Quincunx wavelets onT?

Kenneth R. Hoover and Brody Dylan Johnson

Abstract This article examines a notion of finite-dimensional wavelgstems on
T2, which employ a dilation operation induced by the Quincuratn®. A theory
of multiresolution analysis (MRA) is presented which iraéis the characterization
and construction of MRA scaling functions in terms of lowsgfdilters. Orthonormal
wavelet systems are constructed for any given MRA. Two gdrexamples, based
upon the classical Shannon and Haar wavelets, are preserdede approximation
properties of the associated systems are studied.

Introduction

This work examines finite-dimensional systems of functiomghe torusT?, which
employ the basic tenets of wavelet theory: dilation anddli@tion. The present study
follows a similar analysis on the circle [2]}, where dilation off € L?(T) was
accomplished by a dyadic downsampling of the Fourier tiamnsf i.e.,IS\f(k) =
f(2k), k € Z. An obvious extension th?(T2) would involve downsampling of the
Fourier transform by B&; however, this choice fails to utilize the freedom provided
by the move from one to two dimensions. Instead, the dilatip@ration considered
here will be achieved through downsampling bya 2 matrix, A, satisfying

e Ahas integer entries;
e A has eigenvalues with modulus strictly greater than 1;
e Ahas determinant 2.

The first requirement is necessary for the downsamplingammﬁ\f(k) = f(Ak),
k € 72, to be well defined. The second condition ensures that regefilation of
a functionf € L2(T?) will tend to a constant function ih?(T?). Finally, the third
condition specifies thah should have minimal determinant. IndeedAif and A,
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are the eigenvalues &f, then|detA| = |A1A;| is an integer greater than 1. It is not
difficult to see that if det = 2, then the trace oA will also be 2 under the above
assumptions. A certain amount of the analysis will be indepat of a specific
choice forA. Neverthelessi will hereafter denote th®uincunxdilation matrix,

1-1
A= (1 ; )
This dilation is the composition of a rotation Bywith multiplication byv/2 and,
consequently, facilitates a natural geometric intuitidhis discussion has focused

on the role thaf will play in the creation of a dilation operator. In the negtton,
the role played by for translation will also be discussed.

1 Preliminaries

As mentioned in the previous section, the mafiglays two roles in the proceeding
theory, one dealing with dilation and another related togtation. In dilation, the
Fourier transform of a functiof € L?(T?) will be downsampled over the subgroup
AZ? of Z2. Translation will be considered over a discrete subgrouf’dbrmed as

a quotient ofA~172 by 72, wherej > 0 determines thecaleor resolutionof the
translations being considered.

For a fixed integelj > 0, define thdattice of order2) generated by Arj, as
the collection of 2 distinct coset representatives&f 72 /Z?2. It will be assumed
that each element df; belongs to the rectang(@,1) x [0,1). In the next section,
a notion of shift-invariant spaces will be introduced thansists of functions in
L2(T?) which are invariant under translation by elements;of

Recall that the dilation operation induced Aydownsamples the Fourier trans-
form of f € L?(T?) by A. This operation will be best understood through the quotien
groupsZ?/BIZ?, whereB = A*. Consequently, define thaual lattice of order2)

(j > 0) generated by A%, as the collection of Rdistinct coset representatives of
72/BIZ? determined by the intersectid RN Z?, whereR = (—3,3] x (-3, 3].
Because has integer entries it follows th8! RC BIt1R, sol'j* is a natural subset
of % 4.

The following lemma summarizes several elementary, buulifscts about the
matricesA andB as well as the lattice§; andl;".

Lemma 1.Let A, B as above and let} 2 be an integer.

1.Nj={Aa+a :acli,a €}
2.1 ={BB+B': Be B e}
01
1_
3.AB 1= _10).
4. AB! =BIAK Kk, 0 € Z.
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Fig. 1 The dual lattice$y", I,", andl;".

