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LOCALITY AND STABILITY FOR PHASE RETRIEVAL

WEDAD ALHARBI, SALAH ALSHABHI, DANIEL FREEMAN, AND DORSA GHOREISHI

Abstract. A frame (xj)j∈J for a Hilbert space H is said to do phase retrieval if for all dis-
tinct vectors x, y ∈ H the magnitude of the frame coefficients (|〈x, xj〉|)j∈J and (|〈y, xj〉|)j∈J

distinguish x from y (up to a unimodular scalar). We consider the weaker condition where
the magnitude of the frame coefficients distinguishes x from every vector y in a small neigh-
borhood of x (up to a unimodular scalar). We prove that some of the important theorems
for phase retrieval hold for this local condition, where as some theorems are completely
different. We prove as well that when considering stability of phase retrieval, the worst
stability inequality is always witnessed at orthogonal vectors. This allows for much simpler
calculations when considering optimization problems for phase retrieval.

1. Introduction

We say that a collection of vectors (xj)j∈J ⊆ H is a frame of a Hilbert space H if there
exists constants B ≥ A > 0 so that

(1.1) A‖x‖2 ≤
∑

j∈J

|〈x, xj〉|
2 ≤ B‖x‖2 for all x ∈ H.

The analysis operator of the frame (xj)j∈J is the map Θ : H → ℓ2(J) given by Θ(x) =
(〈x, xj〉)j∈J for all x ∈ H .

Instead of considering a discrete collection of vectors, we now let (xt)t∈Ω ⊆ H be indexed
by a measure space (Ω, µ). We say that (xt)t∈Ω ⊆ H is a continuous frame of H if there
exists constants B ≥ A > 0 so that

(1.2) A‖x‖2 ≤

∫

t∈Ω

|〈x, xt〉|
2 ≤ B‖x‖2 for all x ∈ H.

The analysis operator of the continuous frame (xt)t∈Ω is the map Θ : H → L2(Ω) given
by Θ(x) = (〈x, xj〉)t∈Ω for all x ∈ H . Note that every frame (xj)j∈J may be realized as a
continuous frame by endowing J with counting measure.

A frame (xj)j∈J for a Hilbert space H allows for a continuous, linear, and stable recon-
struction of any vector x ∈ H from the collection of frame coefficients Θ(x) = (〈x, xj〉)j∈J .
However, there are many situations where one is only able to obtain the magnitude of the
frame coefficients |Θ(x)| = (|〈x, xj〉|)j∈J . This problem arises in speech recognition [BR],
coherent diffraction imaging [MCKS], X-ray crystallography [T], transmission electron mi-
croscopy [K], and in many other areas of physics, engineering, signal processing, and applied
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mathematics. The theory of phase retrieval was developed to tackle this problem, and it has
grown into an exciting area of mathematical research.

Let (xt)t∈Ω be a continuous frame of Hilbert space H with analysis operator Θ : H →
L2(Ω). If x, y ∈ H and x = λy for some scalar |λ| = 1 then |Θ(x)| = |Θ(y)|. Thus, although
it is possible to recover any vector x ∈ H from the frame coefficients Θ(x) = (〈x, xt〉)t∈Ω, it is
not possible to distinguish x and λx using only the magnitudes of the frame coefficients. We
say that (xt)t∈Ω does phase retrieval if whenever x, y ∈ H and |Θ(x)| = |Θ(y)| we have that
x = λy for some scalar |λ| = 1. In applications it is not a problem if one recovers a signal
λx instead of x. For example, in acoustics, the sound wave x sounds exactly the same as
the sound wave λx, and in X-ray crystallography, multiplying x by λ corresponds to a rigid
rotation and preserves the structure of the crystal. As any application of phase retrieval
will involve error, it is important that we are not only able to obtain x (up to a unimodu-
lar scalar λ) from the magnitudes of the frame coefficients |Θx|, but that this recovery be
also stable. That is, we want that the recovery of [x]∼ from |Θx| to be Lipschitz continuous,
where ∼ is the equivalence relation on H given by x ∼ y if and only if x = λy for some |λ| = 1.

Let (xt)t∈Ω be a continuous frame of a Hilbert space H with analysis operator Θ : H →
L2(Ω) and let C > 0. We say that (xt)t∈Ω does C-stable phase retrieval if

(1.3) min
|λ|=1

‖x− λy‖ ≤ C
∥

∥|Θx| = |Θy|
∥

∥ for all x, y ∈ H.

Calculating stability bounds for phase retrieval can be notoriously difficult and requires
checking (1.3) for all pairs of vectors x, y ∈ H . Our first contribution in Section 2 is to
prove the following theorem which implies that (xt)t∈Ω does C-stable phase retrieval if and
only if (1.3) holds for all pairs of orthogonal vectors x, y ∈ H . This greatly simplifies many
calculations as if x and y are orthogonal then ‖x− λy‖ = (‖x‖2 + ‖y‖2)1/2.

Theorem 1.1. Let (xt)t∈Ω be a continuous frame for a Hilbert space H with analysis operator
Θ : H → L2(Ω). Let x, y ∈ H. Then there exists xo, yo ∈ span{x, y} with ‖xo‖ = 1, ‖yo‖ ≤ 1
and 〈xo, yo〉 = 0 such that

∥

∥|Θx| − |Θy|
∥

∥

min|λ|=1 ‖x− λy‖
≥

∥

∥|Θxo| − |Θyo|
∥

∥

min|λ|=1 ‖xo − λyo‖
=

∥

∥|Θxo| − |Θyo|
∥

∥

(1 + ‖yo‖|2)1/2
.

