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The Hat Problem1

A group of prisoners is allowed to play a game for
their freedom. The prisoners are donned with either a
black hat or a white hat and, while they cannot see
their own hat, they can see the remaining hats. The
two colors are equally likely. The prisoners play as a
team and win when at least one prisoner guesses the
color of his or her own hat without any incorrect
guesses being made. The prisoners may strategize
before the game, but cannot communicate in any
fashion once the game begins.

1Todd Ebert, University of California, Santa Barbara (1998).
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Important Aspects of the Game

Things to keep in mind:

Hat colors are independent events.

P(White) = P(Black) =
1

2

Identify Black = 0 and White = 1.

An acceptable strategy must always result in at least one
prisoner making a guess.

The prisoners win when at least one correct guess is made
and no incorrect guesses are made.

A prisoner sees all of the hats, except his or her own.

No communication is allowed between prisoners, including
whether or not others have elected to guess or pass.
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Basic Observations

What strategy maximizes the chance of winning? What effect
does the number of prisoners have on the game?

One prisoner: The prisoner is forced to guess and, thus,
the probability of winning is simply 1

2 .

Two prisoners: One can articulate a lot of strategies, but
50-50 is the best one can do.

If both prisoners guess randomly their chance of winning is
only 1

4 .
A single prisoner guessing leads to a 1

2 probability of
victory.

Is it clear that this is the optimal strategy for n = 2?
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Three Prisoners

Strategy: If a prisoner sees two hats of the same color
(s)he guesses the opposite color. (Valid strategy because
there must be two hats of the same color.)

Each possible outcome can be expressed as a 3-digit
binary number:

010 100 101
001 110 011︸ ︷︷ ︸

win

111
000︸︷︷︸
lose

Thus, the probability of winning with this strategy is 3
4 .
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Three Prisoners - Optimality

Proposition

The strategy just described for n = 3 is optimal.

Proof.

1 Each guess has a 50-50 chance of being correct.

2 Thus, among all possible outcomes there must be an equal
number of correct and incorrect guesses.

3 Each win results from a single correct guess, while each
loss stems from three incorrect guesses.

4 Winning one more game requires one more correct guess
(a total of 7), but now we have only 1 possible game to
lose and 7 incorrect guesses to make. There are only 3
prisoners so this is impossible.
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Upper Bound for P(Win)

Question: Can we find an upper limit on the probability of
victory for N prisoners?

Assume a single correct guess for each win and [up to] N
incorrect guesses in each loss.

It is possible to have X wins among the 2N possible games
provided that the losses allow room for X incorrect
guesses, i.e.,

2N − X ≥ X

N
or X ≤ N · 2N

N + 1
.

This argument gives an upper bound on the probability of
victory:

P(Win) ≤ N

N + 1
.
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Four Prisoners

Proposition

The optimal strategy for four prisoners is to reuse the
three-player strategy, completely ignoring one of the prisoners.

Proof.

1 The three-player strategy produces a win in 12 of the 16
possible outcomes, with 12 correct guesses in 12 wins and
12 incorrect guesses spread over the 4 losses.

2 If a strategy leads to 13 wins in these 16 outcomes, then
at least 13 incorrect guesses must be made in the 3 losses.

3 Four prisoners can make only 12 guesses in 3 games,
leading to a contradiction.
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Five Prisoners: A Simple Approach

With five prisoners, at least three hats must have the same
color. (Moreover, at least two prisoners will see three hats
of the same color.)

The obvious generalization of the n = 3 strategy would be:
if a prisoner sees three hats of the same color, (s)he
guesses the opposite color.

How do we know when the team wins?
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Five Prisoners: Too Simple?

Assume that the first three hats are all white. Each of the
other two prisoners will guess that their hat is black, so
the only time they win is when both of those hats are
black. In other words, they win when exactly three hats
have the same color.

There are

(
5
3

)
= 10 outcomes where three hats are white

and an equal number where three hats are black. There
are 25 = 32 possible outcomes so the probability of
winning with this strategy is 20/32 = 5

8 .

This is worse than the n = 3 strategy 3
4 and way worse

than the upper bound of 5
6 . This is because the

right/wrong guesses are not distributed effectively.
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What Do We Know So Far?

