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Problem Statement: Given a pair of orientations for a
sphere resting on a plane, is there a closed path along which one can
roll the sphere (without slipping or twisting), starting with the first
orientation, and return to the origin with the sphere in the second
orientation?
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Origin of the Problem [1]:
• In the late nineteenth century the notion of holonomy was in-

troduced to describe certain features of mechanical systems. A
mechanical system is said to be non-holonomic with respect to
a given constrained motion if the system can move between any
two states without violating the constraint. Otherwise, the sys-
tem is said to be holonomic with respect to the constraint.

• In our case, the mechanical system is the sphere on the plane,
the possible states include all possible orientations of the sphere
at a fixed point on the plane, and the constraint on the motion
is that the sphere must be rolled (with no slipping or twisting)
about a closed path. (a closed path begins and ends in the same
place)
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A Simpler Example [1]:
• System: A particle in the xy-plane.

• States: The position of the particle may be any coordinate (x, y).

• Constraint: The velocity vector of the particle must be perpen-
dicular to its position vector.

If the position vector is ~r(t) = x(t)~i+y(t)~j and ~v(t) = dx
dt

~i+ dy
dt

~j then this

system must obey the identity:

x
dx

dt
+ y

dy

dt
= 0,

which means y dy
dx

= −x. This is a separable differential equation whose

general solution is x2 + y2 = C, for any non-negative constant C.

Conclusion: The particle is limited to circular motion and, hence, the

system is holonomic.
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A Rolling Wheel:

Consider a wheel of radius R rolling with angular frequency ω0.
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Still a Rolling Wheel:
• The velocity of the center C will be

~vC = ω0R~i + R~j.

• The velocity at an arbitrary point on the outside of the wheel,
B, will be given by

~vB = ~vC + ~vB/C = ~vC + ω0
~k × ~rB/C .

• Notice that if ~rB/C = R~j, then ~vB = 2ω0R~i while if ~rB/C =
−R~j, then ~vB = ~0.

• This last observation characterizes rolling without slipping, i.e.,
that the point of the wheel in contact with the ground
must have zero instantaneous velocity.
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The Rolling Sphere: Equations of Motion (1 of 4)

• Let ~r(t) = f(t)~i + g(t)~j be the path in the plane about which
the sphere is to be rolled. (The sphere’s center, C, will follow
~rC(t) = ~r(t) + ~k.)

• The first problem is to determine what rotation of the sphere,
~ω(t), produces this motion under the constraint of no slipping
and no twisting.

• No slipping means the velocity at the bottom of the sphere is
zero:

~0 = ~vB(t) = ~r′C(t) + ~ω(t)× ~rB/C

= ~r′C(t) + ~ω(t)× (−~k)

= f ′(t)~i + g′(t)~j + ωx(t)~j − ωy(t)~i.

• No twisting means ~ω(t) · ~k = 0.
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The Rolling Sphere: Equations of Motion (2 of 4)

• The two previous observations now imply that

~ω(t) = −g′(t)~i + f ′(t)~j.

• Since the path ~r(t) is closed (starts and ends at the origin for
our purposes) in order to determine the final orientation of the
sphere we only require information about the relative motion of
points on the sphere with respect to the center.

• In other words, given the rotation ~ω(t) we can find the final state
by considering the sphere as if it were spinning in place.

• The next task is to characterize the motion of an arbitrary point
on the sphere under such a rotation.
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The Rolling Sphere: Equations of Motion (3 of 4)

• The motion of an arbitrary point P will be given by

~vP (t) = ~ω(t)× ~rP/C(t) =

∣∣∣∣∣∣∣∣

~i ~j ~k

−g′(t) f ′(t) 0

xP (t) yP (t) zP (t)

∣∣∣∣∣∣∣∣
.

• This leads to the following system of differential equations:



dx
dt

dy
dt

dz
dt


 =




f ′(t)z(t)

g′(t)z(t)

−f ′(t)x(t)− g′(t)y(t)


 .
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The Rolling Sphere: Equations of Motion (4 of 4)

• Recall that the goal is to solve this system of equations given for
a given path given an initial condition (x0, y0, z0).

