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Abstract:
The recently introduced notion of a frame potential has
led to useful characterizations of finite-dimensional tight
frames consisting of vectors with prescribed lengths. It
is natural to ask whether the frame potential leads to
similar characterizations for systems with additional im-
posed structure. We will describe how such a generaliza-
tion can be obtained for the class of shift-invariant sys-
tems. The fast algorithms associated with convolution
make shift-invariant systems advantageous in applications.
(joint work with M. Fickus, K. Kornelson, & K. Okoudjou)
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What is a frame?
• A collection X := {xj}j∈J ⊂ H is a frame for H if and only if

there exist constants 0 < B1 ≤ B2 < ∞ such that for each x ∈ H
B1‖x‖2 ≤

∑

j∈J

∣∣〈x, xj〉
∣∣2 ≤ B2‖x‖2; (1)

• X is called a tight frame if it is possible that B1 = B2;

• Frames generalize the notion of an orthonormal basis.

? Frame coefficients uniquely determine elements:

〈x, xj〉 = 〈y, xj〉, ∀j ∈ J ⇒ x = y;

? However, representation of an element in terms of frame vec-
tors is not, in general, unique:

x =
∑

j

αjxj =
∑

j

βjxj 6⇒ αj = βj , ∀j ∈ J .
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Operators associated to frames:

• Analysis operator: LX : H→ `2(J ), defined by

LXx = {〈x, xj〉}j∈J ;

• Synthesis operator: L∗X : `2(J ) → H, given by

L∗Xy =
∑

j∈J
y(j)xj ;

• In finite dimensions the matrix representation of L∗X is

L∗X =
[
x1 x2 · · · xN

]
d×N

.
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Operators associated to frames:

• Frame operator: SX := L∗XLX : H→ H, given by:

SXx =
∑

j∈J
〈x, xj〉xj .

• X is a frame with bounds B1 ≤ B2 if and only if

B1I ≤ SX ≤ B2I.

• Between analysis and synthesis one may perform various process-
ing operations (thresholding, truncating, etc.), but ultimately
one wants to recover x (or a good approximation) from LXx.
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Reconstruction via frames:
• Dual frame: a collection Y := {yj}j∈J such that for any x ∈ H

x = L∗Y LXx = L∗XLY x;

• Canonical dual frame: define yj := S−1xj so that

L∗XLY x =
∑

j∈J
〈x, S−1

X xj〉xj = SXS−1
X x = x;

• Frame algorithm (recursive):

? Set x0 = 0;

? For n ≥ 1, let xn = xn−1 + λSX(x− xn−1);

? If λ := 2
B1+B2

then xn → x with ‖x− xn‖ ≤
(

B2−B1
B1+B2

)n‖x‖.
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Proof of the frame algorithm:
Let T := 2

B1+B2
S − I, so ‖T‖op ≤ B2−B1

B1+B2
< 1.

Hence,

x− xn = x− xn−1 − 2
B1 + B2

S(x− xn−1)

= T (x− xn−1),

so ‖x− xn‖ ≤
(

B2−B1
B1+B2

)‖x− xn−1‖ and one concludes

‖x− xn‖ ≤
(B2 −B1

B1 + B2

)n

‖x‖. 2

Remark: Rather than inverting SX , one can use the frame algorithm
to approximate the canonical dual frame. (Set x = S−1xj , algorithm
requires SXx = xj .)
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Tight frames:

• Tight frames are ideal for applications, since they eliminate the
need for a dual frame or use of the frame algorithm.

? If B1 = B2 then S = B1I, so an easy dual frame is obtained
by defining yj = 1

B1
xj ;

? If B1 = B2 then the frame algorithm converges in a single
iteration.

• 2000: Benedetto and Fickus [1] introduced the frame potential,

FP
({xn}N

n=1

)
=

N∑
m,n=1

∣∣〈xm, xn〉
∣∣2,

to study tight frames of unit-norm vectors in finite dimensional
Hilbert space. (Hd ≡ d-dimensional Hilbert space)
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Motivation behind the frame potential:

• “Frame force” between x, y ∈ Sd−1

FF(x, y) = 〈x, y〉(x− y).

Notice that mutually orthogonal vectors are in equilibrium.

• Potential betwen x, y ∈ Sd−1 (so that ∇P = −FF )

P(x, y) =
1
2
(∣∣〈x, y〉

∣∣2 − 1
)
.

• Total potential of a collection is obtained by summing the po-
tential between pairs of points on the sphere:

TP(x, y) =
N∑

m=1

∑

m 6=n

P(xm, xn).