Another important feature of the latticef§;, is their behavior under multipli-
cation byA. Hence, letd; : [[* — " be the mapping defined by — Aa. For

1<k<j—1,let% denote the kernel aff, i.e.,

P ={B ey :dj(B)=0}.
The following proposition provides two useful charactatians of%y.

Proposition1.Let je N, j>2and1<k<j—1.
1. #«=BI" 7, i.e., dis a2*-to-1 mapping.

k .
2. By = {; bAl =By 1 by € {0, 1}}, wheref; is the nonzero element 6.

=
Proof. To demonstrate the first claim, |Bte I;" and assume thdf(B) =0. Hence,
AXB € BIZ2 or AXB BB € BJZ?. Now, since powers of andB commute and
AB1 s a rotation, it follows thaB*B € BiZ2 and thusB € BI-XZ2. Likewise if

B € BI7*Z?, thenA*B € BIZ? and, thusd¥(B) = 0.
To prove the second claim observe first that

kK k _
Ak/z bgAJieﬁl = ; bgAk76AJ B1=0
/=1 (=1
becaused“ has integer entries andl 3; € BIZ2. To see that the2elements are

unique, assume that
; beA By = /Z by Al By,
(=1 (=1

or, equivalently, that

k—1 .
; (b — b))A By = (b — by ) Al ¥y

1
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Thus the left- and right-hand quantities lie in the intetisgcof Al =" andAl %7
However,Al¥B; ¢ AI=1r*, so it follows each expression must equal zero, i.e.,
b = bj. This argument may be repeated to show that bj, 1 < ¢ <k. O

2 Shift-invariant spaces

This section introduces a notion of shift-invariant spafces.?(T?) which make
use of the lattice$j, j > 0. Thetranslation operator generated ly € I will be
denotedT, : L?(T?) — L?(T?) and is defined by

Taf(X)=f(x—a), xeT2

A shift-invariant space in this context will consist of a stml subspacé of L2(T?)
with the property thaf €V if and only if T, f € V for all a € I§. Of course, itV is
invariant under shifts ifij, thenV is also invariant under shifts ifi, 1 <k < j. This
work shall focus attention on shift-invariant spaces gateet by thdj-translates of
a single function.

Definition 1. Let @ € L?(T?). Theprincipal A-shift-invariant space of ordé&! gen-
erated byg, denotedv; (@), is the finite-dimensional subspaceldf(T?) spanned
by the collection

Xj(@) ={Ta@:a €T} 1)

A function in Vj(¢) is simply a linear combination of thgj-translates ofp,
which motivates the following definition. Lei{l) denote the space of complex
valued functions offij, with an analogous meaning fé(r;*). Defineej o € £(I7),
j>0,a€eflj by

eja(B) =exp(2mi(a.B)), Bel;.

Lemma 2. The collection{Zféej,a}aerj is an orthonormal basis fof(I5").

Proof. Givena’,a” € I, the inner product o; . with e; ,» can be expressed as

(ejan8ar) = Y exp(2mi(a,B)),
Bery

wherea = a’ — a”. If a = 0 then the inner product is 2However, ifa # 0, then
there existg’ € I* such thata, B’) ¢ Z, in which case ex(@rmi(a, B')) # 1. Since
I+ B’ =T}, this leads to

exp(2ri(a,B')) % exp(2mi(a,B)) = 3 exp(2ri(a,p)),

Bery Bery

which forces the sum, and hence the inner product, to be zero. a
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Recall that the Fourier transform éfc L?(T?) is given by
f(k) = /2 f(x)exp(—27i (k) dx, ke Z2.
T
Therefore, fora € I, Ty f (k) = exp(—2mi(a, k) f (k), k € Z2. The following defi-
nition adapts the familiar bracket product ([1, 3]) to thegent context.

