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Abstract. Using the Schreier families (Sξ)ξ<ω1 , we define subclasses of weakly

compact and Rosenthal operators between two Banach spaces. These sub-

classes give rise to ordinal ranks defined on each ideal. We prove several

results concerning the analytic properties of this rank and give examples of

spaces on which the ranks are bounded and unbounded.

1. Introduction

Given separable Banach spaces X and Y , we use the Schreier families (Sξ)ξ<ω1

[3] to define subclasses of the weakly compact operatorsW(X,Y ) and the Rosenthal
operators R(X,Y ). Recall that a bounded operator T : X → Y is Rosenthal if for
each bounded sequence (xn)∞n=1 in X, (Txn)∞n=1 has a weakly Cauchy subsequence
[17]. For each ideal and ordinal ξ < ω1, we will use Sξ to define an ordinal rank on
L(X,Y ), which we call the local rank. As L(X,Y ) is a standard Borel space when
endowed with the σ-algebra generated by the strong operator topology (SOT), we
may apply techniques from Descriptive Set Theory to analyze these ranks.

Ordinal ranks, i.e. functions taking values in ω1 ∪ {ω1}, are commonly used as
tools to measure certain phenomena in Banach spaces, and can provide quantitative
versions of particular properties [2, 6, 14, 18]. In [14], the authors study various
`1-type indices on Banach spaces that have connections to the present work, and in
[4, 8], a similar local rank, %SS , is defined on the ideal SS(X,Y ) of strictly singular
operators from X to Y . In [9], P. Dodos and the first author study the rank %SS

and prove the following:

• If A is an SOT-analytic subset of SS(X,Y ), there is a countable ordinal
ξ such that %SS(T ) ≤ ξ for all T ∈ A; that is, the rank %SS(T ) satisfies
boundedness.
• There are spaces X and Y such that SS(X,Y ) is SOT-coanalytic non-Borel

and %SS(T ) ≤ 2 for all T ∈ SS(X,Y ); that is, the rank %SS(T ) is not, in
general, a coanalytic rank.
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One goal of the present paper is to prove the analogous results for the local ranks
%W and %R, defined on the spaces W(X,Y ) and R(X,Y ), respectively. We now
briefly describe how the subclasses, which induce the local ranks, are defined. To
do so, we need the following characterization of the sets W(X,Y ) and R(X,Y ).

Fact 1. An operator T : X → Y is weakly compact if and only if for every normal-
ized basic sequence (xn) in X and ε > 0 there are scalars (ai)`i=1 and a finite set
(ni)`i=1 ⊂ N such that

‖
∑̀
i=1

aiTxni
‖ < ε max

1≤k≤`
|
∑̀
i=k

ai|.

Similarly, an operator T : X → Y is Rosenthal if and only if for every normal-
ized basic sequence (xn) in X and ε > 0 there are scalars (ai)`i=1 and a finite set
(ni)`i=1 ⊂ N such that

‖
∑̀
i=1

aiTxni
‖ < ε max

1≤k≤`

∑̀
i=k

|ai|.

In other words, an operator T : X → Y is weakly compact if and only if the image
under T of every normalized basic sequence in X does not dominate the summing
basis of c0, and an operator T : X → Y is Rosenthal if and only if the image under
T of every normalized basic sequence in X does not dominate the unit vector basis
of `1. We prove this characterization in Proposition 8. Roughly speaking, Fact 1
states that showing an operator is weakly compact or Rosenthal reduces to finding,
for each ε > 0 and normalized basic sequence (xn), a finite subset (ni)`i=1 satisfying
certain properties. With this in mind, we may define subclasses of W(X,Y ) and
R(X,Y ) by requiring that these finite subsets can always be chosen as elements
of some prescribed collection of finite subsets of N. In this way, membership by a
weakly compact or Rosenthal operator in a particular subclass gives one additional
information concerning the behavior of the operator.

