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Abstract:

The recently introduced notion of a frame potential has
led to useful characterizations of finite-dimensional tight
frames consisting of vectors with prescribed lengths. It
is natural to ask whether the frame potential leads to

similar characterizations for systems with additional im-
posed structure. We will describe how such a generaliza-
tion can be obtained for the class of shift-invariant sys-
tems. The fast algorithms associated with convolution

make shift-invariant systems advantageous in applications.
(joint work with M. Fickus, K. Kornelson, & K. Okoudjou)




What is a frame?

e A collection X := {z;},es C His a frame for H if and only if
there exist constants 0 < B; < Bs < oo such that for each x € H

2
Billz|? < > [(z, ;)] < Baflz||; (1)
JjeETJ
e X is called a tight frame if it is possible that By = Bs;

e Frames generalize the notion of an orthonormal basis.

* Frame coefficients uniquely determine elements:

<£U,£Cj>:<y,lli‘j>, V]Ej = r =Y,

* However, representation of an element in terms of frame vec-

tors is not, in general, unique:

ZU:ZO@'%:Z@% 7 o =05, Ve d.
J J




Operators associated to frames:

e Analysis operator: Lx : H — £?(J), defined by
Lxx ={(z,2;)}jes:
e Synthesis operator: L% : ¢*(J) — H, given by

Lyy =Y y(j)z;;

JET

e In finite dimensions the matrix representation of L% is

Li;( p— [:Cl £U2 « o o xN}

de'




Operators associated to frames:

e Frame operator: Sx := L5 Lx : H — H, given by:

Sxx = Z(x, Ti)T;.

jeET
e X is a frame with bounds B; < Bs if and only if

Bl < Sx < Bol.

e Between analysis and synthesis one may perform various process-
ing operations (thresholding, truncating, etc.), but ultimately

one wants to recover x (or a good approximation) from L xz.




Reconstruction via frames:

e Dual frame: a collection Y := {y;};cs such that for any x € H
r =Ly Lxx =Ly Lyz;

e Canonical dual frame: define y; := S~ 'z, so that

L Lyx = Z(:L‘, Sy'zi)z; = SxSy'w = x;

jeJ
e Frame algorithm (recursive):
* Set xg = 0;
x* Forn>1,let x, =xp_1+ASx(x —xp_1);

* If A := 525 then z,, — z with |z — z,]| < (

Bt B 558 Nzl




Proot of the frame algorithm:

Let T := S —1, 50 |[|T|op < 22722 < 1.

B1+B2 Bl+B2

Hence,

2
B1 + B>
=T(x —xp_1),

S(x—Tp_1)

SO ||z — xp|| < (m) |x — x,—1]| and one concludes

By — B\
T — Iy §( ) xl|l. O
o =l < (Fopr) Nl

Remark: Rather than inverting Sx, one can use the frame algorithm
to approximate the canonical dual frame. (Set x = S~ 'z, algorithm

requires Sxx = x;.)




Tight frames:

e Tight frames are ideal for applications, since they eliminate the
need for a dual frame or use of the frame algorithm.

* If By = By then S = B11, so an easy dual frame is obtained

by defining y,; = B%xj;

* If By = By then the frame algorithm converges in a single
iteration.
e 2000: Benedetto and Fickus [1] introduced the frame potential,
N
2

FP({za}0i1) = > |[(@m,an)|”,

m,n=1

to study tight frames of unit-norm vectors in finite dimensional

Hilbert space. (H? = d-dimensional Hilbert space)




Motivation behind the frame potential:

e “Frame force” between z,y € S9!

Notice that mutually orthogonal vectors are in equilibrium.

e Potential betwen x,y € S¥~1 (so that VP = —FF)

P(ZC,y) — %(‘<£Ij,y>’2 - 1)'

e Total potential of a collection is obtained by summing the po-

tential between pairs of points on the sphere:

TP(z,y) = Z Z P(Zm, xy).

m=1 m=#n




Minimizers of the frame potential:

o If X ={x,}, C S9! is a minimizer of the frame potential then
it can be shown that each x,, is an eigenvector of the associated
frame operator Sx.

Minimizer sets may be partitioned via eigenvalues into mutually

orthogonal sequences which are Parseval frames for their spans:
E\x ={x, : Sz, = Az, }.

Benedetto and Fickus used this decomposition together with
a perturbation argument to show that local minimizers over
{2, }V_, C S9! must either comprise an orthonormal set (if
underdetermined) or a tight frame (if overdetermined).




Frame potential characterizations:

Theorem 1 (Benedetto and Fickus [1]). Let N,d be positive
integers and let {x, }Y_, C H? with ||x,|| =1 for each 1 < n < N.

(a) Every local minimizer of FP({z, }2_,) (under the constraint that

|zn|| = 1Vn) is also a global minimizer.

(b) If N < d the minimum of the frame potential is N and the

minimizers are the orthonormal sequences.

(c) If N > d the minimum value of the frame potential is N?/d and

the minimizers are the tight frames.

Theorem 1 implies that one may search for tight frames of unit norm

vectors using the potential gradient. (also guarantees existence)




Frame potential characterizations:

e 2002: Casazza, Fickus, Kovacevié¢, Leon, & Tremain considered
collections of non-uniform norms and again studied the minimiz-

ers of the frame potential;

e They found that tight frames do not exist for every sequence of

prescribed norms.

