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Abstract:
We develop discrete wavelet transforms associated with
oversampled affine systems. We give sufficient conditions
for the construction of nonseparable bidimensional dyadic
QMFs from separable bidimensional dyadic QMFs through
oversampling.

0



Dyadic multiresolution analysis:
• Dyadic dilation: Df(x) =

√
2f(2x)

• Translation: Tf(x) = f(x− 1) (notation: Tk := T k)

• {Vj}j∈Z (closed subspaces of L2(R)) form a multiresolution anal-
ysis if

1. Vj ⊂ Vj+1, j ∈ Z;

2. f ∈ Vj ⇔ D−jf ∈ V0;

3. ∪j∈ZVj = L2(R);

4. ∩j∈ZVj = {0};
5. ∃ ϕ ∈ V0 such that {Tkϕ}k∈Z is an ONB for V0. (ϕ is the

scaling function)
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Dyadic multiresolution analysis:
• D−1ϕ ∈ V−1 ⊂ V0 leads to the low-pass filter m0:

ϕ̂(2ξ) = m0(ξ) ϕ̂(ξ)

• m0 is 1-periodic and must satisfy the Smith-Barnwell equation:
∣∣m0(ξ)

∣∣2 +
∣∣m0(ξ +

1
2
)
∣∣2 = 1 a.e.

• Defining ψ by ψ̂(2ξ) = e−2πiξm0(ξ + 1
2 ) one obtains an orthonor-

mal wavelet, i.e., {DjTkψ}j,k∈Z is an ONB for L2(R).

• A collection {hj}j∈J ⊂ H is a frame for H if there exist constants
0 < A ≤ B < ∞ such that for all f ∈ H

A‖f‖2H ≤
∑

j∈J

|〈f, hj〉H|2 ≤ B‖f‖2H. (1)

(Tight frame ⇔ A = B; Parseval frame ⇔ A = B = 1.)
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Generalized low-pass filters:
• If N is a positive, odd integer, notice that m(ξ) := m0(Nξ) also

satisfies the Smith-Barnwell equation.

∣∣m(ξ)
∣∣2 +

∣∣m(ξ +
1
2
)
∣∣2 =

∣∣m0(Nξ)
∣∣2 +

∣∣m0(Nξ +
N

2
)
∣∣2

=
∣∣m0(Nξ)

∣∣2 +
∣∣m0(Nξ +

1
2
)
∣∣2

= 1.

• Example: If N = 3 and m0 is the Haar low-pass filter then one
obtains

m(ξ) =
1
2

(
1 + e−2πi3ξ

)
.

This example falls under the class of generalized low-pass filters
studied by Paluszyński, Šikić, Weiss, and Xiao [7, 8], which can
be used to produce Parseval frame wavelets.
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Wavelets and translational oversampling:
• In 1994, Chui and Shi proved that if {DjTkψ}j,k∈Z is an ONB

then { 1√
N

DjT k
N

ψ}j,k∈Z is a Parseval frame for any positive, odd
integer N [4]. (2 and N must be relatively prime)

• In the case of an MRA wavelet with scaling function ϕ, we have
the refinement equation,

DjTkϕ =
√

2
∑

m∈Z
αm−2kDj+1Tmϕ,

where m0(ξ) =
∑

m∈Z αme−2πimξ.

• For the n× oversampled system, this can be written as

DjT k
N

ϕ =
√

2
∑

(m−2k)∈NZ
αm−2k

N
Dj+1Tm

N
ϕ,
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Oversampled low-pass filter:
• Let {α̃m}m∈Z be defined by

α̃m =





αm
N

, m ∈ NZ

0, m /∈ NZ.

This leads to another expression of the oversampled refinement,

DjT k
N

ϕ =
√

2
∑

m∈Z
α̃m−2kDj+1Tm

N
ϕ,

with an oversampled filter: m̃0(ξ) =
∑

m∈Z α̃me−2πimξ.

• Notice that m̃0(ξ) = m0(Nξ).