Definition 2. Let ξ be a countable ordinal, and let X and Y be separable Banach
spaces. An operator T ∈ W(X,Y ) is Sξ-weakly compact if for every normalized
basic sequence (xn) in X and ε > 0, there exists (ni)`i=1 ∈ Sξ and (ai)`i=1 ∈ R<N

such that

‖
∑̀
i=1

aiTxni
‖ < ε max

1≤k≤`
|
∑̀
i=k

ai|.

An operator T ∈ R(X,Y ) is Sξ-Rosenthal if for every normalized basic sequence
(xn) in X and ε > 0, there exists (ni)`i=1 ∈ Sξ and (ai)`i=1 ∈ R<N such that

‖
∑̀
i=1

aiTxni‖ < ε max
1≤k≤`

∑̀
i=k

|ai|.

The ranks %W , %R :W(X,Y )→ ω1 ∪ {ω1} are defined by:

%W(T ) = inf{ξ : T ∈ W(X,Y ) is Sξ − weakly compact},



ORDINAL RANKS ON WEAKLY COMPACT AND ROSENTHAL OPERATORS. 3

%R(T ) = inf{ξ : T ∈ R(X,Y ) is Sξ − Rosenthal},
where by convention inf ∅ = ω1.

We prove several results related to these subclasses including properties of the
local ranks induced by the subclasses. The following is our first main result in this
direction.

Theorem 3. Let X and Y be separable Banach spaces and G stand for W or R.
There exists a coanalytic rank rG : G(X,Y )→ ω1 such that

(1) %G(T ) ≤ rG(T ).

In particular, the rank %G satisfies boundedness; that is, if A is an analytic subset
of G(X,Y ), then sup{%G(T ) : T ∈ A} < ω1.

As singletons are Borel, we have the following immediate corollary.

Corollary 4. Let X and Y be separable Banach spaces. If an operator T : X → Y

is weakly compact, then there is a countable ordinal ξ such that T is Sξ-weakly
compact. Likewise, if an operator T : X → Y is Rosenthal, then there is a countable
ordinal ξ such that T is Sξ-Rosenthal.

In section 2, we set notation and define several basic objects in Descriptive Set
Theory. In section 3, we prove that the local ranks are bounded by a coanalytic
rank. In section 4, we give several examples to illustrate that, depending on the
spaces X and Y , the ranks %W and %R can be either bounded or unbounded on
the spaces W(X,Y ) and R(X,Y ). The spaces R(X,Y ) and W(X,Y ) are SOT-
coanalytic subsets of L(X,Y ), however, we give examples of spaces X, Y and Z

such that %W is not a coanalytic rank on W(X) and %R is a not a coanalytic rank
on R(Y,Z).
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2. Notation and Preliminaries

Let N<N denote the set of all finite sequences of N and [N]<N ⊂ N<N be the
collection of strictly increasing sequences. Let ≺ be the natural ordering on N<N

of strict end-extension. A tree on N is a subset of N<N that is closed under initial
segments. Notice that Tr is a closed subset of the compact metrizable space 2N<N

.
Also notice that [N]<N ∈ Tr.

A subset of a tree is called a chain if it consists of pairwise comparable nodes. A
maximal chain is called a branch. A tree T is called ill-founded if there is an infinite
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branch. A tree is called well-founded if it is not ill-founded. Let WF ⊂ Tr denote
the collection of all well-founded trees on N.

For T ∈ WF, the derivative T ′ is defined by T ′ = {s ∈ T : ∃t ∈ T with s ≺ t}.
Using transfinite induction, we define, for each countable ordinal ξ, the iterated
derivative T ξ of T . If ξ < ω1 and T ξ has been defined then we define T ξ+1 = (T ξ)′.
If ξ < ω1 is a limit ordinal and T η has been defined for all η < ξ, then we define
T ξ = ∩η<ξT η. The order of T , o(T ), is defined to be the least ordinal such that
T ξ = ∅. See [12] for further discussion of derivatives of trees.

Every subset of N is naturally identified with an element of 2N. Let F be a
family of finite subsets of N.