Theorem 1.1 implies that the worst stability bounds for phase retrieval occur at orthogonal
vectors. That is, the minimum of the ratio

∥

∥|Θx| − |Θy|
∥

∥/min|λ|=1 ‖x − λy‖ occurs at

orthogonal vectors. We now fix x ∈ H and consider the ratio
∥

∥|Θx|−|Θy|
∥

∥/min|λ|=1 ‖x−λy‖
only for values of y in a small neighborhood of x. Let (xt)t∈Ω be a continuous frame for a
Hilbert space H with analysis operator Θ : H → L2(Ω). We say that a continuous frame
does C-stable phase retrieval near x ∈ H if

(1.4) 1 ≤ lim
y→x

C
‖|Θx| − |Θy|‖

‖x− λy‖
.

There are many instances where it is proven that a particular frame or continuous frame
fails to do stable phase retrieval by proving that the stability bound is arbitrarily bad at
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some orthogonal vectors. However, there are important instances where stable phase re-
trieval can be achieved by restricting the vectors x, y ∈ H to a subset with some specified
structure [ADGY],[CDDL],[GR]. We consider the stability of phase retrieval when x ∈ H is
fixed and y is restricted to a small neighborhood of x. In Section 3 we prove that if (xt)t∈Ω
is any continuous frame of Rn and x ∈ Rn then (xt)t∈Ω does stable phase retrieval near x.
In particular, if x ∈ Rn and (ej)

n
j=1 is a basis of Rn then (ej)

n
j=1 does stable phase retrieval

near x. This is significant as if (xj)
m
j=1 is a frame which does phase retrieval for Rn then it

is necessary that m ≥ 2n − 1 [BCE]. In Section 4 we show that this local stability fails in
C

n. That is, we prove that if (ej)
n
j=1 is a basis of Cn and x ∈ C

n is not a multiple of some
ej then (ej)

n
j=1 does not do stable phase retrieval near x.

In Section 5 we consider stable phase retrieval for infinite dimensional Hilbert spaces. It
is known that no frame or continuous frame for an infinite dimensional Hilbert space can
do stable phase retrieval [AG][CCD]. In both papers, the instability is shown to occur at
orthogonal vectors. We prove that it is always the case that this instability can be witnessed
locally as well. In particular, we prove that if (xt)t∈Ω is a continuous frame of an infinite
dimensional Hilbert space H then the set of vectors x ∈ H where (xt)t∈Ω fails to do stable
phase retrieval near x is dense in H .

2. Orthogonality and stability

Recall that a continuous frame (xt)t∈Ω of H with analysis operator Θ does C stable phase
retrieval if

(2.1) min
|λ|=1

‖x− λy‖ ≤ C
∥

∥|Θx| − |Θy|
∥

∥ for all x, y ∈ H.

Proving that a frame or continuous frame does C-stable phase retrieval requires checking
that (2.1) is satisfied for every pair of vectors x, y ∈ H . The following theorem implies that
the worst stability constant for phase retrieval is witnessed at orthogonal vectors. That is, a
continuous frame does C-stable phase retrieval if and only if (2.1) is satisfied for orthogonal
vectors.

Theorem 2.1. Let (xt)t∈Ω be a continuous frame for a Hilbert space H with analysis operator
Θ : H → L2(Ω). Let x, y ∈ H. Then there exists xo, yo ∈ span(x, y) with ‖xo‖ = 1, ‖yo‖ ≤ 1
and 〈xo, yo〉 = 0 such that

∥

∥|Θx| − |Θy|
∥

∥

min|λ|=1 ‖x− λy‖
≥

∥

∥|Θxo| − |Θyo|
∥

∥

min|λ|=1 ‖xo − λyo‖
=

∥

∥|Θxo| − |Θyo|
∥

∥

(1 + ‖yo‖|2)1/2
.

Proof. Let x, y ∈ H . After multiplying y by a unimodular scalar, we may assume that
‖x− y‖ = min|λ|=1 ||x− λy||. Let λ ∈ C with |λ| = 1. We have that

‖x− λy‖2 = 〈x− λy, x− λy〉

= 〈x, x〉2 − 〈λy, x〉 − 〈x, λy〉+ 〈y, y〉2

= 〈x, x〉2 − 2Real(λ〈y, x〉) + 〈y, y〉2

Thus, we have that ‖x− y‖ = min|λ|=1 ||x− λy|| is equivalent to 〈x, y〉 ∈ R and 〈x, y〉 ≥ 0.
As 〈x − 0(x + y), y − 0(x + y)〉 ≥ 0 and 〈x − 1

2
(x + y), y − 1

2
(x + y)〉 ≤ 0, there exists
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R ∈ [0, 1/2] such that 〈x − R(x + y), y − R(x + y)〉 = 0. We have for all r ∈ [0, R] that
〈x− r(x+ y), y − r(x+ y)〉 ≥ 0 and hence

(2.2) ‖x− y‖ = ‖x− r(x+ y)− (y − r(x+ y))‖ = min
|λ|=1

‖x− r(x+ y)− λ(y − r(x+ y))‖

Let t ∈ Ω. Consider the function ft : [0, 1/2] → R given by

ft(r) =
∣

∣|〈x− r(x+ y), xt〉| − |〈y − r(x+ y), xt〉|
∣

∣ for all r ∈ [0, 1/2].

