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Starting Point:
• The Fourier transform of f ∈ L1 ∩ L2(R) is defined to be

f̂(ξ) =
∫

R
f(x) exp (−2πixξ) dx.

• Translation: Tf(x) = f(x− 1).

• Dilation: Df(x) =
√

2f(2x).

• We say ψ ∈ L2(R) is an orthonormal wavelet if the collection
{
DjT kψ : j, k ∈ Z}

is an orthonormal basis for L2(R).
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Multiresolution Analysis: (1 of 3)
• The notion of a multiresolution analysis plays a major role in

the application of wavelets.

• A collection of close subspaces of L2(R) is called a multiresolution
analysis (MRA) if

1. f ∈ Vj+1 ⇔ f(2·) ∈ Vj , j ∈ Z;

2. Vj ⊆ Vj+1, j ∈ Z;

3. ∪j∈ZVj = L2(R);

4. ∩j∈ZVj = {0};
5. There exists ϕ ∈ V0 (the scaling function) such that the col-

lection {ϕ(· − k) : k ∈ Z} is an orthonormal basis for V0.
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Multiresolution Analysis: (2 of 3)
• Define Wj , j ∈ Z, to be the closed subspace of L2(R) such that

Vj+1 = Vj ⊕Wj .

• One means for constructing an orthonormal wavelet is to find
ψ ∈ V1 such that {T kψ}k∈Z is an ONB of W0. This follows very
naturally from the MRA properties.

• Because V0 ⊆ V1, there exists {αk}k∈Z ∈ `2(Z) such that

ϕ(x) = 2
∑

k∈Z
αkϕ(2x− k), (1)

which is equivalent to

ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ),

where m0(ξ) :=
∑

k∈Z
αk exp (−2πikξ) is called the low-pass filter.
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Multiresolution Analysis (3 of 3)
• It is well known that, given a scaling function ϕ, one obtains an

orthonormal MRA wavelet ψ by defining

ψ̂(2ξ) = exp (2πiξ)m0(ξ +
1
2
)ϕ̂(ξ).

Let m1(ξ) = exp (2πiξ)m0(ξ + 1
2 ), which is called the high-pass

filter.

• This definition is equivalent to writing

ψ(x) = 2
∑

k∈Z
βkϕ(2x− k), (2)

with m1(ξ) :=
∑

k∈Z
βk exp (−2πikξ).

Note: βk = (−1)k+1α−k−1, k ∈ Z.
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Vanishing Moments: (1 of 3)
• If ϕ is compactly supported then m0 is a trigonometric polyno-

mial, ϕ̂ is continuous, and it follows that

m0(0) = 1 and ϕ̂(0) = 1.

In other words,
∫

R
ϕ(x) dx = 1.

• If ϕ is compactly supported, then so is ψ and, moreover, it follows
that

m1(0) = 0 and ψ̂(0) = 0,

which means
∫

R
ψ(x) dx = 0.

• Obviously, if m0 is a trigonometric polynomial then m1 will be
as well.

7



Vanishing Moments (2 of 3)
• If ψ is a compactly supported orthonormal wavelet then for f ∈

L2(R) one has

f =
∑

j,k∈Z

〈
f,DjT kψ

〉
DjT kψ.

For smooth functions f it is desirable that this representation be
sparse, i.e., that few of the inner products

〈
f, DjT kψ

〉
, j, k ∈ Z,

are essential in the above representation of f .

• A wavelet ψ is said to have vanishing moments of order m ∈ N
if for 0 ≤ n ≤ m, ∫

R
xnψ(x) dx = 0.
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Vanishing Moments (3 of 3)
• Suppose that ψ is an MRA wavelet associated with a compactly

supported scaling function ϕ. Then ψ has vanishing moments of
order m if and only if

dn

dξn
[m1(ξ)]

∣∣∣
ξ=0

= 0, 0 ≤ n ≤ m. (3)

• Equation (3) is equivalent to the following identity for the filter
coefficients of m1:

∑

k∈Z
knβk = 0, 0 ≤ n ≤ m.

This can be viewed as a discrete notion of vanishing moments
of order m, which suggests that vanishing moments for ψ should
provide sparse representations for “smooth” discrete signals.
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Interscale Relationships:
• The MRA refinement equations (1) and (2) provide interscale

relationships for the sequences of inner products,
{〈

f, DjT kϕ
〉}

k∈Z ,
{〈

f,DjT kψ
〉}

k∈Z , &
{〈

f,Dj+1T kϕ
〉}

k∈Z .

• Namely, for f ∈ L2(R) and each j ∈ Z:

〈
f, DjTnϕ

〉
=
√

2
∑

k∈Z
αk−2n

〈
f, Dj+1T kϕ

〉
, (4)

and 〈
f, DjTnψ

〉
=
√

2
∑

k∈Z
βk−2n

〈
f, Dj+1T kϕ

〉
. (5)

These are easily recognizable as convolutions in `2(Z).
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Discrete Wavelet Transform (1 of 3):
• Because ϕ̂(0) = 1 we can think of

〈
f, DjT kϕ

〉
as a local average

of f near x = 2−jk at scale j. (as j →∞ this average becomes
“more” localized)

• Example: In the case of the Haar wavelet & MRA, we have
ϕ = χ[0,1) and

〈
f, DjT kϕ

〉
is proportional to the average of f

on
[
2−jk, 2−j(k + 1)

)
.