• F is called spreading if for every F = {`1 < · · · < `k} ∈ F and every
G = {m1 < · · · < mk} with `i ≤ mi for all i ∈ {1, . . . , k}, we have G ∈ F .
• F is called hereditary if F ∈ F and G ⊂ F implies G ∈ F .
• F is called compact if it is a compact subset of 2N.
• F is called regular if it is spreading, hereditary and compact.

Every regular family F is a well-founded tree on N, and so, its order o(F) can be
defined as above.

The Schreier families (Sξ)ξ<ω1 , are a particularly important collection of regular
trees on N [3]. This collection has been defined as follows: Let S0 = {{n} : n ∈ N}.
Let ξ < ω1 be some countable ordinal, and suppose Sξ has be defined. Let

Sξ+1 = {
k⋃
i=1

Fi : k ∈ N, n ≤ F1 < . . . < Fk and Fi ∈ Sξ, i ≤ k}.

If ξ is a limit ordinal, let (ξn)n∈N be a fixed increasing sequence of ordinals such
that ξn → ξ. Define

Sξ = {F : n ≤ F and F ∈ Sξn
for some n ∈ N}.

We will need the following facts concerning the families (Sξ)ξ<ω1 .

Fact 5. [6] Let ξ ≤ ζ be countable ordinals.

a) o(Sξ) = ωξ

b) There is an N ∈ N such that Sξ ∩ P([N,∞)) ⊂ Sζ .

2.1. Polish spaces, standard Borel spaces, analytic and coanalytic sets.
A topological space P is called Polish if it is separable and homeomorphic to a
complete metric space. Below we list a few important types of subsets of Polish
spaces as well as properties of these subsets.

Fact 6. In the following, P is a Polish space, τ is its topology and Borel(τ) is the
σ-algebra generated by τ .

a) A subset A of P is analytic if there is a Polish space S and a Borel map
f : S → P such that f(S) = A, where a map f : P → S is Borel if f−1(B)
is Borel in S for every Borel set B of P .
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b) The collection of all analytic sets P is closed under taking countable unions
of elements.

c) A set is coanalytic if it is the complement of an analytic set.
d) If a subset of a Polish space is both analytic and coanalytic it is Borel.
e) A coanalytic set C of a Polish space P is called coanalytic complete if there

is a Borel map h : Tr → P such that h−1(C) = WF. Every coanalytic
complete set is non-Borel, as WF ⊂ Tr is not Borel.

f) Let B ∈ Borel(τ). There is a finer Polish topology τ ′ on P such that B is
τ ′-clopen, Borel(τ ′) = Borel(τ) and B is a Polish space with the relative
toplogy of τ ′.

The above statements, together with several useful characterizations of analytic,
coanalytic and Borel sets can be found in [12]. It will be important for us that
the space 2N<N

under the product topology is a Polish space and WF ⊂ 2N<N
is a

coanalytic complete subset of 2N<N
. LetNBX denote the collection of all normalized

Schauder basic sequences in X. The set NBX is a Borel subset of XN [4]. By f),
NBX may be considered as a Polish space in its own right.

It is often the case that a particular topology on a set is not so important as
the Borel sets given by that topology. For instance, a topological space may not be
Polish, but the Borel sets for that topological space may be the same Borel sets for
some Polish topology. A set X with a sigma algebra Σ is a standard Borel space if
there is a Polish topology τ such that Borel(τ) = Σ. Let X and Y be separable
Banach spaces. The space L(X,Y ) equipped with the σ-algebra generated by the
open sets in the strong operator topology (SOT) is a standard Borel space [12, pg.
80]. A set A ⊂ L(X,Y ) is SOT-Borel if A is in the σ-algebra generated by the
open sets in the strong operator topology; likewise, we define SOT-analytic and
SOT-coanalytic.

Let C be a coanalytic subset of a standard Borel space P . A map f : C → ω1

is a coanalytic rank on C if there are two binary relations ≤Σ and ≤Π on P which
are analytic and coanalytic, respectively, such that for every y ∈ C we have

f(x) ≤ f(y) ⇐⇒ (x ∈ C) and f(x) ≤ f(y) ⇐⇒ x ≤Σ y ⇐⇒ x ≤Π y.