We will prove that ft is decreasing on [0, 1/2]. To simplify the notation, we let 〈x, xt〉 = a+bi
and 〈y, xt〉 = c+ di. Note that ft is unchanged if we switch the roles of x and y or multiply
x and y by the same unimodular scalar. Thus, we may assume without loss of generality
that b = −d and that a ≥ 0 and a ≥ |c|. This gives that

ft(r) =
∣

∣|a+ bi− r(a+ c)| − |c− bi− r(a+ c)|
∣

∣

=
∣

∣((a− r(a+ c))2 + b2)1/2 − ((c− r(a+ c))2 + b2)1/2
∣

∣

= (a− r(a+ c))2 + b2)1/2 − ((c− r(a+ c))2 + b2)1/2 as a ≥ |c| and 0 ≤ r ≤ 1/2.

We first consider the case where b = 0 and r(a+ c) ≤ c < a. Then,

ft(r) = |a− r(a+ c)| − |c− r(a+ c)| = (a− r(a+ c))− (c− r(a+ c) = a− c = f(0).

Thus, ft is constant for those values of r. We now consider the case where b = 0 and
c < r(a+ c) < a. Then,

ft(r) = |a− r(a+ c)| − |c− r(a+ c)| = a− r(a+ c) + (c− r(a+ c)) = (a+ c)(1− 2r).

Thus ft is decreasing as a ≥ |c|. This proves that ft is a decreasing function when b = 0.
We now assume that b 6= 0. Note that ft(0) ≥ 0 and ft(1/2) = 0. In this case, one can check
that ft is a differentiable function and ft has no critical point in the interval (0, 1/2). Thus,
ft is decreasing on [0, 1/2]. As ft is decreasing, we have that ft(0) ≥ ft(R). Hence,

(2.3)
∣

∣|〈x, xt〉| − |〈y, xt〉|
∣

∣ ≥
∣

∣|〈x− R(x+ y), xt〉| − |〈y − R(x+ y), xt〉|
∣

∣ for all t ∈ Ω.

Thus, we have that

(2.4)
∥

∥|Θx| − |Θy|
∥

∥ ≥
∥

∥|Θ(x− R(x+ y))| − |Θ(y −R(x+ y))|
∥

∥

By (2.2) and (2.4) we have that

(2.5)

∥

∥|Θx| − |Θy|
∥

∥

min|λ|=1 ‖x− λy‖
≥

∥

∥|Θ(x−R(x+ y))| − |Θ(y − R(x+ y))|
∥

∥

min|λ|=1 ‖(x− R(x+ y))− λ(y − R(x+ y))‖

Without loss of generality, we may assume that ‖x − R(x + y)‖ ≥ ‖x − R(x + y)‖. We let
xo = (x−R(x+ y))/‖x−R(x+ y)‖ and yo = (y −R(x+ y))/‖x−R(x+ y)‖. Then xo and
yo are orthogonal, ‖xo‖ = 1, and ‖yo‖ ≤ 1. Furthermore, (2.5) implies that

∥

∥|Θx| − |Θy|
∥

∥

min|λ|=1 ‖x− λy‖
≥

∥

∥|Θxo| − |Θyo|
∥

∥

min|λ|=1 ‖xo − λyo‖
=

∥

∥|Θxo| − |Θyo|
∥

∥

(1 + ‖yo‖|2)1/2
.

�
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We now discuss some consequences of Theorem 2.1. We define a function Ψ on a subset
of H ×H by

(2.6) Ψ(x, y) =
‖|Θx| − |Θy|‖

min|λ|=1 ‖x− λy‖
for all x, y ∈ H with x 6= λy for all |λ| = 1.

The optimal value C for which (xt)t∈Ω does C-stable phase retrieval is then given by C =
(inf Ψ(x, y))−1. The problem with this approach is that the infimum is being taken over a
non-compact set. However, by Theorem 2.1 we only need to consider Ψ(x, y) for orthogonal
vectors x, y ∈ H . This gives the following immediate corollary.

Corollary 2.2. Let (xt)t∈Ω be a continuous frame for a Hilbert space H with analysis operator
Θ : H → L2(Ω). Let X ⊆ H ⊕H be defined by

X = {(x, y) ∈ H ×H : ‖x‖ = 1, ‖y‖ ≤ 1, and 〈x, y〉 = 0.}.

Then the following all hold.

(1) (xt)t∈Ω does stable phase retrieval if and only if inf(x,y)∈X Ψ(x, y) > 0.
(2) If (xt)t∈Ω does stable phase retrieval then the smallest value C so that (xt)t∈Ω does

C-stable phase retrieval is given by C = (inf(x,y)∈X Ψ(x, y))−1.
(3) The function Ψ is continuous on X and is given by,

Ψ(x, y) =
‖|Θx| − |Θy|‖

(1 + ‖y‖2)1/2
for all (x, y) ∈ X.

(4) If H is finite dimensional then X ⊆ H ⊕H is a compact set.