• Hence m(ξ) = 1
2

(
1+e−2πi3ξ

)
is also the low-pass filter associated

to the 3× oversampled Haar wavelet.
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Wavelet frames and matrix oversampling:
The oversampling result of Chui and Shi has been generalized to
multi-generated affine frames in higher dimensions:

• Generators: Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn);

• Dilation: Df(x) =
√
|det A|f(Ax), A expansive, integer entries;

• Translations: P−1Zn where P has integer entries and detP 6= 0;

• Oversampled affine system generated by Ψ relative to P :

X(Ψ, P ) = {| detP |− 1
2 DjTP−1kψ` : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zn};

• X(Ψ) := X(Ψ, In) is the usual affine system.
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Second oversampling theorem:
• The relative primality condition of Chui and Shi’s original result

must be replaced by two admissibility conditions on P :

? PAP−1 must have integer entries; (automatic in scalar case)

? P−1Zn
⋂

A−1Zn = Zn. (relative primality condition)

• The following result was originally proven by Ron and Shen [9],
but has been revisited by several others from various points of
view: Chui et al. [3], Laugesen [6], Hernández et al. [5].

Theorem 1 (Second Oversampling Theorem). If P satis-
fies the above admissibility conditions and X(Ψ, In) is a frame
then X(Ψ, P ) is a frame with the same upper and lower frame
bounds.
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Multiresolution analysis:
• Dual scaling functions: ϕ, ϕ̃

• Refinable dual generating families: Ψ := {ψ`}`, Ψ̃ := {ψ̃`}`

• Filters: m`, m̃`, 0 ≤ ` ≤ L, satisfying the generalized Smith-
Barnwell equations,

L∑

`=0

m`(ξ)m̃`(ξ + (AT )−1ϑs) = δ0,s, 0 ≤ s ≤ m− 1, (2)

such that

ψ̂`(AT ξ) = m`(ξ)ϕ̂(ξ) and ˆ̃
ψ`(AT ξ) = m̃`(ξ) ˆ̃ϕ(ξ) (3)

for 0 ≤ ` ≤ L and a.e. ξ ∈ Rn. (ψ0 := ϕ, ψ̃0 := ϕ̃)

• {ϑs}a−1
p=0 is a set of coset representatives of Zn/ATZn and a :=

| detA|. (ϑ0 := 0)
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Oversampled filters:
• Original perfect reconstruction filters, 0 ≤ ` ≤ L,

m`(ξ) =
∑

k∈Z
αke−2πi〈ξ,k〉.

• Following the one-dimensional case, define oversampled filters by

mP
` (ξ) =

∑

k∈Z
αP

k e−2πi〈ξ,k〉,

where

αP
`;r :=





α`;s r = Ps, s ∈ Zn

0 otherwise
.

Observe that mP
` (ξ) = m`(PT ξ).
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Oversampled discrete wavelet transform:

Proposition 2 (Oversampled Wavelet Transform). If X(Ψ, In)
and X(Ψ̃) are dual frames with the multiresolution structure de-
scribed above and P is an admissible oversampling matrix, then the
collections X(Ψ, P ) and X(Ψ̃, P ) are dual frames with the following
analysis and synthesis relationships: (j ∈ Z, k ∈ Zn)

〈f, DjTP−1kψ`〉 =
√
|det A|

∑

r∈Zn

αP
`;r〈f, Dj+1TP−1(r+Ãk)ϕ〉, (4)

0 ≤ ` ≤ L, and

〈f, Dj+1TP−1kϕ〉 =
√
| detA|

L∑

`=0

∑

r∈Zn

α̃P
`;Ãr+k

〈f,DjTP−1rψ`〉, (5)

for each f ∈ L2(Rn), where Ã := PAP−1.
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Oversampled discrete wavelet transform:

Proposition 3. Suppose P,A ∈ GLn(Z) with p := | detP |. Let
{θr}b−1

r=0 be a complete set of distinct coset representatives of P−1Zn/Zn

with θ0 = 0. Suppose PAP−1 ∈ GLn(Z). Then {Aθr}b−1
r=0 is a com-

plete set of representatives of P−1Zn/Zn if and only if P and A

satisfy P−1Zn
⋂

M−1Zn = Zn.