7



Minimizers of the frame potential:

• If X = {xn}n ⊂ Sd−1 is a minimizer of the frame potential then
it can be shown that each xn is an eigenvector of the associated
frame operator SX .

• Minimizer sets may be partitioned via eigenvalues into mutually
orthogonal sequences which are Parseval frames for their spans:

Eλ = {xn : Sxn = λxn}.

• Benedetto and Fickus used this decomposition together with
a perturbation argument to show that local minimizers over
{xn}N

n=1 ⊂ Sd−1 must either comprise an orthonormal set (if
underdetermined) or a tight frame (if overdetermined).
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Frame potential characterizations:

Theorem 1 (Benedetto and Fickus [1]). Let N, d be positive
integers and let {xn}N

n=1 ⊂ Hd with ‖xn‖ = 1 for each 1 ≤ n ≤ N .

(a) Every local minimizer of FP({xn}N
n=1) (under the constraint that

‖xn‖ = 1 ∀n) is also a global minimizer.

(b) If N ≤ d the minimum of the frame potential is N and the
minimizers are the orthonormal sequences.

(c) If N ≥ d the minimum value of the frame potential is N2/d and
the minimizers are the tight frames.

Theorem 1 implies that one may search for tight frames of unit norm
vectors using the potential gradient. (also guarantees existence)
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Frame potential characterizations:

• 2002: Casazza, Fickus, Kovačević, Leon, & Tremain considered
collections of non-uniform norms and again studied the minimiz-
ers of the frame potential;

• They found that tight frames do not exist for every sequence of
prescribed norms.

Theorem 2 (Casazza et al. [2]). If X = {xn}N−1
n=0 ⊂ Hd is a tight

frame with ‖xn‖ = an and a0 ≥ a1 ≥ · · · ≥ aN−1 > 0, then

da2
0 ≤

N−1∑
n=0

a2
n.

This inequality is called the fundamental frame inequality (FFI).
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Frame potential characterizations:

• Casazza et al. generalized Theorem 1 as follows.

• Let A =
{
{xn}N−1

n=0 ⊂ Hd : ‖xn‖ = an, 0 ≤ n ≤ N − 1
}

.

Theorem 3. If X = {xn}N−1
n=0 is a minimizer of the frame po-

tential over A and {an}N−1
n=0 satisfies FFI then X is a tight frame

for Hd. (N ≥ d)

• Their work also describes the minimizers of the frame potential
when FFI is not satisfied. The vectors of largest norm “push”
the remaining smaller vectors into an orthogonal subspace:

X = {x0} ⊥ {x1} · · · ⊥ {xn0−1} ⊥ {xn}N−1
n=n0

,

where {xn}N−1
n=n0

is a tight frame for its span [2].
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Question:

Will the frame potential lead to characterizations of tight
frames with additional imposed structure? (e.g., shift-
invariance)
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Shift-invariant systems in Hd:
• Think of Hd as `(Zd), where Zd := Z/dZ. Let x ∈ `(Zd) and

suppose that N | d.

? Translation: Tx(k) = x(k − 1), k ∈ Zd;

? convolution: x ∗ y(k) =
∑

n∈Zd
x(n)y(k − n);

? Involution: x̃(k) = x(−k);

? Fourier transform: Fdx(n) = x̂(n) =
1√
d

∑

k∈Zd

x(k)e−2πi k
d

n;

? Downsampling by N : ↓N : `(Zd) → `(Zd/N ),

(↓N x)(k) = x(Nk).

? Upsampling by N : ↑N : `(Zd/N ) → `(Zd),

(↑N x)(k) =





x(k/N), N | k,

0, N - k.

13



Shift-invariant systems in Hd:
Definition 1. Let N, d be positive integers with N | d. Given
{hm}M−1

m=0 ⊂ Hd, the N shift-invariant system generated by {hm}m

is

XC({hm}M−1
m=0 , N) = {Tkhm : k ∈ NZd, 0 ≤ m ≤ M − 1}.

Let S be the frame operator of XC({hm}M−1
m=0 , N), then

Sx =
M−1∑
m=0

∑

k∈NZd

〈x, Tkhm〉Tkhm =
M−1∑
m=0

(
↑↓N (x ∗ h̃m)

)
∗ hm.

The latter form reveals the convolutional nature of shift-invariant
systems. In this sense S may be thought of as a filter bank frame
operator, where H := {hm}m is the collection of filters.
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Filterbank frame operator:

h̃0∗ ↓N ↑N h0∗

h̃1∗ ↓N ↑N h1∗

h̃M−2∗ ↓N ↑N hM−2∗

h̃M−1∗ ↓N ↑N hM−1∗

⊕...
...

x

Analysis︷ ︸︸ ︷ Synthesis︷ ︸︸ ︷

15



Basic ideas:

• SXC
x =

∑

k∈NZd

Tk

M−1∑
m=0

〈T−kx, hm〉hm =
∑

k∈NZd

TkSHT−kx,

where, again, H = {hm}M−1
m=0 .