It is well known that a continuous frame for a finite dimensional Hilbert space does phase
retrieval if and only if it does C-stable phase retrieval for some constant C. This fundamental
result in the mathematics of phase retrieval has been proven in multiple papers using a
variety of methods [AG, BCMN, BW, CCD]. We now apply Theorem 2.1 to give a simple
and natural proof.

Corollary 2.3. Let (xt)t∈Ω be a continuous frame for a finite dimensional Hilbert space H.
Then (xt)t∈Ω does phase retrieval if and only if (xt)t∈Ω does C-stable phase retrieval for some
constant C.

Proof. Suppose that (xt)t∈Ω does phase retrieval on H . Note that if (x, y) ∈ X then x 6= λy
for all |λ| = 1 as ‖x − λy‖2 = 1 + ‖y‖2. Thus, for all (x, y) ∈ X we have that |Θx| 6= |Θy|
as (xt)t∈Ω does phase retrieval on H . Hence, Ψ(x, y) > 0 for all (x, y) ∈ X. As Ψ is
a continuous function on the compact set X we have that min(x,y)∈X Ψ(x, y) > 0. Thus,
(xt)t∈Ω does C-stable phase retrieval for C = (min(x,y)∈X Ψ(x, y))−1. �

3. Stable phase retrieval near x ∈ Rn

Let (xj)j∈J be a frame of Rn with analysis operator Θ : Rn → ℓ2(J). By Theorem 2.1, we
have that if (xj)j∈J does phase retrieval then the worst stability bounds occur at orthogonal
vectors. Furthermore, it was known that if (xj)j∈J does not do phase retrieval then there
are orthogonal vectors x, y ∈ Rn such that |Θx| = |Θy| [BCE]. We now show that very good
stability bounds for phase retrieval can be obtained if we fix x ∈ Rn and only consider y in
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a small neighborhood of x. In particular, even if (xj)j∈J fails to do phase retrieval for Rn,
we still have that (xj)j∈J does phase retrieval near x ∈ Rn.

Proposition 3.1. Let n ∈ N and let (xj)j∈J be a finite frame of Rn with lower frame bound
A and analysis operator Θ : Rn → ℓ2(Θ). Let x ∈ Rn and Jx = {j ∈ J : 〈x, xj〉 6= 0}.
Then for all y ∈ Rn with ‖x− y‖ ≤ minj∈Jx |〈x, xj/‖xj‖〉| we have that min|λ|=1 ‖x− λy‖ ≤

A−1/2‖|Θ(x)| − |Θ(y)|‖. In particular, (xj)j∈J does A−1/2-stable phase retrieval near x.

Proof. Let x ∈ Rn with x 6= 0 and β = minj∈Jx |〈x, xj/‖xj‖〉|. Let y ∈ Rn with ‖x− y‖ < β.
We first show that sign(〈x, xj〉) = sign(〈y, xj〉) for all j ∈ Jx. Let j ∈ Jx and without loss
of generality assume that 〈x, xj〉 > 0. We have that

〈y, xj〉 = 〈x, xj〉+ 〈y − x, xj〉 ≥ 〈x, xj〉 − ‖x− y‖‖xj‖ > 〈x, xj〉 −
|〈x, xj〉|

‖xj‖
||xj‖ ≥ 0.

Thus, sign(〈x, xj〉) = sign(〈y, xj〉) for j ∈ Jx. We now have that

∥

∥|Θ(x)| − |Θ(y)|
∥

∥

2

l2(J)
=

∑

j∈J

||〈x, xj〉| − |〈y, xj〉||
2

=
∑

j∈Jx

|〈x, xj〉| − |〈y, xj〉|
2 +

∑

j /∈Jx

|〈y, xj〉|
2 as 〈x, xj〉 = 0 for j 6∈ Jx,

=
∑

j∈Jx

|〈x, xj〉 − 〈y, xj〉|
2 +

∑

j /∈Jx

|〈y, xj〉|
2 as sign(〈x, xi〉) = sign(〈y, xj〉) for j ∈ Jx,

=
∑

j∈Jx

|〈x− y, xj〉|
2 +

∑

j /∈Jx

|〈x− y, xj〉|
2 as 〈x, xj〉 = 0 for j 6∈ Jx,

=
∑

j∈J

|〈x− y, xj〉|
2 ≥ A‖x− y‖2 as (xj)j∈J has lower frame bound A.

�

Note that Proposition 3.1 implies in particular that every ortho-normal basis for Rn does
1-stable phase retrieval near x ∈ Rn for every x ∈ Rn. This is notable in that for a frame
to do phase retrieval for Rn, the frame must have at least 2n − 1 vectors. The following
theorem extends Proposition 3.1 to continuous frames for Rn.

Theorem 3.2. Let n ∈ N and let (xt)t∈Ω be a continuous frame for R
n with lower frame

bound A. Then for all x ∈ Rn, the continuous frame (xt)t∈Ω does A−1/2-stable phase retrieval
near x.

Proof. Let x ∈ Rn and ε > 0. For all α > 0 we denote Ωα = {t ∈ Ω : |〈x, xt〉| ≥ α‖xt‖}.
Let Θ be the analysis operator of (xt)t∈Ω and let ΘΩc

α
be the analysis operator of (xt)t∈Ωc

α
.

