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Motivation:

There are many situations in which correlated multichannel data

occurs naturally, e.g., color images, stereo audio, etc.

One can always apply a standard wavelet transform to each chan-
nel, but this fails to take advantage of any correlation between

the channels.

The primary goal of this work is to develop a vector-valued dis-
crete wavelet transform (VDWT) allowing for simultaneous pro-

cessing of multichannel data.

By using orthogonal wavelet frames for each channel, one can ac-
tually sum the “high-pass” components of the associated DWT's

in hopes of achieving a more efficient representation of the signal.




Preliminaries: (1 of 2)

e Fourier transform: f € L' N L%(R)

/ f —27mx£ dr.

e Translation operator: T : L?(R) — L*(R)
Tf(z) = flz—1).

e Dilation operator: D : L?*(R) — L?*(R)
Df(x) = vV2f(2x).

o Affine systems: Given ¥ = {¢1,...1,} C L*(R)

X(U)={D'T"y: jk€eZ,1<l<r}.




Preliminaries: 2 of 2)

o Frame: X := {x,};e; C H is a frame for H if there exist con-
stants 0 < C7 < Cy < oo such that for all x € H,

Cillz)* < Y Kz, a;)]? < Coll®

jedJ
Parseval frames occur when one may choose C7 = (Cy = 1.
e Analysis operator: ©x : H — ¢?(J) given by
Oxx = {(z,zj)}jes-

e Synthesis operator: ©% : ¢*(J) — H given by

O%{ci}jes =) cja;.

jeJ




Orthogonal Frames: (1 of 2)
e Orthogonality: Let X = {z;};c; and Y = {y,},es be Bessel

sequences, then X and Y are orthogonal if

070x = > (- a;)y; = 0.

jeJ

e Reconstruction: If X and Y are orthogonal Parseval frames then
for all fq, fo € H,

Oy (Ox f1 + Oy f2) = O} Oy fo = fo.

e In order that X and Y are pairwise orthogonal, each Parseval
frame must provide a redundant representation of H, e.g., notice
that

r=) (v,x;+yhey =) (w,a5)

jeJ jeJ




Orthogonal Frames: (2 of 2)
e Application to multiple channels: Signal f = f1 & --- D fn.

* Start with pairwise orthogonal Parseval frames: Xq,..., Xny.

* Apply Ox, to fr and sum the result:

N
fOxf:=) Ox,/fr
k=1

* Recover fi, by applying ©% to Oxf:
0 XkO

N
0%, Oxf =) 0%, Ox,fr = 0%, Ox, fro = fro-
k=1
N

e The multichannel analysis operator, Ox : @H — (*(J), pro-

k=1
cesses the components of f simultaneously.




Orthogonal Wavelet Frames: (1 of 6)

e Characterizing dual wavelet frames: (Ron and Shen ‘97)

Theorem 1. Suppose {1,...,¢.} and {n1,...,n.} generate
wavelet frames in L?>(R). The frames are dual if and only if

DY e =1, ae £ER,

k=1 jEZ

and for every q € 7.\ 27,

DY e(OM(2(E+q) =0, ae £ER

k=1 j=0

In particular, {11, ...,¥.} generates a Parseval wavelet frame if

the two equations hold for ny = .




Orthogonal Wavelet Frames: (2 of 6)

e Characterizing orthogonal wavelet frames: (Weber ‘04)

Theorem 2. Suppose {1,...,¢.} and {n1,...,n.} generate
affine Bessel sequences in L*(R), then they are orthogonal if and

only if

DY e(2)m(26) =0,  ae £ER,

k=1j€Z

and for every q € 7.\ 27,

ZZWM BE+q) =0, ae R

k=1 3=0




Orthogonal Wavelet Frames: (3 of 6)

e Construction of wavelet frames from a scaling function and fil-

ters:

x Let ¢ € L?(R) be a refinable function, with low pass filter
m(§), satisfying:
1. lime_o $(€) = 1;
2. Yen [P(E+DI° € L= (R).

*x Let m1(§),...,m.(&) € L*([0,1)) and define

(m(e)  m(e+1/2)

m(€) (e +1/2) ml.(f) m1(§ + 1/2)

my(§)  mr(§+1/2)




Orthogonal Wavelet Frames: (4 of 6)

e Unitary Extension Principle: (Daubechies, B. Han, Ron, and
Shen ‘03)

Theorem 3. Suppose ¢ € L*(R) is a refinable function as de-
scribed above. Let m1(§),...,m.(§) € L*>([0,1)) such that the
matriz M (§) satisfies

M*(EM(E) =1, ae £€R.
Then, the affine system generated by {i1,...,1,.}, where

Vp(26) = mi(€)@(E), k=1,....7,

1s a Parseval wavelet frame.




