the previous section that
Theorem 3.1.2 uses columns from a paraunitary matrix in two variables for the construction
of the orthogonal filterbanks in two dimensions. One approach to the construction of such a
matrix is to take the independent product of two building-block paraunitary matrices:

P (ξ, ω) = (I − vvT + vvT e2πi2ξ)(I − wwT + wwT e2πi2ω),

where v, w ∈ Cr are column vectors of unit length [17]. The resulting r × r matrix allows
orthogonalization of a two-dimensional filterbank over r channels.

Alternatively, the following proposition describes a direct approach to the construction
of paraunitaries in two variables. Since we want to minimize the length of the filters after
orthogonalization, we consider only trigonometric polynomials of degree 2.

Proposition 3.2.1. Let A,B, C, D be matrices of size N ×N . The matrix polynomial

P (ξ, ω) = A + Be2πi2ξ + Ce2πi2ω + De2πi2(ξ+ω)

is paraunitary if
A∗A + B∗B + C∗C + D∗D = IN ,
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and for a, b ∈ {A,B,C,D} with a 6= b,

a∗b = 0.

If N ≤ 4, then this can be accomplished by choosing N elements of {A,B, C, D} to be one
dimensional projections onto an orthonormal basis of CN , and any remaining elements to be
0.

Proof. Consider the computation:

P (ξ,ω)∗P (ξ, ω)

= (A∗ + B∗e−2πi2ξ + C∗e−2πi2ω + D∗e−2πi2(ξ+ω))(A + Be2πi2ξ + Ce2πi2ω + De2πi2(ξ+ω))

= A∗A + B∗B + C∗C + D∗D + Λ,

where Λ consists of non-constant terms whose coefficients are sums of cross products. There-
fore, if all of the cross products are 0, then P (ξ, ω)∗P (ξ, ω) = IN . ¤

We begin with any standard one-dimensional orthonormal wavelet filters, m0 and m1, and
form the tensor product before orthogonalization. We seek to orthogonalize by means of
Proposition 3.2.1 and, hence, we need a 3 × 3 paraunitary matrix in two variables P (ξ, ω)
for use with Theorem 2.1.2. As in the proposition, we let u, v, w be any orthonormal basis
of R3. The matrices obtained by uuT , vvT , and wwT are all projections onto orthogonal
one-dimensional subspaces, so the product of any two must be 0. Moreover, the sum of the
three projections is the identity. By choosing any one of A,B,C,D to be zero, say B, we can
then let A = uuT , C = vvT , and D = wwT .

3.3. Application of the VDWT to Color Image Data. The goal of this section is to
compare the representation of color image data (using the standard Red-Green-Blue col-
orspace) of the VDWT to the that of a standard DWT applied to each color channel. We
pause to recall the basic structure of a compression scheme, which consists of three essential
steps:

1. Transformation into basis/frame coefficients;
2. Quantization and/or threshholding of coefficients;
3. Encoding of coefficients.

In practice, each component is tailored to the specific application in order to achieve the
most efficient encoding possible. Here, our goal is to specialize the transformation of Step 1,
above, through the use of the VDWT in order to take advantage of correlation among the
components of the data. Our comparison will be limited to the transformation into basis
coefficients followed by the implementation of a threshhold and, therefore, will not include
an examination of quantization or encoding issues.

Because of the difficulty in displaying color images in print, we will also examine a one-
dimensional example in which the data comes from a single row of pixels in a color image. In
each experiment we will briefly describe the methodology of the comparison and then present
compression and signal-to-noise ratios to quantify the sparseness of each transform. Note
that the VDWT used in these comparisons will not be redundant and, therefore, the space
of coefficients for the VDWT will have the same cardinality as the total coefficient space of
the DWT over three channels.
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Throughout our examination the Daubechies D4 filters will be used as the base filters in the
case of the VDWT or in each channel with the usual DWT. We will define the compression
ratio by

CR =
# samples× 3

# coefficients kept
.

where the number of samples refers to the number of data points in each of the three channels
in the original data and the number of coefficients kept is summed over all three channels.
The signal-to-noise ratio of the reconstruction will be computed as

SNR = 20 log10

( ‖Original‖2

‖Original− Reconstruction‖2

)
,

where it should be clear that a higher SNR corresponds to better approximation in the ‖ · ‖2

norm.
We begin with the one-dimensional data which originates from row 270 of the standard

color 512×512 Lena image. This row was chosen for its relative non-smoothness in comparison
with other portions of the image. A hard threshold was used at the finest scale and reduced
at each coarser scale by a factor of

√
2. Both the DWT and VDWT were computed at all

9 scales of the data. The results of the compression experiment are presented in Table 1
and depicted in Figure 3. In Figure 3 (e), the labels “one”, “two”, and “three” refer to the
summed outputs of the three orthogonal high-pass filters over the three color channels. After
this summation, the wavelet coefficients no longer correspond directly to the respective color
channels, but rather an amalgam of all three. In this experiment, the VDWT provides both
a higher compression ratio and a better SNR. We should note that the orthogonalization in
this case was achieved as described in Theorem 2.1.2 using a scalar unitary matrix,

K(ξ) =




0.407996 −0.671184 0.618911
−0.162407 0.613723 0.772630
−0.898423 −0.415745 0.141395


 .