Definition 2. Let f,g € L?(T?). TheA-bracket product of f and g of ord&¥ is the
element oft(I;*) defined by

f.au(B)=2 5 f(B+KAB+K. Ber;.
keB!Z2

The bracket product so defined captures information abautrther products
of f with thelj-translates of and can be effectively used to determine the frame
properties of both principal and finitely-generated shiftariant spaces. The fol-
lowing proposition, however, focuses on a characterinatioorthonormal systems
of [j-translates.

Proposition 2. Let f,g € L?(T?) and fixa € I;. Then,
(Tat,9) = 27)([f, dlai,€.a)-
In particular, (Tq f,g) = da.0, a € [, if and only if[f,Q]Aj B)=LBelj.

Proof.

(Taf,g) = % f(k)g(k)e 2tk
kez?

=5 Y f(B+Ka(B+ke 2P
BET keBIZ2

=271 5 [f.da(B)ealB)-

BT
O

The next step will be to incorporate dilation with the shiftariant spaces ex-
amined here for the creation of multiresolution analyses.

3 A-refinable functions and multiresolution analysis

The goal of this section is to formulate a theory of multilesion analysis on the
torus making use of dilation b and translations irf;. Thedilation operator on
L?(T?) induced by Awill be denoted : L?(T?) — L?(T?) and is defined by
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Df (k) = f(AK), ke Z2
It follows thatDTy f = Tegg D for all a € Tj.

Definition 3. A function ¢ € L?(T?) is A-refinable of orde® if there exists a mask
c e ((l) such that

Do= Z c(a)Ta . 2)
aclj

If @ is refinable of order 2 then it follows that

P(AK) = ZC(G)T/a\co(k)= Zc(a)e,-,akk)cp(k)=m<k><b<k>, kez? (3)

aclj aclj

wherem = 3 g c(a)ejq(-) is called thefilter associated tap. Note that each
k € Z2 belongs to the cos¢t + BIZ? of a unique elemerf € ", i.e.,me £(1}").
The following lemma shows that the dilates of refinable fiored are also refinable
and provides a relationship between their filters.

Lemma 3. If @is refinable of orde®! with filter me £(ry7), then Dy is refinable of
order 21~ with filter m(A-) € £(F" ;).

Proof. Applying D to (2) and using the fact th&T, = Tg;D one finds that

D?p= S c(a)TesDo.

This can be interpreted as a refinement equatiorDiprof order 2-1, although
the sum on the right includes duplicate representationsettements ofj_1. A
straight-forward calculation shows that the above equas@quivalent to

D2 = Z ( z c(Bla+a’)> TaDo.
aelj_q \a’ern

In the Fourier domain this can be rewrittenlié\rp — MD@, wherenie Uriq) is
given by

m(B) = Z cBta+a)e 14(B) =

a’ely

Z c(a)ej.a(AB) =m(AB),
aclij
wheref € I'" ;. Recall thamis the filter associated tg. a

As in [2], the usual notion of multiresolution analysis ré@gs minor modifica-
tions for the torus.

Definition 4. A multiresolution analysis (MRA) of ordé@ (j € N) is a collection
of closed subspaces bf(T?), {V}}_,, satisfying
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1. For1<k<j,Vk-1 SV

2. Fori<k<j, f e\ifandonlyif Df € V_g;

3. W is the subspace of constant functions; _

4. There exists acaling functiorp € V; such thab(k(zj‘i‘k Di~%¢) is an orthonormal
basis forv, 0 < k < j.

If ¢ is a scaling function for an MRA, then it is necessarily reffiileaand the
filter associated to it by (3) is calledaw-pass filterfor ¢ (usually denoted byn).
Moreover, the spaceék, 0 < k < j, take the formvi (DI ¥¢) sincexk(ZJ;zk Di~k¢)
is an orthonormal basis for,. The main results of this section follow. The first
characterizes those refinable functions which are scalingtfons for an MRA,
while the second guarantees the existence of a scalingidmngiven a suitable
candidate filtermg € £(7").