Theorem 2 (Casazza et al. [2]). If X = {z,}_} c H? is a tight
frame with ||x,| = a, and a9 > a1 > --- > any_1 > 0, then

N-1
2 2
dag < E a, .
n=0

This inequality is called the fundamental frame inequality (FFI).




Frame potential characterizations:

e (Casazza et al. generalized Theorem 1 as follows.

oLetA:{{xn}N cHY Haan—an,O<n<N—1}

Theorem 3. If X = {z,}]°; is a minimizer of the frame po-
tential over A and {a, },, N . satisfies FFI then X is a tight frame
for H?. (N > d)

Their work also describes the minimizers of the frame potential
when FFI is not satisfied. The vectors of largest norm “push”

the remaining smaller vectors into an orthogonal subspace:
X ={zo} L {z1} - L {zne—1} L {zn}nns

where {xy,},, .} is a tight frame for its span [2].




(Question:

Will the frame potential lead to characterizations of tight
frames with additional imposed structure? (e.g., shift-
invariance)




Shift-invariant systems in H:

e Think of H? as #(Zg4), where Zg := Z/dZ. Let x € ¢(Zg) and
suppose that N | d.

*x Translation: Tx(k) = x(k — 1), k € Zg;

x convolution: z * y(k) = ZnGZd z(n)y(k —n);

* Involution: z(k) = x(—k);
Fourier transform: Fax(n) = &(n) =
Downsampling by N: |n: €(Za) — £(Za/N),
(L 2)(k) = 2(NF).

Upsampling by N: Tn: l(Za/n) — £(Za),




Shift-invariant systems in H:

Definition 1. Let N,d be positive integers with N | d. Given
{(hp }M -1 c H?, the N shift-invariant system generated by {hm, }m

1S

Xc({hmI V23 N) = {Tphy : k € NZg,0 <m < M —1}.

Let S be the frame operator of X¢({hm} " _4, N), then

m=0 "

M-—-1

M -1
Sz=3" > (@ Tehm)Tihm = > (Tl (@5 hm)) = hon.

m=0 k€ENZyq, m=0

The latter form reveals the convolutional nature of shift-invariant
systems. In this sense S may be thought of as a filter bank frame

operator, where H := {h,, },, is the collection of filters.




Filterbank frame operator:

Analysis Synthesis

O Ho-
O Ho-




Basic 1deas:

® SXCZC— Z Tkz TkZUh Z TkSHT kL,

keENZgq keENZgq

M—-1
m=0 *

where, again, H = {h,,

e One may construct familiar examples using the above identity.
Let d=2P, N =2, M = 2:

This is the discrete Haar basis.




Mercedes-Benz example:

The so called Mercedes-Benz frame is the %—tight frame for R? asso-

ciated with the third-roots of unity.

Let d=2P, N =2, M = 3:




Characterizing shift-invariant tight frames:

e Given ag > --- > ap—1 > 0, constrain filter lengths:

|hm] = am, 0<m< M —1.

o X (H) will satisfy FFI if

M—1
Nai Z aZ . (easier since N < d)

m=0

e One can still prove that if a set of filters H is a minimizer then
each element Tnih,, of X¢ is an eigenvector of Sx., but the
pertubation arguments used in the previous results do not seem

to work.




Modulated filter representation:

e For 0 <k <d-—1,let

ho(k—ko—]\c,i) hM—1(k—|—O—]\C,l)

ho(k + D4y Ry (k 4+ (D)

o et H*

mod

be the d x M % matrix given by

H:;aod (0)

0 H::aod(% o 1)

The modulated filter representation here is adapted from that of
the ¢%(Z) setting, e.g. in the work of Vetterli [4].




Modulated filter representation:

Proposition 4. The synthesis operator L% of X¢({hm }m, N) may
be written as
Lj;(c — UlH;;IOdU27

where Uj, Uy are unitary. In particular, the frame operator Sx_. i

unitarily equivalent to H> ;Hmod.

e The unitary operators involve the Fourier transform as well as

perfect shuffle operators (Strohmer [3]).

e H* . can be interpreted as the tensor sum of % synthesis oper-

ators for collections of M vectors in H¥ .




Modulated filter representation:

e Transforming the problem:
Xc({hm}m, N) CH* <= X; ={2 }m C HY,
0<5< % — 1, where x,,_ ; is the mth column of H _,(j).
e Constraints for 0 < m < M — 1:

|hm|* = az,

e The convolutional frame potential problem is converted into a
“shared-constraint” version of the Casazza et al. minimization

problem.




Relating the problems:

Proposition 5. Let {h,,}, and X, as above.

d
4_1

(a) FP(Xc({hm}m, N)) = Z FP(X;);

(b) The frame bounds of X¢c ({hm }m, V) are the minimum /maximum

of the frame bounds of the collections X.




Solution of the shared-constraint problem:

LetA:{

Theorem 6. Suppose M > N where N | d and let a9 > a1 > -+ >

ap—1 > 0. If the collections X; form a minimizer of the combined
frame potential

d
4_1

over A and FFT is satisfied, then each collection X is a tight frame

with a common frame bound.




Final characterization:

Let A = {{hm}m CHE: ||| = am, 0 < m < M — 1}.

Corollary 7. Suppose M > N where N | d and {a,,},, satisfies
FFL If {hy,}p is a minimizer of FP(X¢({Ayn }m,N)) over A then
Xc({hm}m) is a tight frame for H<.

e one may thus search for convolutional tight frames using the

frame potential

e underdetermined case and situations where FFI does not hold

are analogous
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