Difference between revisions of "Regular Triangle Symmetry Group Exploration"

From EscherMath
Jump to navigationJump to search
(uncorrected, as that was my error)
Line 42: Line 42:
  
 
{{handin}}
 
{{handin}}
 +
[[category:Symmetry and Isometry Explorations]]

Revision as of 07:45, 24 January 2009


Time-40.svg

Objective: Understanding the finite symmetry groups.


1. Complete the multiplication table for D4

<math>E</math> (identity) <math>R</math> (rotation 90) <math>R^2</math> (rotation 180) <math>R^3</math> (rotation 270) <math>M1</math> (reflection) <math>M2</math> (reflection) <math>M3</math> (reflection) <math>M4</math> (reflection)
<math>E</math>
<math>R</math>
<math>R^2</math>
<math>R^3</math>
<math>M1</math>
<math>M2</math>
<math>M3</math>
<math>M4</math>


Analyze the symmetry group D3 of the equilateral triangle


Isometries-triangle.png

2. How many elements are in this group?

3. What is <math>M1</math> x <math>M1</math> = <math>M1^2</math>? , <math>M2</math> x <math>M2</math> = <math>M2^2</math>? , <math>M3</math> x <math>M3</math> = <math>M3^2</math>?

4. What is <math>M1</math> x <math>M2</math>? , <math>M2</math> x <math>M1</math>? , <math>M3</math> x <math>M1</math>? , <math>M1</math> x <math>M3</math>? , <math>M3</math> x <math>M2</math>? , <math>M2</math> x <math>M3</math>?

5. How do rotations behave?

6. Can you spot C3 as a subgroup of D3? What is it?

7. Find all subgroups.

8. Write out a multiplication table for D3.

Handin: A sheet with answers to all questions.