Theorem 1.Suppose thap € L2(T?) is refinable of orde@! (j € N) with $(0) # 0.
Theng is the scaling function of an MRA of ord2t if and only if

IMo(B)[?+ mo(B+BI*B1)P =1, Bely, (4)

and
[¢a¢]Aj(B):1a BEI—'*, (5)

wheref; is the nonzero element b .

Proof. Assume thaB € " ;, then

[220$,2:0]5-1(B) =21 Y [DP(B+K)?
keBl—172
=2 S [$(B+K)Ime(B+K)
keBl-172

=21y |§(B+B B +K)I?Imo(B+BI 1B
keBlZ2
B/El—l*

Assume that (4) and (5) hold. It follows from the above cadtioh that
225¢,2208),1(B) =1, BTy,

S0 Xj,l(Z% D¢) is an orthonormal basis for its span. Moreover, Lemma 3 guar-
antees that the low-pass filter forp satisfies (4), so, inductively, it follows that
X(2'7'Di¥¢) is an orthonormal basis for its spamDi %), for each 0< k < |,
guaranteeing MRA property 4. Properties 1 and 2 follow from tefinability of¢.
Consider 2D ¢, which is refinable of order®with low-pass filtemm = 22 mg(Al-).
Sincely is the trivial quotient groupm is constant. In the Fourier domain, this

meansDi ¢ (k) = ¢ (Alk) = 2% § (k). Recall thatp € L2(T?), so this relation forces
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Di¢(k) =0 unlessk = 0, i.e.,Vo(¢) is the space of constant functions, justifying
MRA property 3. (The fact tha@ (0) # 0 has also been used here.)

Conversely, assume thdtis the scaling function for an MRA. The orthonormal-
ity of Xj(¢) is equivalent to (5). Buxj,l(Z% D¢) is also an orthormal collection
and the calculation made at the beginning of the proof thowshhat

— [22D9,22D]x1(B) = |mo(B)]>+ [mo(B+BI B2, Ber,

wheref; is the nonzero element 6f*. Hence, (4) must hold, completing the proof.
O

The next theorem shows that the filter equation (4) is sufficfer the exis-
tence of a scaling functio, provided that the candidate filter additionally satisfies
m(0) = 1. A detailed discussion of examples will be postponed tdiSe&, but it
is fairly easy to come up with filters satisfying these regmients, e.g., definmg
by
1 pery,

0 otherwise,

mo(B)—{ Bery.

The validity of this choice follows from Property 2 of Lemmahich implies
BI~17? = BIZ2U (BI~'B, + BIZ?). By the definition of* , it follows that

72= |J (B+bB 1B +BIZ?),
Ber?,
be{0,1}

which shows thaf;* ; andl* ; + BI~1B, form a partition off*.

Theorem 2.Fix j > 0 and let mp € £(I7 ) be a candidate low-pass filter satisfying
(4) and np(0) = 1. Then ng is the low-pass filter of a trigonometric polynomial
scaling function of orde®!.

Proof. The proof will rest upon justification of a specific definititor an associated
scaling function. The refinability will be accomplished bgfithing certain Fourier
coefficients outside the lattic&Z? (which by Property 3 of Lemma 1 is identical to
BZ?) and extending using (2). Hence, let= Firn (BZ?)¢ (4 should be regarded
as a subset ¢£?) and defingp € L?(T?) as follows:
1. Let$(0)=2"2. |

J

2. ForBe %, letd(B)=2"z.
3. ForBe Band 1<k<j—1,let

$(AB) = J'L mo(A'B)

4. The remaining Fourier coefficients will be zero.
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It is clear from the above definition thét has finitely many nonzero Fourier co-
efficients, i.e.,¢ is a trigonometric polynomial. The refinability gf with respect
to the filtermy is inherent in the construction, provided that #teandsdefined in
Step 3 terminate, i.e., there must exiswvith 1 < k < j — 1, such thatng(AB) =
Proposition 1 implies that there are precisely two elemehf$* such thatA =0,
namely, 0 andB!~1B;. By definition, Ai = 0 for all B € I*, so if B # 0 then
the previous observation implies thaf = BI~1p; for 1 < k < j — 1. Since (4)
forcesmy(BI~1B;) = 0, this completes the proof of refinability. Therefore, ighii
of Theorem 1 it suffices to demonstrate (5), which will be aaptished through the
following three steps.