As Ω = ∪α>0Ωα there exists β > 0 so that if 0 < α ≤ β then ‖ΘΩc
β
‖2 < ǫ. Let y ∈ R

n with

‖x − y‖ < β. As in the proof of proposition 2.1 we have that sign(〈x, xt〉) = sign(〈y, xt〉)
for all t ∈ Ωβ . Then,
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∥

∥|Θ(x)| − |Θ(y)|
∥

∥

2

L2(Ω)
=

∫

Ω

∣

∣|〈x, xt〉 − |〈y, xt〉|
∣

∣

2
dµ.

≥

∫

Ωβ

∣

∣|〈x, xt〉 − |〈y, xt〉|
∣

∣

2
dµ

=

∫

Ωβ

|〈x− y, xt〉|
2dµ as sign(〈x, xt〉) = sign(〈y, xt〉) for t ∈ Ωβ,

=

∫

Ω

|〈x− y, xt〉|
2dµ−

∫

Ωc
β

|〈x− y, xt〉|
2dµ

= ‖Θ(x− y)‖2 − ‖ΘΩc
β
(x− y)‖2

≥ A‖x− y‖2 − ‖ΘΩc
β
‖2‖x− y‖2

> (A− ǫ)‖x− y‖2

Thus,

A−1/2 lim
y→x

‖|T (x)| − |T (y)|‖

min|λ|=1 ‖x− λy‖
≥ 1

This prove that (xt)t∈Ω does A−1/2-stable phase retrieval near x.
�

4. Stable phase retrieval near x ∈ Cn

We have that a continuous frame for Rn does stable phase retrieval near x for every x ∈ Rn.
However, the situation is completely different for Cn. Indeed, although an ortho-normal basis
for R

n does 1-stable phase retrieval near x ∈ R
n for every x ∈ R

n, we will show that the
opposite holds for Cn. That is, if (ej)

n
j=1 is a basis for Cn and x ∈ Cn is not a scalar multiple

of ej for some 1 ≤ j ≤ n then (ej)
n
j=1 does not do stable phase retrieval near x.

In order to prove that a continuous frame (xt)t∈Ω does not do stable phase retrieval near
a vector x ∈ Cn, we will find a vector y ∈ Cn and prove that

(4.1) lim
α→0

‖|Θx| − |Θ(x+ αy)|‖

min|λ|=1 ‖x− λ(x+ αy)‖
= 0.

Proving (4.1) will involve showing that the numerator converges to 0 at a faster rate than
the denominator. We first show that the denominator always converges at a linear rate.

Lemma 4.1. Let H be a Hilbert space and let x, y ∈ H be linearly independent vectors.
Then there exists a constant c > 0 so that for all scalars α ∈ R,

min
|λ|=1

‖x− λ(x+ αy)‖ ≥ |α|c.
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Proof. Let P(span(x))⊥ be orthogonal projection onto the orthogonal complement of the span
of x. We have that

‖x− λ(x+ αy)‖ ≥ ‖P(span(x))⊥(x− λ(x+ αy))‖ = |α|‖P(span(x))⊥(y)‖

As x and y are linearly independent, we have that ‖P(span(x))⊥(y)‖ 6= 0. �

Theorem 4.2. Let (ej)
n
j=1 be a basis of Cn. If x ∈ Cn is not a scalar multiple of ej for all

1 ≤ j ≤ n then (ej)
n
j=1 does not do stable phase retrieval near x.

Proof. Let x ∈ Cn such that x is not a scalar multiple of ej for all 1 ≤ j ≤ n and let (fj)
n
j=1

be bi-orthogonal to (ej)
n
j=1. Without loss of generality, we may assume that 〈x, e1〉 6= 0 and

〈x, e2〉 6= 0. The basis expansion of x with respect to (fj)
n
j=1 is given by x =

∑n
j=1〈x, ej〉fj .

Let y = 〈x, e1〉if1 − 〈x, e2〉if2. Let Θ be the analysis operator of (ej)
n
j=1. We will prove that

lim
α→0

‖|Θ(x)| − |Θ(x+ αy)|‖

min|λ|=1 ‖x− λ(x+ αy)‖
= 0

We have that 〈y, e1〉 = 〈x, e1〉i and 〈y, e2〉 = −〈x, e2〉i. Thus, x and y are linearly indepen-
dent. By Lemma 4.1 there exists a constant c > 0 so that

min
|λ|=1

‖x− λ(x+ αy)‖ ≥ |α|c. for all α ∈ R.

We will show that there exists k > 0 so that ‖|Θ(x)| − |Θ(x+αy)|‖ ≤ kα2 for all α ∈ R. By
Taylor’s Approximation Theorem, (1 + α2)1/2 ≤ 1 + 1

2
α2 for all α ∈ R. We now obtain the

following upper bound.
∥

∥|Θ(x)| − |Θ(x+ αy)|
∥

∥

2
=

∣

∣|〈x, e1〉| − |〈x, e1〉+ α〈x, e1〉i|
∣

∣

2
+
∣

∣|〈x, e2〉| − |〈x, e2〉 − α〈x, e2〉i|
∣

∣

2

= (|〈x, e1〉|
2 + |〈x, e2〉|

2)
(

1− (1 + α2)1/2
)2

≤ (|〈x, e1〉|
2 + |〈x, e2〉|

2)
1

4
α4

Thus, we have that

lim
α→0

‖|Θ(x)| − |Θ(x+ αy)|‖

min|λ|=1 ‖x− λ(x+ αy)‖
≤ lim

α→0

(|〈x, e1〉|
2 + |〈x, e2〉|

2)
1

2
1
2
α2

c|α|
= 0

�

We extend the ideas in the previous proof to prove the following theorem.

