Regular Triangle Symmetry Group Exploration

From EscherMath
Revision as of 17:32, 3 February 2009 by Bryan (talk | contribs) (Formatting, section headings.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search


Objective: Understanding the finite symmetry groups.

The square

Complete the multiplication table for D4, the symmetry group of the square.

<math>E</math> (identity) <math>R</math> (rotation 90) <math>R^2</math> (rotation 180) <math>R^3</math> (rotation 270) <math>M1</math> (reflection) <math>M2</math> (reflection) <math>M3</math> (reflection) <math>M4</math> (reflection)

The equilateral triangle

Analyze the symmetry group D3 of the equilateral triangle:

  1. How many elements are in this group?
  2. What is <math>M1</math> x <math>M1</math> = <math>M1^2</math>? , <math>M2</math> x <math>M2</math> = <math>M2^2</math>? , <math>M3</math> x <math>M3</math> = <math>M3^2</math>?
  3. What is <math>M1</math> x <math>M2</math>? , <math>M2</math> x <math>M1</math>? , <math>M3</math> x <math>M1</math>? , <math>M1</math> x <math>M3</math>? , <math>M3</math> x <math>M2</math>? , <math>M2</math> x <math>M3</math>?
  4. How do rotations behave?
  5. Can you spot C3 as a subgroup of D3? What is it?
  6. Find all subgroups.
  7. Write out a multiplication table for D3.

Handin: A sheet with answers to all questions.