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Outline:
• Motivation (4 slides)

• Multiresolution analysis (5 slides)

• Shift-invariant theory

– Definitions (3 slides)

– Machinery (2 slides)

• Projective frames for PSI space (5 slides)

• Haar example (2 slides)

• Filtering schemes

– Correspondence with PSI decompositions (5 slides)

– Example of a 3
2 -Discrete Wavelet Transform (3 slides)
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Dyadic Discrete Wavelet Transform:

Original Boat Image DWT at Scale 1 Full DWT

Remarks:

• In practice, the DWT is a filtering scheme implementing digital
filters on a discrete, finite signal.

• Mathematically, the DWT may be thought of as a decomposition
of a subspace of L2(R) into complementary components.
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The filtering scheme:
• A sequence of samples f0 is successively decomposed via low and

high pass filters:

fj
- m0 µ´

¶³
↓ 2 - fj+1

- m1 µ´
¶³
↓ 2 - wj+1

• The wavelet coefficients comprising the sequences w1, . . . , wN

(where N is the number of scales) can then be compressed, an-
alyzed, modified, etc. as desired.

• Ideally, m0, m1 will permit reconstruction of the original signal:

fj+1

wj+1

- ↑ 2µ´
¶³

m0
-

- ↑ 2µ´
¶³

m1

6

j+ - ±°
²¯
×2 -fj
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The subspace decomposition: (1 of 2)
• The sequence of samples f0 = {f0,k}k∈Z may be associated to

the function
f0(x) =

∑

k∈Z
f0,k(T kϕ)(x),

where ϕ is a scaling function with the property that {T kϕ}k∈Z
is a Riesz basis for its closed linear span,

V0 = span {T kϕ : k ∈ Z}.

• The goal in this case is to decompose V0 as V−1 + W−1 with

V−1 = span {D−1
2 T kϕ : k ∈ Z}

& W−1 = span {D−1
2 T kψ : k ∈ Z}

for some wavelet generator ψ associated with ϕ.
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The subspace decomposition: (2 of 2)
• The function f0 will be decomposed as

f1(x) =
∑

k∈Z
f1,k(D−1

2 T kϕ)(x)

& w1(x) =
∑

k∈Z
w1,k(D−1

2 T kϕ)(x).

• It is desired that f0 is recoverable from this decomposition in
a stable manner, i.e., that the collections {D−1

2 T kϕ}k∈Z and
{D−1

2 T kψ}k∈Z together form a frame for V0.

• Ultimately, one hopes to obtain a decomposition of the form

L2(R) = Σ
j∈Z

Wj ,

where {Dj
2T

kψ}j,k∈Z is a frame for L2(R).
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Question:
What is the link between the filtering scheme and
the subspace decomposition?

Answer:MultiresolutionAnalysis
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Multiresolution analysis: (1 of 5)
Recall that a multiresolution analysis (MRA) consists of a sequence
{Vj}j∈Z of closed subspaces of L2(R) and a scaling function ϕ ∈ V0

satisfying

Vj ⊆ Vj+1 for each j ∈ Z; (1)

f ∈ Vj if and only if D−j
a f ∈ V0 for each j ∈ Z; (2)⋂

j∈Z
Vj = {0}; (3)

⋃

j∈Z
Vj = L2(R); (4)

{T kϕ}k∈Z is a Riesz basis for V0. (5)

Here, a > 1, Daf(x) =
√

af(ax), and Tf(x) = f(x− 1).
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Multiresolution analysis: (2 of 5)
Again, fix a = 2.

• Since V−1 ⊆ V0, it follows that

D−1
2 ϕ =

∑

k∈Z
ckT kϕ,

or ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ) where m0(ξ) =
∑

k∈Z cke−2πikξ is the
low-pass filter.

• Similarly, W−1 ⊆ V0 leads to

D−1
2 ψ =

∑

k∈Z
dkT kϕ,

or ψ̂(2ξ) = m1(ξ)ϕ̂(ξ) where m1(ξ) =
∑

k∈Z cke−2πikξ is the
high-pass filter.
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Multiresolution analysis: (3 of 5)

Natural lines of inquiry:

• There has been extensive research on MRAs addressing neces-
sary and sufficient conditions for the low-pass filter m0 to give
rise to a bonafide MRA. (generalizations: higher dimensions,
integer dilations other than 2)

• The notion of an MRA itself has also been generalized, e.g.,
biorthogonal wavelets, TFWs, framelets, etc.

• There has been relatively little work on MRAs with rational
dilation factors, e.g., Auscher [1], Daubechies [2].
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Multiresolution analysis: (4 of 5)
Let a = p

q > 1 (in lowest terms) and suppose {Vj}j∈Z is an MRA.