It is a fundamental result that if f is a coanalytic rank and A is an analytic subset
of C then

(2) sup{f(x) : x ∈ A} < ω1.

Given any rank f on C, which may or may not be coanalytic, we say that f satisfies
boundedness if (2) holds for all analytic A ⊂ C.
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3. Local Ranks on Operator Ideals

In the rest of the paper, (wn) will always be a normalized 1-spreading basis of a
Banach space W . That is, (wn) is a normalized basis for W which is 1-equivalent
to all of its subsequences.

Definition 7. An operator T ∈ L(X,Y ) will be called (wn)-singular if for every
normalized basic sequence (xn) ⊂ X, the sequence (Txn) does not dominate (wn).
We denote the space of all (wn)-singular operators from X to Y by WS(X,Y ).

We are specifically interested in the weakly compact and Rosenthal operators,
and the following proposition shows that these are specific examples of WS(X,Y )
operators given by choosing an appropriate basis (wn). It may be of interest to
consider different 1-spreading basic sequences, such as the unit vector basis of the
`p spaces, for 1 < p < ∞. Let (en) denote the unit vector basis of c00. The
summing basis of c0 is sn =

∑n
i=1 ei for all n ∈ N. Note that ‖

∑∞
i=1 aisi‖∞ =

supk∈N |
∑∞
i=k ai|.

Proposition 8. Let X and Y be Banach spaces.

a) If W = c0 and wi = si for all i ∈ N, then WS(X,Y ) = W(X,Y ); the
weakly compact operators.

b) If W = `1 and wi = ei for all i ∈ N, then WS(X,Y ) = R(X,Y ); the
Rosenthal operators.

c) If W = c0 and wi = ei for all i ∈ N, then WS(X,Y ) = K(X,Y ); the
compact operators.

Proof. Proof of a): First assume that T : X → Y is weakly compact. Fix a
normalized basic sequence (xn)n∈N in X. We will show that (Txn)n∈N does not
dominate (sn). Suppose, by passing to a subsequence and relabeling, there is a
y ∈ Y such that Txn → y weakly. By Mazur’s theorem, there are finite subsets
A and B of N with maxA < minB and scalars (ai)i∈A, (bi)i∈B ⊂ [0, 1] such that∑
i∈A ai =

∑
i∈B bi = 1 and

‖
∑
i∈A

ai(Txi − y)‖ < ε

2
and ‖

∑
i∈B

bi(Txi − y)‖ < ε

2
.

Therefore

‖
∑
i∈A

aiTxi −
∑
i∈B

biTxi‖ ≤ ‖
∑
i∈A

ai(Txi − y)‖+ ‖
∑
i∈B

bi(Txi − y)‖

<
ε

2
+
ε

2
= ε‖

∑
i∈A

aisi −
∑
i∈B

bisi‖∞
(3)

Thus (Txn) does not dominate (sn).
Suppose T is not weakly compact. Let (xn) be a normalized sequence such

that (Txn) has no weakly convergent subsequence. We will show that (Txn) has a
subsequence that dominates (sn)n∈N.
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Since the sequence (xn) cannot have a weakly convergent subsequence, there are
two possibilities: Either (xn) has a subsequence equivalent to the unit vector basis
of `1 or a subsequence that weak∗ converges to some x∗∗ ∈ X∗∗ \X. In either case,
by passing to a subsequence and relabeling, we can assume that (xn) is basic. For
(Txn) we have the same two cases. If (Txn) has a subsequence equivalent to the
unit vector basis of `1, this subsequence dominates the summing basis for c0 and
we are done. Therefore, we assume, by passing to a subsequence and relabeling,
that (Txn) converges weak∗ to some y∗∗ ∈ Y ∗∗ \ Y and that (Txn) is basic and C-
equivalent to (Txn−y∗∗) for some C > 0 (see [1, pgs. 22-23]). Let d = dist{y∗∗, X}
and K be the basic constant of (Txn − y∗∗). Let (ai)`i=1 be scalars. Then

‖
∑̀
i=1

aiTxi‖ ≥
1
C
‖
∑̀
i=1

ai(Txi − y∗∗)‖

≥ 1
C2K

max
k
‖
∑̀
i=k

ai(Txi − y∗∗)‖

≥ d

C2K
max
k
|
∑̀
i=k

ai|.