• Given a digital signal {fk}k∈Z one then interprets the values fk,
k ∈ Z, as the local averages of a “continuous” function at scale
j = 0. In other words, one defines

〈
f, T kϕ

〉
:= fk.

The interscale relationship is then used to decompose the signal
at scales j < 0. This is the essence of discrete wavelet transform.
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Discrete Wavelet Transform (2 of 3):
• At each scale j, the sequence f−j is again decomposed and the

DWT consists of all of the sequences r−j , j > 0.

{f−j+1} - m0 µ´
¶³
↓ 2 - {f−j}

- m1 µ´
¶³
↓ 2 - {r−j}

• In practice, a signal has finitely many samples, say N = 2M . We
then define the sequence f0 by periodic extension. At each scale
j the period is reduced by 2 and after M decomposition stages
the signal is constant. The total size of all the required wavelet
coefficients equals that of the original signal:

2M = (2M−1 + 2M−2 + · · ·+ 1)︸ ︷︷ ︸
from r−j , 1 ≤ j ≤ M

+ 1.︸︷︷︸
from f−M
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Discrete Wavelet Transform (3 of 3):
• Our choice of m1 allows for a similar reconstruction operation

from the DWT:

{f−(j+1)}

{r−(j+1)}

- ↑ 2µ´
¶³

m0
-

- ↑ 2µ´
¶³

m1

6

j+ - ±°
²¯
×2 -{f−j}

• This discussion has been limited to one-dimensional signals; how-
ever, one can easily extend the above analysis to two-dimenional
signals by considering separable products of the scaling function
and wavelet or the corresponding filters:

φ(x, y) = ϕ(x)ϕ(y) ψ1(x, y) = ψ(x)ϕ(y)

ψ2(x, y) = ϕ(x)ψ(y) ψ3(x, y) = ψ(x)ψ(y).
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An Example:

Figure 1: Original 512× 512 snow leopard image.
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An Example:

Figure 2: Scale j = −1: snow leopard image. (Haar filters)
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An Example:

Figure 3: Full DWT decomposition of snow leopard image.
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Image Compression:
• Looking at the DWT of the snow leopard image we see mostly

gray, which corresponds to zero for the display of the DWT.
This suggests that the number of coefficients

〈
f,DjT kψ

〉
that

are essential for reconstructing the original image is small.

• By ignoring the “small” coefficients we can compress the image.
This is called thresholding.

• We will quantify the benefit and cost of thresholding by consid-
ering two quantities:

Compression Factor :=
Total # of pixels

# of coefficients ≥ threshold
,

Mean Squared-Error :=
1

N2

N∑

j,k=1

(
f̃(j, k)− f(j, k)

)2

.
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Image Compression Examples:

Haar filters, Threshold=5: C.F. ≈ 13.6 & M.S.E. ≈ 2.10.

18



Image Compression Examples:

Original image.
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Image Compression Examples:

Haar filters, Threshold=10: C.F. ≈ 27.0 & M.S.E. ≈ 4.53.
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Image Compression Examples:

Original image.
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Image Compression Examples:

Daubechies filters (n = 6), Threshold=10: C.F. ≈ 33.8 & M.S.E. ≈
2.66.
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Image Compression Examples:

Absolute error ×10: Daubechies filters (n = 6), Threshold=10.
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Image Compression Examples:

Daubechies filters (n = 6), Threshold=3: C.F. ≈ 12.3 & M.S.E. ≈
0.91.
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Image Compression Examples:

Daubechies filters (n = 6), Threshold=3: C.F. ≈ 17.0 & M.S.E. ≈
0.83.
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Image Compression Examples:

Daubechies filters (n = 6), Threshold=3: C.F. ≈ 5.1 & M.S.E. ≈
1.15.
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Image Denoising:
• Suppose that an image is corrupted by random noise.

• The noise will cause scattered coefficients in “smooth” areas
to be large compared to neighboring coefficients in the image’s
DWT:
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Image Denoising:
• Thresholding can reduce such noise, but at the cost of distortion

due to the removal of other meaningful, but small components of
the DWT. We will quantify the benefit of thresholding by con-
sidering M.S.E. values comparing the noisy and denoised images
to the original.
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Denoising Examples:

Daubechies filters, Threshold=11: M.S.E. ≈ 12.00 before denoising
and M.S.E. ≈ 6.50 after denoising.
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Denoising Examples:

Daubechies filters, Threshold=6: M.S.E. ≈ 11.9 before denoising
and M.S.E. ≈ 3.72 after denoising. (à trous filtering)
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