• For example, consider a linear path ~r(t) = at~ı+ bt~, where a, b ∈
R. In this case, the equations of motion are




dx
dt

dy
dt

dz
dt


 =




0 0 b

0 0 a

−a −b 0







x(t)

y(t)

z(t)


 , (1)

which are easily solved due to the constant coefficient matrix.

• Outside the realm of piecewise linear paths, however, solution of
the equations of motion will be more challenging.
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The Holonomy Question:
• Assume the sphere begins at the origin.

• An orientation of the sphere is determined by two features:

– the point on the sphere which occupies the North pole;

– the location of a point on the equator (i.e., an angle about
the z-axis).

• One could prove that the system is nonholonomic by:

– showing that one can achieve any desired rotation about the
z-axis without disturbing the North Pole by rolling through
a closed path;

– showing that any point on the sphere can be relocated to the
North Pole by rolling through a closed path.
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Lemma 1: Rotation about the z-axis:

The no-twisting constraint prevents us from directly rotating the
sphere about the z-axis, but we can accomplish an equivalent trans-
formation by rolling the sphere through the path depicted below.
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(x, y) = (−θ/2,−π/2)

(x, y) = (θ/2, π/2)
x

(x, y) = (0,−π/2)

(x, y) = (0, π/2)
y
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Lemma 2: Relocation to the North Pole (1 of 2)

A given point P on the sphere can be relocated to the North Pole
by rolling the sphere through a rectangular path similar to that of
Lemma 1.

P ′

P = (x0, y0, z0)

~v = −x0~ı + y0~

~u = x0~ı + y0~
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Lemma 2: Relocation to the North Pole (2 of 2)

Description of the path:

1. Roll the sphere in the −~u direction (along a great circle) until
the midpoint P ′ of the connecting arc is at the North Pole;

2. Roll the sphere in the ~v direction π units, relocating P ′ to the
South Pole;

3. Roll the sphere in the ~u direction so that P is at the South Pole;

4. Roll the sphere in the −~v direction by π units, bringing the
sphere back to the origin and rotating P to the North Pole.
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Nonholonomy of the Rolling Sphere

Combining Lemmas 1 and 2 we have shown that any given orienta-
tion of the sphere is achievable at a fixed point on the plane by way
of rolling with no slipping or twisting. (More details can be found in
[2].)

Theorem 1. The sphere resting on the plane constrained to rolling
through closed paths with no slipping or twisting is a nonholonomic
system.

Thus far the equations of motion have been put to little use. What
else can we do with them?
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A Circular Path for the Rolling Sphere:
• Suppose the sphere is rolled through a circle of radius R which

begins and ends at the origin:

~r(t) = R(1− cos t)~i + R sin t~j, 0 ≤ t ≤ 2π.

• The system of differential equations becomes:



dx
dt

dy
dt

dz
dt


 =




R sin t z(t)

R cos t z(t)

−R sin t x(t)−R cos t y(t)


 .

This system looks harder than it really is and can be simplified
by using a rotating coordinate system.
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Rotating Coordinates: (1 of 3)
• Introduce a rotating coordinate system (xr, yr) via:


x(t)

y(t)


 =


cos (π

2 − t) − sin (π
2 − t)

sin (π
2 − t) cos (π

2 − t)





xr(t)

yr(t)


 .

Also, let zr(t) = z(t).