(4)

This finishes the proof of a).
Proof of b): First, note that if there is a normalized basic sequence (xn) in X

such that (Txn) dominates the unit vector basis of `1, then (xn) is a bounded
sequence such that (Txn) does not have a weakly Cauchy subsequence.

Now, assume (xn) is a bounded sequence in X such that (Txn) has no weakly
Cauchy subsequence. We may assume that (xn) is normalized. Using Rosenthal’s
`1 theorem [17], passing to a subsequence and relabeling, we assume that (Txn) is
equivalent to the unit vector basis of `1. It follows that (xn) dominates the unit
vector basis of `1 and is, therefore, normalized and basic, as desired.

Proof of c): If there is a normalized basic sequence (xn) in X such that (Txn)
dominates the unit vector basis of c0, then T is not compact.

We now assume that T is not compact. There exists ε > 0 and a sequence (yn)
in BX such that ‖Tyn−Tym‖ > ε for all n 6= m. After passing to a subsequence of
(Tyn), we may assume that either (Tyn) is equivalent to the unit vector basis of `1
or that (Tyn) is weakly Cauchy. If (Tyn) is weakly Cauchy, then (T (y2n−y2n+1)) is
seminormalized and weakly null, and hence (T (y2n− y2n+1)) has a seminormalized
basic subsequence. Thus in either case, there exists a seminormalized sequence
(zn) in X such that (Tzn) is a seminormalized basic sequence in Y . Again, after
passing to a subsequence we may assume that (z2n−z2n+1) is seminormalized basic.
Thus, setting xn = 1

‖z2n−z2n+1‖z2n − z2n+1, we get that (xn) is a normalized basic
sequence in X such that (Txn) is a seminormalized basic sequence in Y and hence
dominates the unit vector basis for c0.

�
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The next proposition follows from standard techniques in Descriptive Set The-
ory. As the result is important for us, we have included the proof for the sake of
completeness.

Proposition 9. Let X and Y be separable. The set WS(X,Y ) is an SOT -
coanalytic subset of L(X,Y ).

Proof. By definition we have

T ∈ L(X,Y ) \WS(X,Y ) ⇐⇒ ∃(xi)i ∈ NBX , ∃m ∈ N such that

∀(ai)i ∈ Q<N, ‖T
∑
i

aixi‖ ≥
1
m
‖
∑
i

aiwi‖.

The fact that there is a existential quantifier over the Borel set NB(X) and the
remaining quantifiers are over countable sets, indicates that L(X,Y ))\WS(X,Y )) is
SOT-analytic. However, for the convenience of readers not familiar with descriptive
set theory, we give a more detailed argument. For m ∈ N, let

Bm = {(T, (xn)) ∈ L(X,Y )×NBX : ‖T
∑
i

aixi‖ ≥
1
m
‖
∑
i

aiwi‖,∀(ai)i ∈ Q<N}.

Let π1 be the projection of L(X,Y )×NB(X) onto L(X,Y ). Then

L(X,Y ) \WS(X,Y ) =
∞⋃
m=1

π1(Bm).

Recall that the continuous image of a Borel set is analytic and that the countable
union of analytic sets is analytic. Therefore, it suffices to show that Bm is Borel for
each m ∈ N. For each a = (ai)i ∈ Q<N with a 6= 0, the map Ha : L(X,Y )×NBX →
R defined by

Ha(T, (xn)) =
‖T
∑
i aixi‖

‖
∑
i aiwi‖

.

is Borel. Since Bm =
⋂

a∈Q<N H−1
a [1/m,∞), the claim follows. �

For each countable ξ, we use the Schreier family Sξ to define what it means for
a bounded operator to be Sξ-(wi)-singular. This property is a quantified version of
the property (wi)-singular, and we will show later in Corollary 19 that if X and Y
are separable Banach spaces then an operator T ∈ L(X,Y ) is (wi)-singular if and
only if it is Sξ-(wi)-singular for some countable ordinal ξ.