The following table summarizes what we know for
1 ≤ N ≤ 7:

N 1 2 3 4 5 6 7

P(Win) 1
2

1
2

3
4

3
4 ? ? ?

N/(N + 1) 1
2

2
3

3
4

4
5

5
6

6
7

7
8

The theoretical maximum is achieved for N = 1, 3, but for
N = 2, 4 there is no way to achieve the theoretical
maximum.

It is natural to wonder, then, for which N can one achieve
the theoretical maximum? If not, what is the best one can
do?
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Vector Spaces over a Finite Field

We now develop some tools from linear algebra to better
understand the three-player solution. The hope is that this will
facilitate solutions for larger numbers of prisoners.

The possible outcomes can be expressed using sequences
of 1’s and 0’s. These sequences can be thought of
finite-dimensional vectors over the field F2 = {0, 1}.
It turns out that one can obtain strategies for the
N-prisoner Hat Problem by examining subspaces of
N-dimensional vector spaces over F2.

Recall that the term subspace refers to a collection of
vectors which is closed under addition and scalar
multiplication.
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Vector Spaces over F2

Consider the field F2 = {0, 1} with the
addition/multiplication tables:

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

Fn
2 is an n-dimensional vector space over F2. We may

write vectors in Fn
2 as n-digit binary numbers, but must be

careful to add digit-wise. Example:

101 + 001 = 100 101 + 001 6= 110
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Algebraic Coding Theory

A linear code, C, is a subspace of Fn
2.

Such codes are used for data storage and transmission,
e.g., on compact discs or in cellular communications.

Data is encoded using vectors in the subspace comprising
the code.
Errors in reading/receiving the data result in vectors that
are not in the code.
If the errors are small, there will only be one code vector
which is close to the given vector, allowing for recovery of
the data.
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Algebraic Coding Theory:

The Hamming weight of a vector ~c ∈ Fn
2, w(~c), is the

number of non-zero digits in the vector.

The Hamming distance between ~c1,~c2 ∈ Fn
2 is

d(~c1,~c2) = w(~c1 − ~c2).

This distance is the number of bits that must be flipped to
switch one vector into the other.

Triangle Inequality: d(~c1,~c3) ≤ d(~c1,~c2) + d(~c2,~c3).

Proof.

Each bit in which ~c3 differs from ~c1 falls into one of two
groups: (a) ~c3(k) = ~c2(k) which implies ~c2(k) 6= ~c1(k) and (b)
~c3(k) 6= ~c2(k).
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Three Prisoner Strategy:

The code is C = {000, 111}. The Hamming distance
between the codewords is 3.

Each non-codeword is Hamming distance one from a
unique code word.

000: 001, 010, 100.
111: 110, 101, 011.

Each player is assigned a bit position.

If the two bits visible to the prisoner correspond to a
codeword, the prisoner should guess the color to make a
non-codeword.
If the two bits visible do not make a codeword, the
prisoner does not guess.

Brody Dylan Johnson Saint Louis University The Hat Problem



The Hat
Problem

Brody Dylan
Johnson

Saint Louis
University

Introduction

Three
Prisoners

More than
Three
Prisoners

Help from
Linear
Algebra

Optimal
Strategies via
Hamming
Codes

Conclusion

Three Prisoner Strategy:

The code is C = {000, 111}. The Hamming distance
between the codewords is 3.

Each non-codeword is Hamming distance one from a
unique code word.

000: 001, 010, 100.
111: 110, 101, 011.

Each player is assigned a bit position.

If the two bits visible to the prisoner correspond to a
codeword, the prisoner should guess the color to make a
non-codeword.
If the two bits visible do not make a codeword, the
prisoner does not guess.

Brody Dylan Johnson Saint Louis University The Hat Problem



The Hat
Problem

Brody Dylan
Johnson

Saint Louis
University

Introduction

Three
Prisoners

More than
Three
Prisoners

Help from
Linear
Algebra

Optimal
Strategies via
Hamming
Codes

Conclusion

Three Prisoner Strategy:

The code is C = {000, 111}. The Hamming distance
between the codewords is 3.

