2. If \(n = 2 \) then clearly \(A_2 \) is the only subgroup of index 2 in \(S_2 \). Assume \(n > 2 \). Then \(S_n \) contains a 3-cycle \(\sigma \). Let \(H \) be a subgroup of \(S_n \) of index 2. Suppose \(\sigma \notin H \). Clearly then \(\sigma^{-1} \notin H \). Now \(\sigma H = \sigma^{-1} H = \sigma^2 H = (\sigma H)^2 = H \), a contradiction. Thus \(H \) contains each 3-cycle \(\sigma \in S_n \). Therefore, \(H \) generates \(A_n \). But as both \(H \) and \(A_n \) have index 2 in \(S_n \), \(|A_n| = |H| \). This yields \(H = A_n \).

4. There are many ways to show that the group \(A_4 \) has no subgroup of order 6. (Note that this example shows that the converse of Lagrange’s Theorem is not true, in general).

Proof 1: First observe that if \(G \) is a finite group and \(N \) is a subgroup of \(G \) such that \([G : N] = 2 \), then each element of odd order in \(G \) must lie in \(N \). If \(A_4 \) has a subgroup with index 2 then all elements of \(A_4 \) with odd order will be in that subgroup. But \(A_4 \) contains 8 elements of order 3 (there are 8 different 3-cycles), and so not all elements of odd order can lie in the subgroup of order 6. Therefore, \(A_4 \) has no subgroup of order 6.

Proof 2. Let \(H \) be a subgroup of \(A_4 \) of order 6. Then \(H \) is isomorphic to \(\mathbb{Z}_6 \) or \(S_3 \). Since \(A_4 \) has no element of order 6, \(H \) can’t be isomorphic to \(\mathbb{Z}_6 \). In \(S_3 \) there are three elements of order 2. The group \(A_4 \) has three elements of order 2, \((1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\). So these must lie in \(H \). But then these three elements of order 2 together with identity element will form a subgroup of \(H \) of order 4. But a group of order 6 can’t have a subgroup of order 4. Thus such a subgroup \(H \) doesn’t exist.