Regular Triangle Symmetry Group Exploration
Objective: Understanding the finite symmetry groups.
1. Complete the multiplication table for D4
<math>E</math> (identity) | <math>R</math> (rotation 90) | <math>R^2</math> (rotation 180) | <math>R^3</math> (rotation 270) | <math>M1</math> (reflection) | <math>M2</math> (reflection) | <math>M3</math> (reflection) | <math>M4</math> (reflection) | |
---|---|---|---|---|---|---|---|---|
<math>E</math> | ||||||||
<math>R</math> | ||||||||
<math>R^2</math> | ||||||||
<math>R^3</math> | ||||||||
<math>M1</math> | ||||||||
<math>M2</math> | ||||||||
<math>M3</math> | ||||||||
<math>M4</math> |
Analyze the symmetry group D3 of the equilateral triangle
2. How many elements are in this group?
3. What is <math>M1</math> x <math>M1</math> = <math>M1^2</math>? , <math>M2</math> x <math>M2</math> = <math>M2^2</math>? , <math>M3</math> x <math>M3</math> = <math>M3^2</math>?
4. What is <math>M1</math> x <math>M2</math>? , <math>M2</math> x <math>M1</math>? , <math>M3</math> x <math>M1</math>? , <math>M1</math> x <math>M3</math>? , <math>M3</math> x <math>M2</math>? , <math>M2</math> x <math>M3</math>?
5. How do rotations behave?
6. Can you spot C3 as a subgroup of D3? What is it?
7. Find all subgroups.
8. Write out a multiplication table for D3.
Handin: A sheet with answers to all questions.