• One may construct familiar examples using the above identity.
Let d = 2p, N = 2, M = 2:

L∗H =




1√
2

1√
2

1√
2

− 1√
2

0 0
...

...

0 0




=⇒ SH =


I2 0

0 0




d×d

=⇒ SXC
= Id.

This is the discrete Haar basis.

16



Mercedes-Benz example:

The so called Mercedes-Benz frame is the 3
2 -tight frame for R2 asso-

ciated with the third-roots of unity.

Let d = 2p, N = 2, M = 3:

L∗H =




1 − 1
2 − 1

2

0
√

3
2 −

√
3

2

0 0 0
...

...
...

0 0 0




=⇒ SH =




3
2I2 0

0 0




d×d

=⇒ SXC
=

3
2
Id.
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Characterizing shift-invariant tight frames:
• Given a0 ≥ · · · ≥ aM−1 > 0, constrain filter lengths:

‖hm‖ = am, 0 ≤ m ≤ M − 1.

• XC(H) will satisfy FFI if

Na2
0 ≤

M−1∑
m=0

a2
m. (easier since N ≤ d)

• One can still prove that if a set of filters H is a minimizer then
each element TNkhm of XC is an eigenvector of SXC , but the
pertubation arguments used in the previous results do not seem
to work.
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Modulated filter representation:

• For 0 ≤ k ≤ d− 1, let

H∗
mod(k) =

√
d

N




ĥ0(k + 0d
N

) . . . ĥM−1(k + 0d
N

)

...
...

ĥ0(k + (N−1)d
N

) . . . ĥM−1(k + (N−1)d
N

)




N×M

• Let H∗
mod be the d×M d

N matrix given by

H∗
mod =




H∗
mod(0) 0

. . .

0 H∗
mod( d

N − 1)




The modulated filter representation here is adapted from that of
the `2(Z) setting, e.g. in the work of Vetterli [4].
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Modulated filter representation:

Proposition 4. The synthesis operator L∗XC
of XC({hm}m, N) may

be written as
L∗XC

= U1H
∗
modU2,

where U1, U2 are unitary. In particular, the frame operator SXC is
unitarily equivalent to H∗

modHmod.

• The unitary operators involve the Fourier transform as well as
perfect shuffle operators (Strohmer [3]).

• H∗
mod can be interpreted as the tensor sum of d

N synthesis oper-
ators for collections of M vectors in HN .
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Modulated filter representation:

• Transforming the problem:

XC({hm}m, N) ⊂ Hd ⇐⇒ Xj = {xm,j}m ⊂ HN ,

0 ≤ j ≤ d
N − 1, where xm,j is the mth column of H∗

mod(j).

• Constraints for 0 ≤ m ≤ M − 1:

‖hm‖2 = a2
m ⇐⇒

d
N−1∑

j=0

‖xm,j‖2 =
d

N
a2

m.

• The convolutional frame potential problem is converted into a
“shared-constraint” version of the Casazza et al. minimization
problem.
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Relating the problems:

Proposition 5. Let {hm}m and Xj as above.

(a) FP
(
XC({hm}m, N)

)
=

d
N−1∑

j=0

FP
(
Xj

)
;

(b) The frame bounds of XC({hm}m, N) are the minimum/maximum
of the frame bounds of the collections Xj .
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Solution of the shared-constraint problem:

LetA =
{
{xm,j}m,j ⊂ HN :

d
N−1∑

j=0

‖xm,j‖2 =
d

N
a2

m, 0 ≤ m ≤ M − 1
}

.

Theorem 6. Suppose M ≥ N where N | d and let a0 ≥ a1 ≥ · · · ≥
aM−1 > 0. If the collections Xj form a minimizer of the combined
frame potential

d
N−1∑

j=0

FP(Xj)

over A and FFI is satisfied, then each collection Xj is a tight frame
with a common frame bound.
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Final characterization:

Let A =
{
{hm}m ⊂ Hd : ‖hm‖ = am, 0 ≤ m ≤ M − 1

}
.

Corollary 7. Suppose M ≥ N where N | d and {am}m satisfies
FFI. If {hm}m is a minimizer of FP

(
XC({hm}m, N)

)
over A then

XC({hm}m) is a tight frame for Hd.

• one may thus search for convolutional tight frames using the
frame potential

• underdetermined case and situations where FFI does not hold
are analogous
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