• Then V−1 ⊆ V0 implies

D−1
a ϕ =

∑

k∈Z
c0;kT kϕ. (6)

• Notice that D−1
a T q` = T p`D−1

a , so (6) yields

D−1
a T q`ϕ =

∑

k∈Z
ckT k+p`ϕ.

• Additional masks (q − 1 in total) are required for other shifts:

D−1
a Tmϕ =

∑

k∈Z
cm;kT kϕ, 0 ≤ m ≤ q − 1.

This greatly constrains the possible scaling functions, ϕ.
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Multiresolution analysis: (5 of 5)

Theorem 1 (Auscher [1]). If ϕ is a scaling function for an or-
thonormal MRA with dilation a = p

q (p, q > 1 relatively prime inte-
gers), then ϕ has neither compact support nor exponential decay at
∞.

Remark: Ideally the MRA structure should correspond to a rational
filtering scheme that permits polynomial filters, such as those studied
by Kovačević and Vetterli [3]. (more on this later)

Auscher’s result shows that an alternative MRA structure is required
if compactly supported scaling functions and, hence, polynomial fil-
ters, are to be compatible with rational dilations.
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Shift-invariant space (1 of 5):
• Given Φ = {φ1, . . . , φn} ∈ L2(R) let

X(Φ; p) = {T pkφ` : 1 ≤ ` ≤ n, k ∈ Z}.

• The pZ shift-invariant space generated by Φ is

V (Φ; p) = span X(Φ; p).

• The functions φ1, . . . , φn will be referred to as the generators of
V (Φ; p).

• If Φ consists of a single generating function, then V (Φ; p) is
referred to as a principal shift-invariant (PSI) space.
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Shift-invariant space (2 of 5):
Definition 1. Fix p ∈ N. Define the p-bracket product of f, g ∈
L2(R) by

[f̂ , ĝ]p(ξ) =
∑

k∈Z
f̂(ξ + k/p)ĝ(ξ + k/p). (7)

When p = 1 the subscript p will often be omitted.

Properties:

• f, g ∈ L2(R) implies [f̂ , ĝ]p ∈ L1(Tp), where Tp ' [0, 1
p );

•
〈
[f̂ , ĝ]p,

√
pe2πipkξ

〉
=
√

p〈f, T−pkg〉;

• f, g ∈ L2(R) and [ĝ, ĝ]p ∈ L∞(Tp) implies [f̂ , ĝ]p ∈ L2(Tp) with

‖[f̂ , ĝ]p‖2 ≤ ‖[ĝ, ĝ]p‖∞ ‖f‖2.

• For ξ ∈ T, [D̂pf, D̂pg](ξ) = 1
p [f̂ , ĝ]p(ξ/p).
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Shift-invariant space (3 of 5):
More terminology:

• The p-spectrum of φ`, 1 ≤ ` ≤ n is

σφ`;p =
{

ξ ∈ [0, 1/p] : [φ̂`, φ̂`]p(ξ) 6= 0
}

,

while the p-spectrum of Φ is

σΦ;p =
N⋃

n=1

σφn;p.

• The p-Gramian matrix of Φ is defined by

GΦ;p(ξ) =
1
p




[φ̂1, φ̂1]p(ξ) · · · [φ̂N , φ̂1]p(ξ)
...

. . .
...

[φ̂1, φ̂N ]p(ξ) · · · [φ̂N , φ̂N ]p(ξ)


 .
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Shift-invariant space (4 of 5):
Theorem 2 (Ron & Shen [4]). Fix p ∈ N and let Φ = {φ1, . . . , φn} ∈
L2(R). Then X(Φ; p) is a frame for V (Φ; p) if and only if 1/λ+ and
Λ are essentially bounded on σΦ;p. If either condition holds, then

A = ess inf
ξ∈σΦ;p

λ+(ξ) and B = ess sup
ξ∈σΦ;p

Λ(ξ),

respectively, are the lower and upper frame bounds of X(Φ; p).

Remark:

Here, λ(ξ), Λ(ξ), and λ+(ξ) are the smallest, largest, and smallest
nonzero eigenvalues of GΦ;p(ξ), respectively.
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Shift-invariant space (5 of 5):
Question: When can a PSI space V (ϕ; q) be recovered as an FSI
space V (Φ; p)?

Lemma 3. Let ϕ ∈ L2(R), fix n, p, q ∈ N such that p = nq, and let
Φ = {φ1, . . . φn} ⊆ V (ϕ; q). Suppose that σϕ;q = Tq, then V (Φ; p) =
V (ϕ; q) if and only if the determinant of

M(ξ) =




m1(ξ) · · · mn(ξ)
...