• The (xr, yr, zr) coordinates are time dependent and rotate with
the sphere through the circular path. Under this change of vari-
ables the equations of motion become:




dxr

dt

dyr

dt

dzr

dt


 =



−yr(t) + Rzr(t)

xr(t)

−Rxr(t)


 =




0 −1 R

1 0 0

−R 0 0







xr(t)

yr(t)

zr(t)


 .
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Rotating Coordinates: (2 of 3)
• The equations of motion are now given by a first order, linear

system of differential equations, whose general solution is:

~xr(t) = C1~x1(t) + C2~x2(t) + C3~x3(t),

~x1(t) =
1√

R2 + 1




0

R

1




~x2(t) =
1√

R2 + 1




0

1

−R


 cos (

√
R2 + 1t)−




1

0

0


 sin (

√
R2 + 1t)

~x3(t) =
1√

R2 + 1




0

1

−R


 sin (

√
R2 + 1t) +




1

0

0


 cos (

√
R2 + 1t).
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Rotating Coordinates: (3 of 3)
• The coefficients for the particular solution are given by:




C1

C2

C3


 =




0 R√
R2+1

1√
R2+1

0 1√
R2+1

− R√
R2+1

1 0 0







xr(0)

yr(0)

zr(0)


 .

• If (xr(0), yr(0), zr(0)) = (0, 0, 1) (the North Pole) then the par-
ticular solution is given by

~xr(t) =
1

R2 + 1







0

R

1


−




0

R

−R2


 cos (ωt) +

√
R2 + 1




R

0

0


 sin (ωt)


 ,

where ω =
√

R2 + 1.
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A Circular Alternative to Lemma 2:

Proposition 2. For any given point P on the sphere there exists
a piecewise differentiable path ~r(t) (0 ≤ t ≤ T < ∞), composed of
circular components, such that rolling the sphere through the path
~r(t) relocates P to the North Pole.

The proof will make use of the axial symmetry of the sphere. Let ~u
and ~v be the images, respectively, of~ı and~ under a rotation by θ in
the xy-plane. Replace the standard circular path, above, by

~r(t) = R(1− cos t)~u + R sin t~v (0 ≤ t ≤ 2π). (2)

Suppose that rolling the sphere through the original circle moves a
point P on the sphere to another point, Q. If P̃ and Q̃ are the images
of P and Q, respectively, under the same rotation used above, then
rolling the sphere through the path (2) will move P̃ to Q̃.
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Proof of Proposition 2:
• Fix P = (x0, y0, z0) in the closed northern hemisphere (z0 ≥ 0).

• The circular path relocates the North Pole to the altitude

z(2π) =
[
1 + R2 cos (2π

√
R2 + 1)

]
/(R2 + 1). (3)

• The final altitude varies continuously with R:

R = 0 7→ z(2π) = 1 and R =
√

5
2
7→ z(2π) = −1

9
.

The Intermediate Value Theorem implies that any desired non-
negative altitude can be achieved.

• For every nonnegative altitude, there exists a point P with that
altitude which can be moved to the North Pole by a circular
path.
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Proof of Proposition 2:
• Given another point, P̃ , with the same altitude as P it is possible

to rotate the circular path so that P̃ is relocated to the North
Pole instead of P . Thus, any point in the northern hemisphere
can be relocated to the North Pole by a single circular path.

• Now fix P = (x0, y0, z0) in the southern hemisphere (z0 < 0).
Two circular paths will be used in sequence to move P to the
North Pole.

• Consider the great circle containing P and the North Pole. Ob-
serve that the shorter arc between P and the North Pole has
length less than or equal to π.

• The midpoint of this arc lies in the closed northern hemisphere,
so there exists a circular path which relocates the midpoint of
the arc to the North Pole. It follows that this path also moves
P to closed northern hemisphere.
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Necessity of Two Circular Paths:
Proposition 3. The North and South Poles cannot be exchanged
by rolling the sphere (with no slipping or twisting) through a single
circular path.

Proof. As in the proof of Proposition 2, the main tool is the general
solution for the circular path obtained above. For a fixed radius
R > 0 the sphere returns to its starting point when t = 2π and the
image of the North Pole satisfies

−1 +
2

R2 + 1
=

1−R2

R2 + 1
≤ z(2π) ≤ 1 + R2

R2 + 1
= 1.

Thus, z(2π) can never equal −1, showing that the North and South
Poles cannot be interchanged via rolling along a single circular path.
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Conclusion:

For more information about this subject or the details of the preced-
ing arguments one could look at the following references.
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