Solution 5

A. Let G be a group of order p^n where p is a prime and $n \geq 2$. Then by Sylow’s First Theorem, G has a normal subgroup of order p^{n-1}. Hence G is not simple.

B. Let G be a group of order pq where p, q are primes and $p > q$. Then G has a Sylow p-subgroup. The number of Sylow p-subgroups, $n_p = 1 + kp$ and n_p divides pq. This gives, $k = 0$ and hence G has a unique Sylow p-subgroup P. Therefore, P must be normal in G. Hence G is not simple.

C. Let G be a group of order p^2q where p, q are primes. We claim that G has either a unique Sylow p-subgroup or a unique Sylow q-subgroup. Let n_p and n_q be the number of Sylow p-subgroups and Sylow q-subgroups, respectively. Suppose, if possible, that $n_p > 1$ and $n_q > 1$. We have n_p divides q and hence $n_p = q$. As $n_p = 1 + kp$, $q > p$. Also, as n_q divides p^2, we have $n_q = p$ or p^2. Let Q_1 and Q_2 be two distinct Sylow q-subgroups. Then $Q_1 \cap Q_2 = \langle 1 \rangle$ by Lagrange’s Theorem. Hence, there are $n_q(q - 1)$ distinct elements of order q in G. If $n_q = p^2$, then $p^2 = p^2(q - 1) = p^2$ elements are left to form a unique Sylow p-subgroup, a contradiction to the assumption that $n_p > 1$. Hence, $n_q = p$. This gives $p > q$, again a contradiction. Hence, G has either a unique Sylow p-subgroup or a unique Sylow q-subgroup.

D. Let G be a group of order pqr where p, q, r are primes and $p > q > r$. Let n_p, n_q and n_r be the number of Sylow p-subgroups, Sylow q-subgroups, and Sylow r-subgroups, respectively. We claim that G has either a unique Sylow p-subgroup or a unique Sylow q-subgroup or a unique Sylow r-subgroup. Suppose, if possible, that $n_p > 1$, $n_q > 1$ and $n_r > 1$. Since any two distinct Sylow p-subgroups of G intersect trivially by Lagrange’s Theorem, G contains $n_p(p - 1)$ distinct elements of order p. Similarly, G contains $n_q(q - 1)$ distinct elements of order q and $n_r(r - 1)$ distinct elements of order r. Therefore, $pqr \geq 1 + n_p(p - 1) + n_q(q - 1) + n_r(r - 1)$. Clearly, as n_p divides qr and $n_p > 1$, we have $n_p = qr$. Similarly, note that $n_q \geq p$ and $n_r \geq q$. So, we have $pqr \geq 1 + qr(p - 1) + p(q - 1) + q(r - 1)$. This gives, $(p - 1)(q - 1) \leq 0$, a contradiction.

From (A), (C), and (D) above it follows that if G is a group of order pqr where p, q, r are primes then G is not simple.

E. If G is a simple group of order 60, then $G \cong A_5$.

Proof. The number of Sylow p-subgroups $n_2 = 3, 5$ or 15. Let P be a Sylow 2-subgroup of order 4 and let $N = N_G(P)$. First, observe that G has no proper subgroup H of index less than 5. If H were a subgroup of G of index 4, 3, or 2 then G would have a normal subgroup K contained in H with G/K isomorphic to a subgroup of S_4, S_3 or S_2. Since $K \neq G$ and G is simple, $K = \langle e \rangle$. But this is impossible as $|G| = 60$. This argument shows that $n_2 \neq 3$. If $n_2 = 5$, then N has index 5 in G and so the action of G on the set of left cosets of N in G induces a homomorphism from G to S_5. Since G is simple, the kernel is trivial and hence G is isomorphic to a subgroup of S_5. Identify G with this isomorphic copy so that we may assume $G \leq S_5$. If G is not contained in A_5, then $S_5 = GA_5$ and by Second
Isomorphism Theorem, $A_5 \cap G$ is of index 2 in G, a contradiction as G is simple. Hence, $G \leq A_5$. As $|G| = |A_5|$, the isomorphic copy of G in S_5 coincides with A_5. Finally, assume $n_2 = 15$. If for every pair of distinct Sylow 2-subgroups P and Q of G, $P \cap Q = 1$, then the number of nonidentity elements in Sylow 2-subgroups of G would be 45. But as $n_5 = 6$, the number of elements of order 5 in G is 24. Since $45 + 24 = 69 > |G|$, we have a contradiction. This proves that there exist distinct Sylow 2-subgroups P and Q with $|P \cap Q| = 2$. Let $M = N_G(P \cap Q)$. Since P and Q are abelian (being of order 4), P and Q are subgroups of M and since G is simple, $M \neq G$. Thus 4 divides $|M|$ and $|M| > 4$ (otherwise $P = Q = M$). The only possibility is $|M| = 12$, i.e. M has index 5 in G (recall that M cannot have index 3 or 1). The above argument applied now to M in place of N gives $G \cong A_5$.