. . .
...

m1(ξ + n−1
p ) · · · mn(ξ + n−1

p )




is nonzero for almost every ξ ∈ Tp. Here, mk is the 1/q-periodic
function such that φ̂k(ξ) = mk(ξ)ϕ̂(ξ), 1 ≤ k ≤ n.
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Frame decompositions of PSI space (1 of 5):
Ingredients:

• Dilation a = p/q > 1, where p, q ∈ N (lowest terms);

• ϕ ∈ L2(R) such that

0 < A ≤ [ϕ̂, ϕ̂](ξ) ≤ B < ∞, a.e. ξ ∈ T, (8)

i.e., X(ϕ) is a Riesz basis for V (ϕ);

• Denote by S the frame operator of X(ϕ), given by

Sf =
∑

k∈Z
〈f, T kϕ〉T kϕ;

• Under the Fourier transform,

Ŝf = [f̂ , ϕ̂] ϕ̂.
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Frame decompositions of PSI space (2 of 5):
Projective frame:

• In the MRA case, one would decompose V (ϕ) in terms of

{D−1
a T kϕ : k ∈ Z}

and a corresponding “wavelet” component.

• Without the nestedness property of an MRA, there is no guar-
antee that any of the functions in this collection even belong to
V (ϕ)! (ϕ is not even assumed to be refinable.)

• This obstacle can be overcome by mapping each function into
V (ϕ) via the frame operator S. (S preserves compact support,
while the orthogonal projection may not.)
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Frame decompositions of PSI space (3 of 5):
Low-pass component:

• Define Φ0 = {φ0, . . . , φq−1} where

φ` = D−1
a T `ϕ, 0 ≤ ` ≤ q − 1,

and notice
q−1⋃

`=0

X(D−1
a T `ϕ; p) = {D−1

a T kϕ : k ∈ Z};

• Under the action of S (S commutes with T ) this generates a
natural subspace of V (ϕ):

V (SΦ0; p) ⊆ V (ϕ).

• V (ϕ) is the pZ shift-invariant space generated by {T rϕ : 0 ≤
r ≤ p− 1}, i.e., V (SΦ0; p) is p− q generators short.
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Frame decompositions of PSI space (4 of 5):
High-pass component:

• Let Φ1 = {D−1
a ψ1, . . . , D

−1
a ψp−q} be a given collection of poten-

tial wavelet generators under the convention that

φ` = D−1
a ψ`−q+1, q ≤ ` ≤ p− 1. (9)

• The goal is to characterize when these generators fill out Φ0 to
provide a set of spanning generators for V (ϕ).

• Let Φ = Φ0 ∪ Φ1. The next theorem describes conditions under
which X(SΦ; p) is a frame for V (ϕ).
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Frame decompositions of PSI space (5 of 5):
Theorem 4. Let ϕ ∈ L2(R) such that (8) holds and let Φ as above.

Moreover, for 0 ≤ ` ≤ p − 1, let m` be the 1-periodic function [φ̂`, ϕ̂] so

that Ŝφ` = m`ϕ̂. Define M(ξ) by

M(ξ) =
1√
p




m0(ξ) · · · mp−1(ξ)

...
. . .

...

m0(ξ + p−1
p

) · · · mp−1(ξ + p−1
p

)


 (10)

and let λM and ΛM be the smallest and largest eigenvalue functions of

M∗M over Tp. Then X(SΦ; p) is a frame for V (ϕ) if and only if 1/λM
and ΛM are essentially bounded on Tp. If either condition holds, let

λA = ess inf
ξ∈σΦ;p

λM(ξ) and λB = ess sup
ξ∈σΦ;p

ΛM(ξ),

then X(SΦ; p) is a frame for V (ϕ) with lower and upper bounds λAA and

λBB, respectively.
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Haar example (1 of 2):
• Fix a = 3

2 and let ϕ = χ[0,1);

• Observe that

D−1
a ϕ =

√
2
3
χ[0, 3

2 ) and D−1
a Tϕ =

√
2
3
χ[ 32 ,3)

and let φ0 = D−1
a ϕ and φ1 = D−1

a Tϕ.

• This leads to the filters

m0(ξ) = [φ̂0, ϕ̂](ξ) =

√
2
3

+

√
1
6
e−2πiξ,

m1(ξ) = [φ̂1, ϕ̂](ξ) =

√
1
6
e−2πiξ +

√
2
3
e−2πi2ξ.
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Haar example (2 of 2):
• Choose φ̂2(ξ) = D̂−1ψ(ξ) = m2(ξ)ϕ̂(ξ), where

m2(ξ) = −
√

1/6 +
√

2/3e−2πiξ −
√

1/6e−2πi2ξ.