Hereafter we shall refer to orthogonalization with a scalar unitary matrix as scalar orthogo-
nalization. The term polynomial orthogonalization will be used when a unitary matrix with
polynomial entries is used for orthogonalization.

Remark 3.3.1. A brief remark about the display of the wavelet coefficients in Figure 3 is in
order. First, the wavelet coefficients at the lowest scale (most coarse) are depicted left-most
in the graph and the wavelet coefficients at the highest scale are depicted at the right. For
example, the wavelet coefficients after the first filtering stage occupy the range 257 to 512
in the figure. Second, the coefficients are normalized at each scale so that all scales may be
clearly depicted on one axis. The same normalization was used for the DWT and the VDWT.

Source Method Threshhold Comp. Ratio SNR

Lena: row 270 D4, none 30 4.70 25.76
Lena: row 270 D4, scalar 30 5.54 26.55

Table 1. One-dimensional compression results.

We now turn our attention to compression results with two-dimensional color image data.
As in the one-dimensional case, a chosen hard threshold was implemented at the finest scale
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Figure 3. Comparison of usual DWT and scalar VDWT on 1-D data ex-
tracted from the color Lena image: (a) Original Data; (b) Reconstruction via
usual DWT; (c) Reconstruction via scalar VDWT; (d) Wavelet coefficients us-
ing usual DWT; (e) Wavelet coefficients using scalar VDWT.
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and reduced at each coarser scale by a factor of
√

2. The DWT and VDWT were limited
to four scales and no thresholding was performed on the low-pass coefficients. In the two-
dimensional experiments the usual DWT in each channel is compared to two different VDWT
schemes, one a scalar orthogonalization and the other a polynomial orthogonalization. The
filters for the scalar VDWT were generated as in Theorem 3.1.2 using

P (ξ, ω) =



−0.679565 −0.324521 −0.657934
0.517183 0.424139 −0.743390
0.520301 −0.845454 −0.120393


 ,

while the polynomial orthogonalization implements P (ξ, ω) of the form used in Theorem
3.2.1,

P (ξ, ω) = A + Be2πi2ξ + Ce2πi2ω + De2πi2(ξ+ω),

where D is the zero matrix,

A =




0.058960 −0.139956 0.046731
−0.342804 0.813725 −0.271699
−0.129218 0.306729 −0.102416


 , B =




0.763185 0.125941 −0.585726
0.063603 0.010496 −0.048814
0.179498 0.029621 −0.137760


 ,

and

C =



−0.090153 −0.083173 −0.135351
−0.184657 −0.170359 −0.277233
0.448743 0.413996 0.673716


 .

The results of the compression experiments are presented in Table 2. The famous Lena
image (512×512 color version) was used for two of the experiments, one experiment comparing
the usual DWT, the scalar VDWT, and the polynomial VDWT for a smaller threshold and
the second adopting a larger threshold. In each of these experiments the scalar VDWT
was best in terms of both compression ratio and SNR, while the polynomial VDWT yielded
a performance between the usual DWT and scalar VDWT. Finally, the same scalar and
polynomial VDWTs were applied to the 512 × 512 color Peppers image. The scalar VDWT
still provided the best performance, followed by the polynomial VDWT, and the usual DWT.

Picture Method Threshhold Comp. Ratio SNR

Lena D4, none 15 9.36 30.64
Lena D4, scalar 15 10.96 30.93
Lena D4, poly. 15 9.88 30.64

Lena D4, none 50 28.77 26.14
Lena D4, scalar 50 34.62 26.75
Lena D4, poly. 50 30.58 26.37

Pepper D4, none 15 10.71 31.41
Pepper D4, scalar 15 12.14 32.06
Pepper D4, poly. 15 10.83 31.66

Table 2. Performance of thresholding using orthogonal wavelet frames.

The results of these simple experiments suggest that orthogonalization can lead to a benefit
in the representation of multi-channel data. It is a little surprising that the greater flexibility
present with polynomial orthogonalization did not yield superior results to the scalar case.



ORTHOGONAL WAVELET FRAMES AND VDWT 23

One possible explanation for this fact is simply that the choice of orthogonalization was not
optimized for the image, which is a natural area for future work with orthogonal wavelet
frames. The fact that our fixed choices for the scalar and polynomial orthogonalizations
led to improved compression for both the Lena and Peppers images supports the idea that
optimization may lead to even better results. Another important aspect of future work would
be the inclusion of the quantization and encoding components of the compression scheme.
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