1. ltis a direct consequence of the definition above that ¢&)dfor eacl3 € ZU
{0}. Hence, it remains only to demonstrate (5) o€ A"\ {0}, a collection of

21-1_1 elements.
2. Proposition 1 explains that the mappjhg- AB is two-to-one, so the image &
under multiplication byA* has cardinality 21, Becausez C "\ Arj*, A2

is disjoint fromAX 2 whenk; < k,. Considering K k< j—1 asin the construc-
tion above, the total number of unique elementg 6fbelonging to{A‘ﬂ%’}

is21-24 2134 ... 4214+ 1=2I-1_1. None of these elements may belong to
% U{0}, so they are precisely the elementsd* \ {0}.

3. LetB € Ar*\ {0}. ThenB = AX(B’ + %) where 1< k< j—1 andp’ € #.
Moreover, using the fact that(8') = 2-% and Proposition 1,

(6, 0]ai (B % J'leo (A“(B'+y)?
=|mo(B’ ; J'leo (A“(B'+y)?
+|mo(B’ +BI71py) 2 ; J'leo (A'(B'+y+BI~1p1))?

J_leo (A(B'+y)%

VEﬁk 1

This eventually reduces to the= 1 case, which equals one by (4).

4 MRA Wavelets on the torus

With the MRA theory of Section 3 it is a fairly straightforwatask to devise a
corresponding theory for MRA wavelets. An MRA of order @nsists of spaces



10 Kenneth R. Hoover and Brody Dylan Johnson

{Vk}J:O with Vi_1 € Vi, 1<k < j. In particularyj is a 2-dimensional subspace of
L2(’]I‘5) while Vj is the one-dimensional subspace of constant functiorsnktural,
therefore, to seek a wavelet system which provides an ootinoal basis for the
orthogonal complement & in Vj, i.e.,V; & V.

Definition 5. Let {Vk}ij(:O be an MRA of order 2 A function ¢ € V; is awavelet
for the MRA if the collection

{Z%TGDH”% 0<k<j—1 ac rk}

is an orthonormal basis fof; © V.

The following theorem provides a construction of a wavedetsdny MRA. The
reader is reminded thi@ denotes the nonzero element’gf. Analogouslycar; will
denote the nonzero element/gf

Theorem 3.Let ¢ be the scaling function of an MRA of ord2. Definey by
Bk) =m(k)d(k), kez?,

where m € ((I7") is defined by

my(B) = mo(B+BI-1B1) exp(2ri (AU Yay, B)). (6)
Then,y is an orthonormal wavelet for the MRA.

Proof. The proof will establish an orthogonal decomposition ofreggaces, 1 <
k < j. By definition,Vk = V(DI %¢), and the desired decomposition will have the
form

Vi(D17%¢) = Vi 1(D1 ) @V 1 (D) M), 1<k< .

In the wavelet literature the spac‘ﬁ@l(Dj*kLp) are often denotedj and one has
the familiar expressioVy = Vi 1 ®W_1, 1 < k < j. The following calculation
demonstrates the orthogonality\df_; andVj_,. For eactB € I}* ;,

229,220y 2(B) =2 Y DPB+KBB+K

keBl—172
=25 |§(B+KPmo(B+Km(B+K)
keBl—172
=2y |p(pBI B +K)Pmo(B+ BB mu(B +BIT1E)
= mo(B) my(B) +mo(B + BBy my (B + BI-1By)
=0,

based upon (5), (6), and the fact that, 31) = % The orthonormality oXj,l(Z% Y)
relies on a similar calculation, again fre I 1,
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220,22 @p1(B) =21 Y BB+

keBl-172

~2 5 B+ Im(B P
keBl-172

= [my(B)|?+ |mu(B+BI7*By)[?