Each non-codeword is Hamming distance one from a
unique code word.

000: 001, 010, 100.

111: 110, 101, 011.

Each player is assigned a bit position.

If the two bits visible to the prisoner correspond to a
codeword, the prisoner should guess the color to make a
non-codeword.
If the two bits visible do not make a codeword, the
prisoner does not guess.

Brody Dylan Johnson Saint Louis University The Hat Problem



The Hat
Problem

Brody Dylan
Johnson

Saint Louis
University

Introduction

Three
Prisoners

More than
Three
Prisoners

Help from
Linear
Algebra

Optimal
Strategies via
Hamming
Codes

Conclusion

Three Prisoner Strategy:

The code is C = {000, 111}. The Hamming distance
between the codewords is 3.

Each non-codeword is Hamming distance one from a
unique code word.

000: 001, 010, 100.
111: 110, 101, 011.

Each player is assigned a bit position.

If the two bits visible to the prisoner correspond to a
codeword, the prisoner should guess the color to make a
non-codeword.
If the two bits visible do not make a codeword, the
prisoner does not guess.

Brody Dylan Johnson Saint Louis University The Hat Problem



The Hat
Problem

Brody Dylan
Johnson

Saint Louis
University

Introduction

Three
Prisoners

More than
Three
Prisoners

Help from
Linear
Algebra

Optimal
Strategies via
Hamming
Codes

Conclusion

Three Prisoner Strategy:

The code is C = {000, 111}. The Hamming distance
between the codewords is 3.

Each non-codeword is Hamming distance one from a
unique code word.

000: 001, 010, 100.
111: 110, 101, 011.

Each player is assigned a bit position.

If the two bits visible to the prisoner correspond to a
codeword, the prisoner should guess the color to make a
non-codeword.
If the two bits visible do not make a codeword, the
prisoner does not guess.

Brody Dylan Johnson Saint Louis University The Hat Problem



The Hat
Problem

Brody Dylan
Johnson

Saint Louis
University

Introduction

Three
Prisoners

More than
Three
Prisoners

Help from
Linear
Algebra

Optimal
Strategies via
Hamming
Codes

Conclusion

Three Prisoner Strategy:

The code is C = {000, 111}. The Hamming distance
between the codewords is 3.

Each non-codeword is Hamming distance one from a
unique code word.

000: 001, 010, 100.
111: 110, 101, 011.

Each player is assigned a bit position.

If the two bits visible to the prisoner correspond to a
codeword, the prisoner should guess the color to make a
non-codeword.

If the two bits visible do not make a codeword, the
prisoner does not guess.

Brody Dylan Johnson Saint Louis University The Hat Problem



The Hat
Problem

Brody Dylan
Johnson

Saint Louis
University

Introduction

Three
Prisoners

More than
Three
Prisoners

Help from
Linear
Algebra

Optimal
Strategies via
Hamming
Codes

Conclusion

Three Prisoner Strategy:

The code is C = {000, 111}. The Hamming distance
between the codewords is 3.

Each non-codeword is Hamming distance one from a
unique code word.

000: 001, 010, 100.
111: 110, 101, 011.

Each player is assigned a bit position.

If the two bits visible to the prisoner correspond to a
codeword, the prisoner should guess the color to make a
non-codeword.
If the two bits visible do not make a codeword, the
prisoner does not guess.

Brody Dylan Johnson Saint Louis University The Hat Problem



The Hat
Problem

Brody Dylan
Johnson

Saint Louis
University

Introduction

Three
Prisoners

More than
Three
Prisoners

Help from
Linear
Algebra

Optimal
Strategies via
Hamming
Codes

Conclusion

(7,4) Hamming code:

Let n = 7 and consider the code C corresponding to the
subspace generated by
{1000110, 0100101, 0010011, 0001111}. (Every codeword
is a linear combination of these four vectors.)

