# Difference between revisions of "Hyperbolic Geometry"

Line 1: | Line 1: | ||

− | == | + | ==Preliminaries== |

We have seen two different geometries so far: Euclidean and spherical geometry. The idea is that geometry is meant to describe the world around us, and the geometry then depends on some fundamental properties of the world we are describing. Objects that live in a flat world are described by Euclidean (or flat) geometry, while objects that live on a spherical world will need to be described by spherical geometry. | We have seen two different geometries so far: Euclidean and spherical geometry. The idea is that geometry is meant to describe the world around us, and the geometry then depends on some fundamental properties of the world we are describing. Objects that live in a flat world are described by Euclidean (or flat) geometry, while objects that live on a spherical world will need to be described by spherical geometry. | ||

The obvious question at this point should be if there are any other geometries out there. In two dimensions there is a third geometry. This geometry is called hyperbolic geometry. We just reminded ourselves that Euclidean geometry describes objects in a flat world or a plane, and spherical geometry describes objects on the sphere. So, what world does hyperbolic geometry describe? It is a fact that we can think of this hyperbolic world in several different ways, but if we use Escher’s work as a reference we should think of hyperbolic space as the distorted interior of a disk. | The obvious question at this point should be if there are any other geometries out there. In two dimensions there is a third geometry. This geometry is called hyperbolic geometry. We just reminded ourselves that Euclidean geometry describes objects in a flat world or a plane, and spherical geometry describes objects on the sphere. So, what world does hyperbolic geometry describe? It is a fact that we can think of this hyperbolic world in several different ways, but if we use Escher’s work as a reference we should think of hyperbolic space as the distorted interior of a disk. | ||

− | [[Image:Circle-Limit-III.jpg]] | + | [[Image:Circle-Limit-III.jpg|center]] |

Think of all the fish as living inside this hyperbolic world. They all live in the interior of the disk, and it is a distorted picture because, believe it or not, all these fish are the same size. | Think of all the fish as living inside this hyperbolic world. They all live in the interior of the disk, and it is a distorted picture because, believe it or not, all these fish are the same size. | ||

Have you ever noticed how a stick looks bent if you partially submerge it in water? The same happens to a straw in a glass of water. Something like that happened here too. Notice the white curves that look like they are bent? That is the effect of hyperbolic space. These are actually straight. These curves are the geodesics of hyperbolic space. They measure shortest distance, and segments of them can be used to make polygons. Do you see the 4 sided polygon in the center? Do you notice other 4 sided polygons closed to the edge of our hyperbolic space? Notice that all the sides of these 4-gons are exactly the length of one fish. This means that all the 4-gons have exactly the same shape and size! This gives you an idea I hope of what I meant when I said that hyperbolic space could be thought of as the distorted interior of a disk. | Have you ever noticed how a stick looks bent if you partially submerge it in water? The same happens to a straw in a glass of water. Something like that happened here too. Notice the white curves that look like they are bent? That is the effect of hyperbolic space. These are actually straight. These curves are the geodesics of hyperbolic space. They measure shortest distance, and segments of them can be used to make polygons. Do you see the 4 sided polygon in the center? Do you notice other 4 sided polygons closed to the edge of our hyperbolic space? Notice that all the sides of these 4-gons are exactly the length of one fish. This means that all the 4-gons have exactly the same shape and size! This gives you an idea I hope of what I meant when I said that hyperbolic space could be thought of as the distorted interior of a disk. | ||

+ | |||

+ | ==Introduction== | ||

+ | In about 300BC, Euclid penned the Elements, the basic treatise on geometry for almost two thousand years. He clearly states his assumptions in five “postulates”. Euclid’s fifth postulate concerns parallel lines, and in a more modern form says that “given a line L, and a point P not on that line, there is exactly one line through P which is parallel to L”. | ||

+ | This fifth postulate, the “parallel postulate” seemed more complicated and less obvious than the other four, so for many hundreds of years mathematicians attempted to prove it using only the first four postulates as assumptions. | ||

+ | We saw that the parallel postulate is false for spherical geometry (since there are no parallel geodesics), but this is not helpful since some of the first four are false, too. For example there are many geodesics through a pair of antipodal points. In fact, the first four postulates imply that given a line and a point not on that line, there is a parallel line as required. The subtle question is: can there be more than one? | ||

+ | In 1733, the Jesuit priest Giovanni Saccheri began by assuming the fifth postulate was false, and attempted (at great length) to derive a statement contradicting the other four. In doing so, he nearly produced the theory of hyperbolic geometry. However, his goal was not to discover new kinds of geometry, but to rule them out, so he concluded his treatise with a rant about the absurdity of everything he had just written. | ||

+ | The great German mathematician Carl Freidrich Gauss apparently believed that a geometry did exist which satisfied Euclid’s first four postulates but not the fifth. However, Gauss never published or discussed this work because he felt his reputation would suffer if he admitted he believed in non-Euclidean geometry. In the early 1800’s, the idea was preposterous. | ||