It is easy to see that m2(ξ) = [φ̂2, ϕ̂].

• Let Φ = {φ0, φ1, φ2} then it can be verified directly that X(SΦ; 3)
is a frame for V (ϕ). If f =

∑
k∈Z fkT kϕ then

2∑

`=0

∑

k∈Z
|〈f, T 3kSφ`〉|2 =

∑

k∈3Z

5
6
f2

k + f2
k+1 +

5
6
f2

k+2 +
1
3
fkfk+2.

It follows that X(SΦ; 3) is a frame for V (ϕ) with lower bound 2
3

and upper bound 1 since

2
3
‖f‖2 ≤

2∑

`=0

∑

k∈Z
|〈f, T 3kSφ`〉|2 ≤ ‖f‖2.
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Question:
Given a frame decomposition as in Theorem 4 is
there a corresponding filtering scheme?

Answer:Yes
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Rational filtering schemes (1 of 5):
1. Let f ∈ V (ϕ), i.e.,

f =
∑

k∈Z
fkT kϕ.

2. Apply the frame operator of X(Φ0; p) to f ,

g0 := SX(Φ0;p)f =
q−1∑

`=0

∑

k∈Z

[∑

m∈Z
fm〈ϕ, T pk−mφ`〉

]
T pkφ`.

3. In `2(Z) this is equivalent to (recall: φ` = D−1T `ϕ)

{g0,k}k∈Z =
q−1∑

`=0

T ` ↑q↓p ({fm} ∗ {〈ϕ, Tmφ`〉}),

where g0 =
∑

k∈Z g0,kD−1T kϕ.
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Rational filtering schemes (2 of 5):
4. Apply the frame operator of X(D−1ψ`; p) to f , 1 ≤ ` ≤ p− q,

g` := Sψ`;pf =
∑

k∈Z

[∑

m∈Z
fm〈ϕ, T pk−mD−1ψ`〉

]
D−1T qkψ`

5. In `2(Z) this yields

{g`,k}k∈Z =↓p ({fm} ∗ {〈ϕ, Tmφ`+q〉}), 1 ≤ ` ≤ p− q,

where g` =
∑

k∈Z g`,kT qkD−1ψ.

6. The action of the frame operators for X(Φ0; p) and X(D−1ψ`; p),
1 ≤ ` ≤ p − q, on f ∈ V (ϕ) is described by a subband filtering
scheme using the filters m0, . . . ,mp−1 of Theorem 4.
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Rational filtering schemes (3 of 5):
Analysis Stage:

{fk}k∈Z - m0 ±°
²¯
↓p ±°

²¯
↑q T 0

²
±

¯
°

j+

j+...
...

...
...

- mq−1 ±°
²¯
↓p ±°

²¯
↑q T q−1

²
±

¯
°

- mq ±°
²¯
↓p

- mp−1 ±°
²¯
↓p

...
...

...

{g0,k}k∈Z

{g1,k}k∈Z

{gp−q,k}k∈Z

28



Rational filtering schemes (4 of 5):
• Define the filterbank analysis operator by

F : `2(Z) →
p−q⊕

`=0

`2(Z)

{fk}k 7→ ⊕p−q
`=0{g`,k}k∈Z,

which follows the above notation.

• The filtering scheme will be referred to as stable if there exist
constants 0 < A ≤ B < ∞ such that for any {fk}k∈Z ∈ `2(Z),

A ‖{fk}k‖2 ≤ ‖F{fk}k‖2 ≤ B ‖{fk}k‖2 . (11)

• Stability can be reformulated as a frame identity for a specific
system of translates in `2(Z) and thus guarantees reconstruction
after the analysis stage.
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Rational filtering schemes (5 of 5):
Theorem 4 guarantees stability of the associated filtering scheme.

Theorem 5. Let Φ, M, λM, and ΛM be as in Theorem 4. Then
the induced filtering scheme is stable if and only if 1/λM and ΛM
are essentially bounded on Tp. If either condition holds, let

λA = ess inf
ξ∈σΦ;p

λM(ξ) and λB = ess sup
ξ∈σΦ;p

ΛM(ξ),

then the filterbank analysis operator satisfies

λA ‖{fk}k‖2 ≤ ‖F{fk}k‖2 ≤ λB ‖{fk}k‖2 , ∀ {fk}k ∈ `2(Z).
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Discrete wavelet transform (1 of 3):

Haar 3
2 -filters.
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Discrete wavelet transform (2 of 3):

Haar 3
2 -filters.
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Discrete wavelet transform (3 of 3):

Haar 3
2 -filters.
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