= |mo(B)[*+mo(B + B/ 1By)?
=1

The remainder of the proof stems from an induction argumeamma 3 im-

plies that éDq) is refinable with filtermp(A-), which satisfies thei'ji1 equiv-
alent of (4). Moreover, a calculation analogous to that imbh&a 3 shows that

2%5@ = ml(A-)Z% Iﬂ),_so the above calculations may be repeated at the next lower

scale to prove tha(k(zj‘i‘k Di-(k+1Dy) is an orthonormal basis fif, 0< k < j— 1.
The orthogonality oM, andW, for k; > ky follows in the usual manner, i.e.,
W, € Vi, which is orthogonal ta, . O

The last objective of this section is to examine the appraxiom provided by the
wavelet systems considered in this work. The general approdrrors that of [2].
If ¢ is an orthonormal wavelet, then the system of functions ifirlten 5 provides
an orthonormal basis fof; © Vo and together, with the constant functibhg, can
be used to approximate ariyc L?(T?). However, this is equivalent to considering
the approximation of by the collectiorX;(¢). Consider the orthogonal projection
Pj : L2(T?) — Vj(¢), given by

Pif = Z‘ (f,Ta®)Ta .

acl;

In the Fourier domain this is equivalentﬁ?f(k) =[f,d]a (k) (k), ke 72. For
the purpose of this discussion, it suffices to considsuch thatf (k) = &, where
r.k € Z2. In this case,

- 2i$(r) r=pB modBizZ?
f i(B)= : rr
If. Blai (B) {O 2 pmogmizz, PEN
so that
_ IFITa) = iz2
BT(k) — 21p(r) d(k) r_kmodB_Z2 ke 72
r £ kmodB'Z~,
The squared error of approximation is thus given by
IRt —f12 =5 [Pif(k)— (k)
kez2
=1-21pMmP2+21pMm)2 Y 16(r+k)
keBlz2

k£0
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=(1-216(NP)?+2$ ()P (1~ 26 (n)?)
=1-211p(r)%

where fact thafd, §],; = 1 has been used to simplify the sum in the second term of
the second line in this calculation. Defigg(k) by

Ej(k) =/1-21|p(K)2, keZ?

Evidently,E; (k) represents the approximation erfid; f — f|| whenf is a trigono-
metric monomial with unit Fourier coefficient ate 7?. Observe thag;j(k) = 0

when | (K)| = 2~

5 Examples

Since the systems considered in this work are finite-dinogradj proper examples
should provide a well-defined MRA at any scgle> 2, hopefully leading to ar-
bitrarily close approximation of functions i?(T?). Moreover, given a low-pass
filter satisfyingmo(—f) = mo(B), B € [ it is natural to expect a corresponding
real-valued scaling function. The next proposition ddsesia modification of the
construction in Theorem 2 that serves this purpose.

Proposition 3.Let ny € é(l'j*) be a low-pass filter satisfying4) and such that
mp(0) = 1 and my(—B) = mo(B), B € [;*. Define¢ as follows: (where € %
should be regarded as an elemen#Zs)

1. Letd(0) =2°3. |
2.1fB,—B € %, let(B) = 2~ and define

B (AB) = J‘LmoA" , 1<k<j-1
3.fBe B but—B ¢ B, letd(+£p) = Z*Jizl and define

O (+ARB) = ¢ (+P) J‘LmoiAf , 1<k<j-—1.

