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Abstract:

We develop discrete wavelet transforms associated with
oversampled affine systems. We give suflicient conditions

for the construction of nonseparable bidimensional dyadic
QMEF's from separable bidimensional dyadic QMEF's through
oversampling.




Dyadic multiresolution analysis:
e Dyadic dilation: Df(z) = v2f(2x)
e Translation: Tf(z) = f(r —1) (notation: T} := T*)

o {V;};cz (closed subspaces of L*(R)) form a multiresolution anal-
ysis if
1. V; C Vi, j €Z;
eV, & DfeV
- UjezVj = L*(R);

2
3
4. NjezVj ={0};
D

. 3 ¢ € Vj such that {Txp}trez is an ONB for Vy. (¢ is the
scaling function)




Dyadic multiresolution analysis:
o D tpcV_; CV,leads to the low-pass filter my:

p(2€) = mo(§) 4(§)

e My is 1-periodic and must satisfy the Smith-Barnwell equation:

mo(©)[ + mo(& + )

=1 a.e.

e Defining v by 12(25 ) = e 2™ emg (€ + %) one obtains an orthonor-
mal wavelet, i.e., {D?Ty1}; kez is an ONB for L*(R).

o A collection {h;};c; C His a frame for H if there exist constants
0 < A< B < o such that for all f € H

AllfIIE <) I hdal® < Bl £l

jeJ

(Tight frame < A = B; Parseval frame < A= B = 1.)




Generalized low-pass filters:

e If N is a positive, odd integer, notice that m(§) := mo(N¢) also

satisfies the Smith-Barnwell equation.

m(©)[* + [m(€ + 3)[* = [mo(NE) mo(N§+§
mo (N¢) mo(Nf—l—%

= 1.

e Example: If N = 3 and my is the Haar low-pass filter then one

obtains

m(e) = 5 (1+¢727%).

This example falls under the class of generalized low-pass filters
studied by Paluszyniski, Siki¢, Weiss, and Xiao [7, 8], which can

be used to produce Parseval frame wavelets.




Wavelets and translational oversampling:

e In 1994, Chui and Shi proved that if {D7Tyv}; kez is an ONB
then {\/LNDJ' T i Y}, kez is a Parseval frame for any positive, odd
integer N [4]. (2 and N must be relatively prime)

e In the case of an MRA wavelet with scaling function ¢, we have
the refinement equation,

DJT]@SO — \/i Z O‘m—Qij—i_legpa
mMEZL

where mo (&) =Y.,z @me 2™4.

e For the nx oversampled system, this can be written as

DjT%go =2 Z O m 2k DjHT%gp,
(m—2k)ENZ




Oversampled low-pass filter:
o Let {Qm ez be defined by

m € NZ

m
N
am

87
0, m¢NZ.

This leads to another expression of the oversampled refinement,

D]T%QD = \/5 Z &m—Qij-l_lT% ¥,
meZ

with an oversampled filter: my(§) =, .5 Gme ™ 2™™8.
e Notice that mo (&) = mo(NE).

e Hence m(§) = % (1—|—e_27”'3g ) is also the low-pass filter associated

to the 3x oversampled Haar wavelet.




Wavelet frames and matrix oversampling:

The oversampling result of Chui and Shi has been generalized to

multi-generated affine frames in higher dimensions:
e Generators: ¥ = {¢n,...,9¥p} C L*(R");
e Dilation: Df(z) = /| det A|f(Az), A expansive, integer entries;
e Translations: P~!'Z" where P has integer entries and det P # 0;

Oversampled affine system generated by W relative to P:

X (U, P)={|det P| DI Tp-s0py : 1< (< L,j €L,k €Z"};

X (V) := X (¥, 1,) is the usual affine system.




Second oversampling theorem:

e The relative primality condition of Chui and Shi’s original result

must be replaced by two admissibility conditions on P:
x PAP~! must have integer entries; (automatic in scalar case)

*x Ptz ﬂ A™Z" = Z™. (relative primality condition)

e The following result was originally proven by Ron and Shen [9],
but has been revisited by several others from various points of

view: Chui et al. [3], Laugesen [6], Herndndez et al. [5].

Theorem 1 (Second Oversampling Theorem). If P satis-
fies the above admissibility conditions and X (W, I,) is a frame
then X (U, P) is a frame with the same upper and lower frame

bounds.




Multiresolution analysis:

e Dual scaling functions: ¢, ¢
e Refinable dual generating families: U := {4}y, U := {@Zg}g

o Filters: my,my, 0 < ¢ < L, satistfying the generalized Smith-
Barnwell equations,

ng (EF(ADYW) =60, 0<s<m—1, (2

such that
Do(ATE) = mo(€)(€) and 1hp(ATE) = my(€)B(E)

for 0 </ < L and a.e. £ € R". (g := ¢, IZO = Q)

o {ﬁs}g;é is a set of coset representatives of Z"/ATZ" and a :
| det A|. (Y9 :=0)




Oversampled filters:

e Original perfect reconstruction filters, 0 < /¢ < L,

my(§) = Z ape” 2THER),

keZ

e Following the one-dimensional case, define oversampled filters by

my (€) = ) age TN,

kez

ap.s T =Ps,se€l"

8%

P
Gr :
0 otherwise

Observe that m?) (&) = me(PT¢).