Remark 1. This proposition plays a role both in the proof of the
Second Oversampling Theorem and in the proof of the Oversampled
Wavelet Transform. In the latter case, the fact that dilation by
A preserves coset representatives of P−1Zn leads to an equivalence
between the perfect reconstruction equations of the original filters,
m`, m̃`, and the oversampled filters, mP

` , m̃P
` .
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The dyadic L2(R2) case:

• Dilation: A = 2I2.

• Admissibility of P :

? PAP−1 = A automatically has integer entries;

? A sufficient condition for P−1Zn
⋂

A−1Zn = Zn is | detP |
being odd.

• If | detP | = 2 then P−1Z2 ⊆ 1
2Z

2 = A−1Z2, so P cannot be
admissible.

• Hence if P is admissible | detP | ≥ 3 (measure of redundancy)
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Nonseparable QMFs:
Let m ∈ L∞(Tn)

⋂
C(Tn). Then m is an n-dimensional QMF if and

only if m(0) = 1 and

2n−1∑
r=0

∣∣m(ξ + πϑr)
∣∣2 = 1 (6)

for a.e. ξ ∈ T, where {ϑr}2
n−1

r=0 is a complete set of coset representa-
tives for Zn/2Zn.

Definition 1 (Ayache [1, 2]). Suppose that m ∈ L∞(T2)
⋂

C(T2)
is a bidimensional QMF, then m is non-separable if and only if there
does not exist Q ∈ S̃L2(Z) and univariate QMFs µ and λ such that

m(ξ) = µ(Qξ · (1, 0))λ(Qξ · (0, 1)),

where ξ := (ξ1, ξ2).
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Nonseparable QMFs via oversampling:

Theorem 4. Let m and ` be univariate QMFs and let P ∈ GL2(Z)
with | detP | odd. The bidimensional filter M defined by

M(ξ1, ξ2) = m(p11ξ1 + p12ξ2)`(p21ξ1 + p22ξ2),

where P =


p11 p12

p21 p22


, is a bidimensional QMF. Moreover, if PA

is non-diagonal for all A ∈ S̃L2(Z) then M is nonseparable in the
sense of Definition 1.

Notation: GLn(Z) is the collection of n × n matrices with integer
entries and nonzero determinant.

14



Nonseparable QMFs via oversampling:

Lemma 5. A =


a1 a2

a3 a4


 ∈ GL2(Z) can be column-reduced (using

only column permutations and transvections) to a matrix of the form

B =


b1 0

b2 b3


, with b1 = gcd(a1, a2) > 0 and |b2| < |b3|. In

particular, there exists U ∈ S̃L2(Z) such that B = AU .

Proposition 6. Let P ∈ GL2(Z). If any column-reduced form of
P has three non-zero entries, then PA is non-diagonal for all A ∈
S̃L2(Z).
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Examples of nice oversampling matrices:
• det P = 3:

P =


 2 1

−1 1


 '


 2 1

−1 1





0 1

1 −2


 =


1 0

1 −3




• another det P = 3:

P =


2 1

1 2


 '


2 1

1 2





0 1

1 −2


 =


1 0

2 −3




• det P = 7:

P =


 3 2

−2 1


 '


 3 2

−2 1





−1 −2

1 3


 =


−1 0

3 7




16



An example:
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Figure 1: Original Barbara image.
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Figure 2: Barbara image with Haar filters and no oversampling.
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Figure 3: Barbara image with Haar filters and oversampling by P .
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Another example:
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Figure 4: Original Monarch image.
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Figure 5: Monarch image with Haar filters and no oversampling.
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Figure 6: Monarch image with Haar filters and oversampling by P .
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Figure 7: Monarch image with Haar filters and oversampling by P .
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Figure 8: Monarch image with Haar filters and oversampling by P .
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A final example:
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Figure 9: Original Lena Image.
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Figure 10: Lena image with Haar filters and no oversampling.
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Figure 11: Lena image with Haar filters and oversampling by P .
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