Orthogonal Wavelet Frames: (5 of 6)

Theorem 4 (Bhatt, J—, Weber ‘06). Let ¢ € L*(R) be a refinable
function as described above. Let M = {mg(&),m1(&),...,m. (&)}
and N = {ng(&),n1(§),...,n-(&)} be filter banks with mg = ng = m
Suppose that the following matriz equations hold:

1. M*(&)M(&) = Iy for almost every &;
2. N*(E)N(&) = Iy for almost every &;
3. M*( )N(f) = 0 for almost every .

Let 13,(26) = mi()@(&) and 01,(26) = ny(£)p(€), 1 < k < r. Then
{¢1,...,0.} and {n1,...,n-} generate orthogonal Parseval wavelet

frames.




Orthogonal Wavelet Frames: (6 of 6)

Theorem 5 (Bhatt, J—, Weber ‘06). Suppose K(§) is a 1/2-
periodic v X r matrix which is unitary for a.e. &; let K;(§) denote
the j-th column. Suppose mg and mq are low and high pass filters,
respectively, for an orthonormal wavelet basis with scaling function
w. For 3 =1,...,r, define new filters via

Then, for 3 = 1,...,r, the affine systems generated by {w‘l? L =
1,...,7} obtained via

7 (28) = n (§)@(€) (1)

are Parseval frames and are pairwise orthogonal.




Discrete Implementation of OWFs: (1 of 4)

Begin with scaling function ¢ and wavelet 1 for an orthonormal

wavelet (filters m(&) and n(§), respectively).

Choose unitary matrix K(§) and construct orthogonal wavelet

frames as in Theorem 5.

Analysis/Reconstruction of discrete data is accomplished using
the associated filter banks.

This leads to a notion of orthogonal filter banks that will be
applied to the high-pass filters.

Filter banks: M = {mg,my,...,m.}, N ={ng,n1,...,n.}.




Discrete Implementation of OWFs: (2 of 4)
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Discrete Implementation of OWFs: (3 of 4)

M and N are orthogonal if, for any input vector, the composition
of the analysis stage of M with the synthesis stage of N yields
0, i.e. for any input f € ¢2(Z), f = 0.

When mg = ng = m is a low-pass filter it is impossible for M
and N to be orthogonal. (assuming the remaining filters are

high-pass)

The high-pass portions of the filter banks are orthogonal if and
only if M*(§)N(€) = 0. (as for OWFs.)

Each filter bank has the perfect reconstruction property it and
only if M* ()M (&) = N*(§)N (&) = I>. (as for OWFs)




Discrete Implementation of OWEFSs: (4 of 4)
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Figure 2: Two-Channel VDWT as in Stereo Audio Context.




Image Compression:

e Hard thresholding was applied over four scales of the associated
discrete wavelet transform. Recall that with hard thresholding
only the coefficients greater than a chosen threshold 7" > 0 are

kept for reconstruction. (No quantizing/encoding is done here.)

e The benefit and cost of thresholding are quantified by:

Total # of pixels x 3
# of coefficients > threshold’

Compression Factor :=

|Originall|2 )

|Original — Reconstruction||s

A higher SNR corresponds to a smaller || - ||2 error.




Preliminary Results:

Picture Method Threshhold | Comp. Ratio | SNR

Lena D4, none 15 9.36 30.64
Lena D4, scalar 15 10.96 30.93
Lena D4, poly. 15 9.88 30.64

Lena D4, none 50 28.77 26.14
Lena D4, scalar 50 34.62 26.75
Lena D4, poly. 50 30.58 26.37

Pepper | D4, none 15 10.71 31.41
Pepper | D4, scalar 15 12.14 32.06
Pepper | D4, poly. 15 10.83 31.66

Table 1: Image compression using orthogonal wavelet frames.




Original 512 x 512 Lena image.
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Ordinary DWT: Reconstructed Image.

D4 filters, Threshold=15: C.R. =~ 9.36 & SNR =~ 30.64.
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VDWT: Reconstructed Image.

D4 filters, Threshold=15: C.R. =~ 10.96 & SNR = 30.93.




120 x 120 section of the Lena image.




Ordinary DW'T': Reconstructed Image.

D4 filters, Threshold=15: C.R. =~ 9.36 & SNR = 30.64.




VDWT: Reconstructed Image.

D4 filters, Threshold=15: C.R. ~ 10.96 & SNR = 30.93.
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Ordinary DWT: After thresholding.

D4 filters, Threshold=15: C.R. =~ 9.36 & SNR =~ 30.64.
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Scalar Orthogonalization VDWT: After thresholding.

D4 filters, Threshold=15: C.R. =~ 10.96 & SNR = 30.93.
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Ordinary DWT: Comparison of Left/Right Channels.

Shannon filters (2000 coeff.), Threshold=0.0175: C.R. =~ 10.90 &
SNR = 21.05.




VDWT: Comparison of Left/Right Channels.

Shannon filters (2000 coeff.), Threshold=0.0175: C.R. =~ 11.71 &
SNR =~ 21.06.




Conclusion:

e Orthogonal wavelet frames and the VDW'T may provide a viable
means for dealing with multichannel data.

e Future work:
* consideration of quantization/encoding issues

* optimization of the choice of unitary in construction of OWFs