+ | Generally, Nikolai Ivanovich Lobachevsky is credited with the discovery of the non-Euclidean geometry now known as hyperbolic space. He presented his work in the 1820’s, but even it was not formally published until the 20th century, when Felix Klein and Henri Poincaré put the subject on firm footing. | ||

+ | |||

+ | |||

+ | ==Models of Hyperbolic Space== | ||

+ | The non-Euclidean geometry which satisfies Euclid’s first four postulates but not the parallel postulate is called hyperbolic geometry. Like spherical geometry, which takes place on a sphere, hyperbolic geometry takes place on a curved two dimensional surface called hyperbolic space. On a sphere, a small neighborhood of a point looks like a cap. In hyperbolic space, every point looks like a saddle. Unfortunately, while you can piece caps together to make a sphere, piecing saddles together quickly runs out of space. | ||

+ | |||

+ | {{Under construction}} |

## Revision as of 11:29, 15 March 2007

## Preliminaries

We have seen two different geometries so far: Euclidean and spherical geometry. The idea is that geometry is meant to describe the world around us, and the geometry then depends on some fundamental properties of the world we are describing. Objects that live in a flat world are described by Euclidean (or flat) geometry, while objects that live on a spherical world will need to be described by spherical geometry. The obvious question at this point should be if there are any other geometries out there. In two dimensions there is a third geometry. This geometry is called hyperbolic geometry. We just reminded ourselves that Euclidean geometry describes objects in a flat world or a plane, and spherical geometry describes objects on the sphere. So, what world does hyperbolic geometry describe? It is a fact that we can think of this hyperbolic world in several different ways, but if we use Escher’s work as a reference we should think of hyperbolic space as the distorted interior of a disk.

Think of all the fish as living inside this hyperbolic world. They all live in the interior of the disk, and it is a distorted picture because, believe it or not, all these fish are the same size.

Have you ever noticed how a stick looks bent if you partially submerge it in water? The same happens to a straw in a glass of water. Something like that happened here too. Notice the white curves that look like they are bent? That is the effect of hyperbolic space. These are actually straight. These curves are the geodesics of hyperbolic space. They measure shortest distance, and segments of them can be used to make polygons. Do you see the 4 sided polygon in the center? Do you notice other 4 sided polygons closed to the edge of our hyperbolic space? Notice that all the sides of these 4-gons are exactly the length of one fish. This means that all the 4-gons have exactly the same shape and size! This gives you an idea I hope of what I meant when I said that hyperbolic space could be thought of as the distorted interior of a disk.

## Introduction

In about 300BC, Euclid penned the Elements, the basic treatise on geometry for almost two thousand years. He clearly states his assumptions in five “postulates”. Euclid’s fifth postulate concerns parallel lines, and in a more modern form says that “given a line L, and a point P not on that line, there is exactly one line through P which is parallel to L”. This fifth postulate, the “parallel postulate” seemed more complicated and less obvious than the other four, so for many hundreds of years mathematicians attempted to prove it using only the first four postulates as assumptions. We saw that the parallel postulate is false for spherical geometry (since there are no parallel geodesics), but this is not helpful since some of the first four are false, too. For example there are many geodesics through a pair of antipodal points. In fact, the first four postulates imply that given a line and a point not on that line, there is a parallel line as required. The subtle question is: can there be more than one? In 1733, the Jesuit priest Giovanni Saccheri began by assuming the fifth postulate was false, and attempted (at great length) to derive a statement contradicting the other four. In doing so, he nearly produced the theory of hyperbolic geometry. However, his goal was not to discover new kinds of geometry, but to rule them out, so he concluded his treatise with a rant about the absurdity of everything he had just written. The great German mathematician Carl Freidrich Gauss apparently believed that a geometry did exist which satisfied Euclid’s first four postulates but not the fifth. However, Gauss never published or discussed this work because he felt his reputation would suffer if he admitted he believed in non-Euclidean geometry. In the early 1800’s, the idea was preposterous. Generally, Nikolai Ivanovich Lobachevsky is credited with the discovery of the non-Euclidean geometry now known as hyperbolic space. He presented his work in the 1820’s, but even it was not formally published until the 20th century, when Felix Klein and Henri Poincaré put the subject on firm footing.

## Models of Hyperbolic Space

The non-Euclidean geometry which satisfies Euclid’s first four postulates but not the parallel postulate is called hyperbolic geometry. Like spherical geometry, which takes place on a sphere, hyperbolic geometry takes place on a curved two dimensional surface called hyperbolic space. On a sphere, a small neighborhood of a point looks like a cap. In hyperbolic space, every point looks like a saddle. Unfortunately, while you can piece caps together to make a sphere, piecing saddles together quickly runs out of space.