Theorem 4.3. Let n ≥ 2 and let (xj)j∈J be a finite frame of Cn. Suppose that x, y ∈ Cn

are linearly independent and that 〈x, xj〉 and 〈y, xj〉 are both real for all j ∈ J . Then there
exists z ∈ span{x, y} such that (xj)j∈J does not do stable phase retrieval near z.

Proof. We may choose a non-zero real number a ∈ R so that for z = ax+ y we have for all
j ∈ J that if 〈y, xj〉 6= 0 then 〈z, xj〉 6= 0. Let I = {j ∈ J : 〈y, xj〉 6= 0}.

Let Θ be the analysis operator of (xj)j∈J . We will prove that

lim
α→0

‖|Θ(z)| − |Θ(z + αy)|‖

min|λ|=1 ‖z − λ(z + αy)‖
= 0
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We have that z and y are linearly independent. By Lemma 4.1 there exists a constant c > 0
so that for all α ∈ R,

min
|λ|=1

‖z − λ(z + αy)‖ ≥ |α|c.

We will show that there exists k > 0 so that ‖|Θ(z)| − |Θ(z+αy)|‖ ≤ kα2 for all α ∈ R. We
now obtain the following upper bound.

∥

∥|Θ(z)| − |Θ(z + αy)|
∥

∥

2
=

∑

j∈I

∣

∣|〈z, xj〉| − |〈z, xj〉+ α〈y, xj〉i|
∣

∣

2

=
∑

j∈I

|〈z, xj〉|
2
(

1− (1 + β2)1/2
)2

for βj = 〈z, xj〉
−1〈y, xj〉α

≤
∑

j∈I

|〈z, xj〉|
21

4
β4
j by Taylor’s Approximation Theorem,

=
∑

j∈I

|〈z, xj〉|
−2|〈y, xj〉|

41

4
α4

Thus, for k = 2−1(
∑

j∈I |〈z, xj〉|
−2|〈y, xj〉|

4)1/2 we have that

lim
α→0

‖|Θ(z)| − |Θ(z + αy)|‖

min|λ|=1 ‖z − λ(z + αy)‖
≤ lim

α→0

kα2

c|α|
= 0

�

5. Stable phase retrieval near x in infinite dimensions

We previously proved that if (xj)j∈J is a frame or a basis of Rn with lower frame bound A
then for all x ∈ Rn we have that (xj)j∈J does A−1/2-stable phase retrieval. We now consider
the situation for infinite dimensional spaces.

Proposition 5.1. Let (xj)
∞
j=1 be a Riesz basis for a real infinite dimensional Hilbert space

H. Let x ∈ H. Then (xj)
∞
j=1 does stable phase retrieval near x if and only if 〈x, xj〉 = 0 for

all but finitely many j ∈ N.

Proof. Let x ∈ H and J = {j ∈ N : 〈x, xj〉 6= 0}. We first assume that J is a finite set.
There exists ε so that if y ∈ H and ‖x − y‖ < ε then sign(〈x, xj〉) = sign(〈x, xj〉) for all
j ∈ J . We now assume that y ∈ H and ‖x − y‖ < ε. Let A be the lower frame bound for
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the Riesz basis (xj)
∞
j=1 Then

∞
∑

j=1

∣

∣|〈x, xj〉| − |〈y, xj〉|
∣

∣

2
=

∑

j∈J

∣

∣|〈x, xj〉| − |〈y, xj〉|
∣

∣

2
+
∑

j /∈J

|〈y, xj〉|
2 as 〈x, xj〉 = 0 for j 6∈ J,

=
∑

j∈J

|〈x, xj〉 − 〈y, xj〉|
2 +

∑

j /∈J

|〈y, xj〉|
2 as sign(〈x, xj〉) = sign(〈y, xj〉) for j ∈ J ,

=
∑

j∈J

|〈x− y, xj〉|
2 +

∑

j /∈J

|〈x− y, xj〉|
2 as 〈x, xj〉 = 0 for j 6∈ J,

=
∞
∑

j=1

|〈x, xj〉 − 〈y, xj〉|
2 ≥ A||x− y||2 as (xj)

∞
j=1 has lower frame bound A.

So, (xj)
∞
j=1 does A− 1

2 - stable phase retrieval at x.
We now assume that J is infinite. Let ε > 0. Let (yj)

∞
j=1 be the biorthogonal sequence

to (xj)
∞
j=1. That is 〈yj, xj〉 = 1 and 〈yj, xi〉 = 0 for i 6= j. As (xj)

∞
j=1 is Riesz basis we have

that (yj)
∞
j=1 is a Riesz basis as well and there exists c > 0 so that ‖yj‖ ≤ c for all j ∈ N. As

∑

|〈x, xj0〉|
2 converges there exits j0 ∈ J so that |〈x, xj0〉| < εc−1. Let y = x − 2〈x, xj0〉yj0.