Our message will be the four coefficients used to construct
a codeword as a linear combination. Let
~a =

[
a1 a2 a3 a4

]
. (4-digit binary message) We will

transmit the codeword

~c~a = ~aG =
[
a1 a2 a3 a4

] 
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .
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(7,4) Hamming code:

There is another subspace of F7
2, C⊥, so that the

combined span of C and C⊥ is all of F7
2 and, moreover,

every vector in C is orthogonal to every vector in C⊥. (C⊥
is 3-dimensional)

In our example C⊥ is generated by
{1101100, 1011010, 0111001}. The orthogonality
condition tells us that if ~c ∈ C, then

[
0 0 0

]
= ~cHT = ~c

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

T

.

Notice that columns 3, 6, and 7 of H sum to ~0. Also
observe that no two columns of H sum to ~0.
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How close can two codewords be?

Proposition

There is a nonzero codeword ~c ∈ C such that w(~c) ≤ d if and
only if there exists a set of d columns of H that are linearly
dependent.
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How close can two codewords be?

Proof.

First observe that ~cHT = ~0 is a fancy way of writing a linear
combination of columns of H that equals ~0.
(=⇒): Suppose there is a vector ~c with w(~c) ≤ d . The linear
combination only involves w(~c) ≤ d columns and ~cHT = ~0 is
merely expressing the linear dependence of these w(~c) columns.
(⇐=): Suppose there exist d columns ~Hk1 , . . . ,

~Hkd of H and
scalars ak1 , . . . , akd (at least one nonzero) so that

d∑
n=1

akn
~Hkn = ~0.

Choose ~c so that ~c(kn) = akn with ~c(k) = 0 otherwise. Then ~c
belongs to the code because ~cHT = ~0 and w(~c) ≤ d by
construction.
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~Hkd of H and

scalars ak1 , . . . , akd (at least one nonzero) so that

d∑
n=1

akn
~Hkn = ~0.

Choose ~c so that ~c(kn) = akn with ~c(k) = 0 otherwise. Then ~c
belongs to the code because ~cHT = ~0 and w(~c) ≤ d by
construction.
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(7, 4) Hamming code:

In our (7, 4) Hamming code no two columns are linearly
dependent, but there are triplets of columns which are
dependent. Proposition 5.1 implies that no nonzero
codeword ~c has w(~c) ≤ 2.

Recall that d(~c1,~c2) = w(~c1 − ~c2), so we know that
d(~c1,~c2) > 2 for all the codewords in our code. In other
words, we must change at least three bits to change one
codeword into another.

Conclusion: If a word is one flip away from a codeword,
then that codeword is the unique codeword closest to the
given word.
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Dissecting the (7, 4) Hamming code:

How many codewords are there? 4-dimensional ⇒ 24 = 16
codewords

How many words are one flip away from a given
codeword? We have 7 digits, so there are seven words that
differ from a codeword by 1. (None of these can be
another codeword.)

How many words do we have?
27 = 128 = 8× 16 = 16 + 7× 16.

Conclusion: Every word is either a codeword or one flip away
from a uniquely defined codeword.
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Seven Prisoner Strategy:

Assign each guest a bit number and give each guest a list of
codewords and the associated one-flip-away words. If a prisoner
sees six correct digits then (s)he guesses that his or her bit will
result in a non-codeword. If a prisoner sees that the word
cannot be a codeword, (s)he simply elects not to guess.

Losing: In 16 cases (the codewords) everyone sees 6 correct
digits and guesses incorrectly that the full word is not a
codeword. (All seven prisoners guess wrong.)

Winning: In the remaining 112 cases only one digit actually is
“wrong” so only the prisoner wearing this hat makes a guess. In
this case the single guess is correct and the team wins.
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Optimality and Extensions

The probability of winning with this seven-player strategy is
112
128 = 7

8 . The optimality is evident because the theoretical
upper bound is achieved.

Hamming codes can be constructed for each dimension of the
form 2N − 1, leading to optimal strategies for these numbers of
players.

As N increases P(Win) approaches 1.
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Conclusion

A group of N prisoners can always employ a Hamming code
strategy for a smaller number of the form 2M − 1.

Question: Are the Hamming code strategies optimal for all
numbers of prisoners N ≥ 3?

One cannot improve upon the N = 3 strategy for four
prisoners.
What about the five and six prisoner cases?

If the hat colors are not equally likely, how will the optimal
strategy be affected?
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