4. The remaining Fourier coefficients will be zero.

Theng is refinable with respect to grand is a real-valued scaling function for an
MRA of order2!.

Proof. The fact thatp is real-valued follows from the fact that the constructieads
to the conjugate-symmetd(—k) = ¢ (k), k € Z2. Themg-refinability is indepen-
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dent of the values of chosen at points i8 or — %, provided that the refinement
equation (2) is respected at the points in #erbit of such points. The fact that
these orbits result in only finitely many nonzero Fourierfticients for ¢ follows

in exactly the same manner as in Theorem 2. Moreover, tharagugiven in the
proof of Theorem 2 to demonstrate (5) requires only minor ification to account
for thesplitting of strands betweett 3 in Step 3, above. a

Recall that the Shannon wavelet &nis associated with an MRA consisting
of band-limited subspaces &f(R), with scaling functionp defined by (&) =
x[f%!%}(é) with corresponding low-pass filteny (&) = X1 An ideal analog of
the Shannon MRA in this context should correspond to a lossg#ter which is
symmetric about the origin and equal to the characterigtiction of a set including
0. The following proposition describes a low-pass filterdach scalg > 2 which
essentially captures these properties.

Proposition 4 (Shannon Filter).Fix j > 2and let §={B e ;" : B,—B € " 4}.
The low-pass filter g £(I7;") defined by

1 B S Sj
mo(B) = § 72 Ber,\S Bery,
V/1—|mo(B—Bi~1B31)]2 otherwise,

satisfieg4) and is symmetric in the sense thag(mp) = mp(B), B € Iy

Proof. Recall that™;* ; andl" ; + BI—1B; form a partition off}*, justifying the last
part of the above definition. Hence, (4) is satisfied by caasion.

The symmetry ofrg requires attention to various casesBle Sj, then—f € S
and henceno(B) = mo(—B) = 1. If B € "1\ Sj, thenmg(B) = % Moreover,
—B ¢ Ij_1 and, therefore, can be written ag = B’ + B!, for somep’ € I\
S;. It follows thatmy () = mo(—B) = % This demonstrates symmetry for Blle

) and it now follows from (4) thatng is symmetric on all of ;*. a

Figure 2 depicts the low-pass filter described by Propasiidor j = 5. No-
tice that the symmetry requirement, together with (4), rsakaecessary to define
mo(B) =mo(—B) = % for certain points infj*. Figures 3 and 4 depict the scaling
function and wavelet corresponding to the Shannon MRA.

The next proposition concerns the approximation of trigonatrsic polynomials

provided by the Shannon MRA of ordgr

Proposition 5. Let ¢ be the scaling function corresponding to the low-pass filter
of Proposition 4 given by Proposition 3. 1f} 6+ log,r?, then E(k) = 0 for all
ke {k=(ki,kz) : max{|ky|, |ko|} <r}.

Proof. Suppose that-3 € ;" ;. Then Proposition 4 guarantees thaf(+f3) = 1.

Moreover, if+3 € U {0} then Proposition 3 implies that(B3) = 2-%. Alterna-
tively, if +8 ¢ 22U {0}, then+p = +AXp’ for somep’ such that-p’ € [y with
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Fig. 2 The low-pass filtemy of Proposition 4 withj = 5.

Fig. 3 Graphs of the Shannon scaling functiprior j = 5: (a) ¢ (x,y), (x,y) € T? and (b) surface
plot of ¢ as a distortion of the torus.
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Fig. 4 Graphs of the wavelet functiafi corresponding to the Shannon MRA fpe 5: (@) ¢/(X,Y),
(x,y) € T? and (b) surface plot a as a distortion of the torus.
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1<k < j—1.In this latter casg (B ’)|*2*% Whi|en‘b(AéB/)*1f0I’1§£§

k— 1. The upshot of these observations is that € I* ;, then|$(B)| = 2%,
ThereforeE; (k) = 0 whenevettk € I