Definition 10. Let ξ with 1 ≤ ξ < ω1. An operator T ∈ L(X,Y ) is Sξ-(wi)-
singular if for every ε > 0 and normalized basic sequence (xn)n ⊂ X, there is a
(ni)`i=1 ∈ Sξ and (ai)`i=1 ∈ R<N such that

‖
∑̀
i=1

aiTxni
‖ < ε‖

∑̀
i=1

aiwi‖.

We denote the set of all Sξ-(wn)-singular operators from X to Y by WSξ(X,Y ).
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The next remark simply states that the subclasses are increasing with respect to
the natural ordering and that every subclass contains the compact operators.

Remark 11. Let ξ, ζ be ordinals with 1 ≤ ξ < ζ < ω1. Then

K(X,Y ) ⊆WSξ(X,Y ) ⊆WSζ(X,Y ) ⊆WS(X,Y ).

As a consequence of the above remark, K1(X,Y ) = K(X,Y ) for all X and Y .

Proof. Let T ∈ K(X,Y ) and ε > 0. There exists c > 0 such that ‖w2 − w1‖ > c.
Let (xn) ∈ NBX . Choose a subsequence (nk) such that (Txnk

) is norm Cauchy.
Let i ∈ N with i ≥ 2 such that ‖Txni+1 − Txni

‖ < εc. Then

‖Txni+1 − Txni
‖ < ε‖w2 − w1‖.

Since {ni, ni+1} ∈ Sξ, we have T ∈WSξ(X,Y ).
Let ε > 0, (xn) ∈ NBX and T ∈WSξ(X,Y ). Using Fact 5 b) there is an N ∈ N

such that Sξ|[N,∞) ⊂ Sζ . Let yi = xN+i for all i ∈ N. Find (ni)`i=1 ∈ Sξ and (ai)`i=1

such that

‖
∑̀
i=1

aiwi‖ = 1 and ‖
∑̀
i=1

aiTyni
‖ = ‖

∑̀
i=1

aiTxN+ni
‖ < ε.

Since (N + ni)`i=1 ∈ Sξ|[N,∞) ⊂ Sζ , the claim is proved. �

Definition 12. Let (wn) be a 1-spreading basis of a Banach space W . Define the
map %WS : L(X,Y )→ ω1 ∪ {ω1} by

%WS(T ) = inf{ξ : T ∈WSξ(X,Y )}.

where by convention inf ∅ = ω1. In particular, if (wi) is the summing basis of c0, we
denote %WS by %W ; similarly, if (wi) is the unit vector basis of `1 we denote %WS

by %R. The ranks %W and %R are ordinal ranks defined on W(X,Y ) and R(X,Y ),
respectively.

For A ⊂ L(X,Y ) let %WS(A) = sup{%WS(T ) : T ∈ A}.

Before proceeding, we make the following remarks comparing W(X,Y ) and
R(X,Y ).

Remark 13. Let X and Y be separable Banach spaces.

a) For each ξ with 1 ≤ ξ < ω1, Wξ(X,Y ) ⊂ Rξ(X,Y ).
b) In general, W(X,Y ) ⊂ R(X,Y ). If Y is weakly sequentially complete then
W(X,Y ) = R(X,Y ).

The main theorem of this section is the following.
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Theorem 14. Let X and Y be separable Banach spaces. There exists a coanalytic
rank rWS : WS(X,Y )→ ω1 such that

(5) %WS(T ) ≤ rWS(T ).

In particular, the rank %WS satisfies boundedness; that is, if A is an analytic subset
of WS(X,Y ), then sup{%WS(T ) : T ∈ A} < ω1.

There are two steps required to prove the above. The first is to produce the
coanalytic rank; the second is to show that this rank bounds the local rank. We
use the following fact to define the coanalytic rank.