Oversampled discrete wavelet transtorm:

Proposition 2 (Oversampled Wavelet Transform). If X(V, I,,)
and X (W) are dual frames with the multiresolution structure de-

scribed above and P 1s an admissible oversampling matriz, then the
collections X (¥, P) and X (¥, P) are dual frames with the following
analysis and synthesis relationships: (j € Z, k € Z)

<jzl)ﬁrp—1k¢W>:: V"detf“ jg: a%iszl)j+lj}ﬁd(r+jkﬂp>a (4)

re/m

0</¢<L, and

<f7l)j+11}3_1k¢7 \/|detf4 2{: 2{: 644r+k f;l)j1}3—1f¢7>7 (5)

=0 rezm

for each f € L*(R™), where A := PAP~".




Oversampled discrete wavelet transtorm:

Proposition 3. Suppose P,A € GL,(Z) with p := |det P|. Let
{6, 03 be a complete set of dzstznct coset representatwes ofP ANV
with 6’0 = 0. Suppose PAP~' € GL,(Z). Then {A0,}’_; is a com-
plete set of representatives of P™YZ"™/Z™ if and only of P and A
satisfy P~1Z" M ~17Z" = 7™,

Remark 1. This proposition plays a role both in the proof of the
Second Oversampling Theorem and in the proof of the Oversampled
Wavelet Transform. In the latter case, the fact that dilation by
A preserves coset representatives of P7'Z" leads to an equivalence
between the perfect reconstruction equations of the original filters,

mye, my, and the oversampled filters, mf :




The dyadic L*(R?) case:

Dilation: A = 215.
Admissibility of P:

x PAP~! = A automatically has integer entries;

* A sufficient condition for P~'Z" ﬂA—lz” = 7" is | det P|
being odd.

If [det P| = 2 then P~'Z* C 1Z? = A~'Z?, so P cannot be
admissible.

Hence if P is admissible | det P| > 3 (measure of redundancy)




Nonseparable QMF's:

Let m € L (T™) () C(T™). Then m is an n-dimensional QMF if and
only if m(0) =1 and

2" —1

Z Im(& +7rz9T)’2 =1 (6)

for a.e. £ € T, where {9,}2_;" is a complete set of coset representa-
tives for Z™ /27".

Definition 1 (Ayache [1, 2]). Suppose that m € L°°(T?)(C(T?)
is a bidimensional QMF, then m is non-separable if and only if there
does not exist Q) € SLy(Z) and univariate QMFs p and A such that

m(€) = p(QE - (1,0))A(QE - (0,1)),
where ¢ := (&1, &),




Nonseparable QQMFs via oversampling:

Theorem 4. Let m and ¢ be univariate QMFs and let P € GLy(Z)
with | det P| odd. The bidimensional filter M defined by

M(&1,&2) = m(p11&1 + p12€2)l(p21&1 + p22a),

where P = b Pz , 18 a bidimensional QMFE. Moreover, if PA

P21 P22
s non-diagonal for all A € gj}g(Z) then M 1is nonseparable in the

sense of Definition 1.

Notation: GL,(Z) is the collection of n x n matrices with integer

entries and nonzero determinant.




Nonseparable QQMFs via oversampling:

a; a
Lemmab. A= = °|¢ G Lo (Z) can be column-reduced (using
as Qay

only column permutations and transvections) to a matriz of the form

br 0 .
B = , with by = ged(ai,az) > 0 and |by| < |bs|. In

by b3
particular, there exists U € SLo(Z) such that B = AU.

Proposition 6. Let P € GLo(Z). If any column-reduced form of

P has three non-zero entries, then PA 1is non-diagonal for all A €

SLy(Z).




Examples of nice oversampling matrices:
e det P = 3:

e another det P = 3:




An example:

Original Barbara image.




Figure 2: Barbara image with Haar filters and no oversampling.
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Figure 3: Barbara image with Haar filters and oversampling by P.




Another example:

Figure 4: Original Monarch image.




Figure 5: Monarch image with Haar filters and no oversampling.




-1 1

Figure 6: Monarch image with Haar filters and oversampling by P.




Figure 7: Monarch image with Haar filters and oversampling by P.
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Figure 8: Monarch image with Haar filters and oversampling by P.




A final example:

Figure 9: Original Lena Image.




Figure 10: Lena image with Haar filters and no oversampling.
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Figure 11: Lena image with Haar filters and oversampling by P.
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