Recall that}* ; = BI"*RN Z2, WhereR (=3.3] x (—3.4]. Instead consider

BI"'R'NZ? whereR = [-3,7] x [, 3], so thatthe setin question has symmetry
about the origin. Observe th& 'R is a square with 5|de-length‘2 centered
at the origin and oriented with its corners either onxhgaxes or along the lines

y = +x. The former situation is the more constralmng but cortaiik = (k1,kz) €

72 such that max|ky|, |ko|} < 12—2‘2 — 223, The claimed lower bound op
follows from this last calculatlon O

Another example important in the classical theory of MRAghis Haar MRA.
The Haar wavelet oRR is the product of an MRA whose component spaces consist
of functions inL2(R) which are piecewise constant on certain dyadic intervdis. T
Haar scaling function is given by = x|o 1 and the corresponding low-pass filter
is given by

1 .
Mo(€) = 5 (1-+exp(—2mi¢)).
Therefore, a natural counterpart to the Haar MRA should s®a@ated with a
conjugate-symmetric low-pass filter corresponding to anegfient involving just
two translates fronfj. Moreover, assuming the first translate is zero, the nonzero

translate should be as close to zero as possible. The foldpprioposition describes
a low-pass filter which meets these requirements.

Proposition 6 (Haar Filter). Fix j > 2. Define ng € é(l'j*) by
1 (i
mo(B) = 5 (1+exp(—2mi(A-U-Yay,B))).

wherea; is the nonzero element 6f. Then ng satisfieq4) with ny(0) = 1 and is
conjugate-symmetric, i.e.,gf+-f3) = mo(B), B € I7".

Proof. It is routine to verify thatmy so defined isB!Z2-periodic and conjugate-
symmetric withmp(0) = 1. Observe that the filter may also be expressed as

mo(B) = cos(m(A" U~ Yay, B)) exp(—ri(A-U "y, B)).
Hence, the filter identity (4) follows from the calculation,
IMo(B)[?+mo(B+BI1B) 2
=cog (m(A U Vay, B)) +cos (AU Yay, B+ B 1By))
=cod (A" Ve, B)) + cod (A -V, B) + 7))
1)
01, >)

2
= cog (m(A"U" Yy, B)) +sir? (AU Vay, B))
~1
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O

The final result of the section provides a somewhat coarsmappation result
for the Haar MRA.

Proposition 7. Let ¢ be the scaling function corresponding to the low-pass fifer
Proposition 6 given by Proposition 3. Then for ang Z?,

lim Ej(r) =0.

] —00

Proof. Fix r € Z? and letJ be the smallest positive integer such that B’RN Z?
(R as in the definition of~*), so thatr = AKB’ for somef’ € # andk < J. For
sufficiently largej, both 3’ and—p’ will belong to %, so without loss of generality

it may be assumed thid (B)| = 2%. The construction of implies that

- k—1
B(r)|=2"2 Jijo(AfB’)

where
Imo(A'B')| = cos(mr(A~ I ay, A'B')) = cos((ay, (ABH)ITAIBY).

Notice thatAB 1 is norm-preserving an&+1-13’ — 0 asj — o, which means that
the terms in the above product tend to 1jas «. Hence,

lim [§(r)| =2

J—}OO
and lim; . Ej(r) = 0, concluding the proof. o

Figure 5 depicts the modulus of the low-pass filter descrilyeldroposition 6 for
j =5, while Figures 6 and 7 depict the corresponding scalingtfan and wavelet
for the Haar MRA.
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Fig. 6 Graphs of the Haar scaling functignfor j = 5: (a) ¢ (x,y), (x,y) € T2 and (b) surface plot
of ¢ as a distortion of the torus.

Fig. 7 Graphs of the wavelet functiogy corresponding to the Haar MRA fgr= 5: (a) ¢/(x,y),
(x,y) € T? and (b) surface plot of as a distortion of the torus.