Thus,
‖x− y‖ = 2|〈x, xj0〉|‖yj0‖ < 2εc−1c = 2ε

We have that x 6= y and x 6= −y as 〈x, xj0〉 6= 0. Furthermore, 〈x, xj0〉 = −〈y, xj0〉 and
〈x, xj〉 = 〈y, xj〉 for all j 6= j0. Thus, if Θ is the analysis operator of (xj)

∞
j=1, we have that

|Θx| = |Θy| but that x 6= λy for all |λ| = 1. Hence, (xj)
∞
j=1 does not do phase retrieval near

x.
�

Cahill, Casazza, and Daubechies proved that no frame for an infinite dimensional Hilbert
space does stable phase retrieval [CCD], which was generalized to continuous frames for
infinite dimensional Hilbert spaces by Alaifari and Grohs [AG] (However, it is proven in
[CDFF] that stable phase retrieval is possible for infinite dimensional subspaces of L2(R)).
In both proofs of instability, the authors show that if ε > 0, (xt)t∈Ω is a continuous frame
of an infinite dimensional Hilbert space H , and f ∈ H has ‖f‖ = 1 then it is possible to
choose g ∈ H with ‖g‖ = 1, 〈f, g〉 = 0, and ‖min(|Θf |, |Θg|)‖L2(Ω) < ε. It then follows for
x = f + g and y = f − g that ‖x− λy‖ = 2 for all |λ| = 1 but that ‖|Θx| − |Θy|‖L2(Ω) < 2ε.
Note that the vectors x and y which witness the instability are orthogonal and as ε ց 0 the
corresponding nets (xε) and (yε) are both not convergent. We know by Theorem 2.1 that
instability of phase retrieval is always greatest at orthogonal vectors, and by Proposition
5.1 we know that there exists examples of continuous frames for infinite dimensional Hilbert
spaces which do stable phase retrieval near some vectors. In the following theorem we extend
the results of [CCD] and [AG] by proving that the set of vectors where a continuous frame
for an infinite dimensional Hilbert space H does not do stable phase retrieval is dense in H .

Theorem 5.2. Let (xt)t∈Ω be a continuous frame for an infinite dimensional Hilbert space
H. Then there exists x ∈ H such that (xt)t∈Ω does not do stable phase retrieval near x.
Furthermore, the set of x ∈ H where (xt)t∈Ω does not do stable phase retrieval near x is
dense in H.
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Proof. Let (xt)t∈Ω be a continuous frame for an infinite dimensional Hilbert space H over
the measure space (Ω, µ) and let Θ : H → L2(Ω) be the analysis operator. Without loss of
generality we may assume that xt 6= 0 for all t ∈ Ω. By replacing (xt)t∈Ω with (xt/‖xt‖)t∈Ω
and replacing the measure dµ with ‖xt‖

2dµ we are able to assume that ‖xt‖ = 1 for all t ∈ Ω.
We are able to make this change of measure because for all measureable J ⊆ Ω we have that

∫

J

|〈x, xt〉|
2dµ(t) =

∫

J

∣

∣

〈

x,
1

‖xt‖
xt

〉
∣

∣

2
‖xt‖

2dµ(t) for all x ∈ H.

For simplicity, we assume that (xt)t∈Ω has a lower frame bound A > 1. For a measurable
set Ω′ ⊆ Ω, we define the analysis operator restricted to Ω′ by ΘΩ′(x) = (1Ω′(t)〈x, xt〉)t∈Ω.
Our assumption that ‖xt‖ = 1 for all t ∈ Ω implies that ΘΩ′ is a compact operator whenever
Ω′ has finite measure. Let z0 ∈ H with ‖z0‖ = 1. Let εj ց 0 such that εj < 4−j for all
j ∈ N. We now claim that we may build an ortho-normal sequence of vectors (zj)

∞
j=0 ⊆ H

and a pairwise disjoint sequence of finite measure sets (Ωj)
∞
j=0 ⊆ Ω such that

(1) ‖ΘΩj
zj‖ ≥ 1 for all j ∈ N0,

(2) ‖ΘΩc
j
zj‖ ≤ 4−j for all j ∈ N0,

(3) ‖ΘΩi
zj‖ ≤ 2−14−i for all j 6= i.

We now prove the claim by induction. We have already fixed z0 ∈ H , and as (xt)t∈Ω has
lower frame bound A > 1 we may choose a finite measure subset Ω0 ⊂ Ω so that ‖ΘΩ0

z0‖ ≥ 1
and ‖ΘΩc

0
z0‖ ≤ 1. Thus, (1) and (2) are satisfied and we have that (3) is vacuously true.

We now let k ∈ N0 and assume that (zj)
k
j=0 and (Ωj)

k
j=0 have been chosen. Choose a finite

measure subset Ω′ ⊆ Ω so that ∪k
j=0Ωj ⊆ Ω′ and ‖ΘΩ′czj‖ ≤ 4−k−1 for all 0 ≤ j ≤ k. Thus,

(3) is satisfied for 0 ≤ j ≤ k and i = k+1 as long as Ωk+1 ⊆ Ω′c. Let ε > 0 so that ε < A−1
and ε < 4−k−1. As ΘΩ′ is a compact operator we may choose a normalized vector zk+1 in
H such that zj is orthogonal to (zj)

k
j=0 and ‖ΘΩ′zk+1‖ < ε. As ε < 4−k−1, we have that (3)

is satisfied for j = k + 1 and 0 ≤ i ≤ k. As ε < A − 1 we may choose a finite measure
subset Ωk+1 ⊆ Ω′c so that ‖ΘΩk+1

zk+1‖ ≥ 1 and ‖ΘΩc
k+1

zk+1‖ ≤ 4−k−1. Thus, (1) and (2) are
satisfied and our induction is complete.

As a consequence of (3) and (xt)t∈Ω having lower frame bound A > 1, we have for all
k ≥ 2 that,

(5.1)
∥

∥

∥
ΘΩc

k

∑

j 6=k

2−jzj

∥

∥

∥
≥

∥

∥

∥
Θ
∑

j 6=k

2−jzj

∥

∥

∥
−
∑

j 6=k

2−j‖ΘΩk
zj‖ ≥ (

∑

j 6=k

2−2j)1/2−4−k > (1+4−1)2−4−2 > 1

We let x =
∑∞

j=0 2
−jzj . Let k ≥ 2, y = −2−kzk +

∑

j 6=k 2
−jzj , and let λ be a scalar with

|λ| = 1. We have the following lower bound for B‖x − λy‖2 where B is the upper frame
bound of (xt)t∈Ω.
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B‖x− λy‖2 ≥ ‖Θ(x− λy)‖2

= ‖ΘΩc
k
(x− λy)‖2 + ‖ΘΩk

(x− λy)‖2

=
∥

∥(1− λ)ΘΩc
k
(
∑

j 6=k

2−jzj) + (1 + λ)ΘΩc
k
(2−kzk)

∥

∥

2
+
∥

∥(1 + λ)ΘΩk
2−kzk) + (1− λ)ΘΩk

(
∑

j 6=k

2−jzj)
∥

∥

2

≥
∣

∣

∣

∥

∥(1− λ)ΘΩc
k

∑

j 6=k

2−jzj
∥

∥−
∥

∥(1 + λ)2−kΘΩc
k
zk
∥

∥

∣

∣

∣

2

+
∣

∣

∣

∥

∥(1 + λ)2−kΘΩk
zk
∥

∥−
∥

∥(1− λ)ΘΩk

∑

j 6=k

2−jzj
∥

∥

∣

∣

∣

2

≥
|1− λ|2

2

∥

∥ΘΩc
k

∑

j 6=k

2−jzj
∥

∥

2
− 4 · 2−2k‖ΘΩc

k
zk‖

2 +
|1 + λ|2

2
2−2k‖ΘΩk

zk‖
2 − 4

∥

∥ΘΩk

∑

j 6=k

2−jzj
∥

∥

2

as (a− b)2 ≥ (1/2)a2 − b2 for all a, b ∈ R,

≥
|1− λ|2

2
− 4 · 2−2k4−2k +

|1 + λ|2

2
2−2k − 4

∥

∥

∑

j 6=k

2−jΘΩk
zj
∥

∥

2
by (5.1), (2), (1),

≥ (|1− λ|2 + |1 + λ|2)2−2k−1 − 4−3k+1 − 4(
∑

j 6=k

2−j‖ΘΩk
zj‖)

2

≥ 2−2k−1 − 4−3k+1 − 4 · 4−2k by (3).

On the other hand, we have that

∥

∥|Θx| − |Θy|
∥

∥

2
=

∥

∥|ΘΩc
k
x| − |ΘΩc

k
y|
∥

∥

2
+
∥

∥|ΘΩk
x| − |ΘΩk

y|
∥

∥

2

=
∥

∥

∥

∣

∣ΘΩc
k
(2−kzk +

∑

j 6=k

2−jzj)
∣

∣−
∣

∣ΘΩc
k
(−2−kzk +

∑

j 6=k

2−jzj)
∣

∣

∥

∥

∥

2

+
∥

∥

∥

∣

∣ΘΩk
(2−kzk +

∑

j 6=k

2−jzj)
∣

∣−
∣

∣ΘΩk
(−2−kzk +

∑

j 6=k

2−jzj)
∣

∣

∥

∥

∥

2

≤
(

2−k‖ΘΩc
k
zk‖+ 2−k‖ΘΩc

k
zk‖

)2

+
(

∥

∥ΘΩk

∑

j 6=k

2−jzj
∥

∥+
∥

∥ΘΩk

∑

j 6=k

2−jzj
∥

∥

)2

≤ 2−2k+2‖ΘΩc
k
zk‖

2 + 4
(

∑

j 6=k

2−j‖ΘΩk
zj‖

)2

≤ 2−2k+24−2k + 4
(

∑

j 6=k

2−j−14−k
)2

by (2) and (3),

≤ 4−3k+1 + 4−2k+1

Thus, we have that Bmin|λ|=1 ‖x−λy‖2 ≥ 2−2k−1−4−3k+1−4−2k+1 and ‖|Θx|− |Θy|‖2 ≤
4−3k+1+4−2k+1. Hence, limy→x ‖|Θx|−|Θy|‖/min|λ|=1 ‖x−λy‖ = 0. This proves that (xt)t∈Ω
does not do stable phase retrieval near x.
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Note that the same proof would give for all N ∈ N that (xt)t∈Ω does not do stable phase
retrieval at z0 +

∑∞
j=N 2−jzj . As, z0 = limN→∞ z0 +

∑∞
j=N 2−jzj we have that the set of

vectors x in H where (xt)t∈Ω does not do stable phase retrieval at x is dense in H .
�
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