Fact 15. [9, Fact 6] Let X be a standard Borel space and P be an analytic subset
of X × Tr. Then the set P] ⊆ X defined by

x ∈ P] ⇔ ∀S ∈ Tr [(x, S) ∈ P ⇒ S ∈WF]

is coanalytic. Moreover, there exists a coanalytic rank r : P] → ω1 such that for
every x ∈ P] we have sup{o(S) : S ∈ Tr and (x, S) ∈ P} ≤ r(x).

In order to use the above, we must assign to every T ∈ L(X,Y ) a collection of
trees on N such that every member of the collection is well-founded exactly when
T ∈WS(X,Y ). We do this in the next definition.

Definition 16. For each T ∈ L(X,Y ), (xn) ∈ NBX and m ∈ N, let R(T, (xn),m)
be the tree on N defined by the rule

s ∈ R(T, (xn),m) ⇔ either s = ∅ or s = (n1 < . . . < nk) ∈ [N]<N and(6) ∥∥T ( k∑
i=1

aixli
)∥∥ ≥ 1

m

∥∥ k∑
i=1

aiwi
∥∥ ∀a1, ..., ak ∈ Q and

(l1 < . . . < lk) ∈ [N]<N with ni ≤ li ∀1 ≤ i ≤ k.

In the next remark, we collect a few important facts concerning the above trees.
The proofs follow directly from standard arguments and so we omit them.

Remark 17. The following hold:

a) The map L(X,Y )×NBX×N 3 (T, (xn),m) 7→ R(T, (xn),m) ∈ Tr is Borel.
b) Let T ∈ L(X,Y ).

T 6∈WS(X,Y ) ⇐⇒ ∃(xn) ∈ NBX and m ∈ N with R(T, (xn),m) 6∈WF

c) Let T ∈ L(X,Y ), (xn) ∈ NBX and m ∈ N. The tree R(T, (xn),m) is a
regular family (i.e. spreading, hereditary and compact).

The proof of Remark 17 b) uses the assumption that the basis (wn) is 1-spreading.
We apply Fact 15 to produce a coanalytic rank on WS(X,Y ). Let P ⊂ L(X,Y )×Tr
be defined by

(7) (T,R) ∈ P ⇔ ∃(xn) ∈ NBX and m ∈ N such that R = R(T, (xn),m).
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By Remark 17 a), the set P is analytic. By Remark 17 b), we have that

T ∈WS(X,Y )⇔ ∀R ∈ Tr [(T,R) ∈ P ⇒ R ∈WF].

Let r̃WS : WS(X,Y )→ ω1 be the coanalytic rank given by Fact 15. Define

rWS(T ) = r̃WS(T ) + 1.

Clearly, rWS is a coanalytic rank on WS(X,Y ). Theorem 14 now follows as a
corollary of the following claim.

Claim 18. Let T ∈WS(X,Y ).

%WS(T ) ≤ sup{ωζ : ζ < %WS(T )}

≤ sup
{
o
(
R(T, (xn),m)

)
: (xn) ∈ NBX and m ∈ N

}
+ 1

(8)

Moreover, %WS(T ) ≤ rWS(T ).

Proof. The first inequality follows trivially. We will prove the second. For nota-
tional simplicity let ξ = %WS(T ). We may assume that ξ > 1. Fix a countable
ordinal ζ such that 1 ≤ ζ < ξ. Since %WS(T ) > ζ, we have T 6∈ WSζ(X,Y ).
Therefore, we may find (xn) ∈ NBX and ε > 0 such that for every non-empty set
(n1, . . . , n`) ∈ Sζ and every (ai)`i=1 ∈ c00 we have ‖T

∑`
i=1 aixni

‖ ≥ ε‖
∑`
i=1 aiwi‖.

Let m ∈ N such that ε ≥ m−1. The family Sζ is spreading and hereditary. Hence,
Sζ ⊂ R(T, (xn),m). Therefore by Fact 5 a)

ωζ = o(Sζ) ≤ o
(
R(T, (xn),m)

)
.

The second inequality follows. By the definition of rWS , (see Fact 15) we have

(9) sup
{
o
(
R(T, (xn),m)

)
: (xn) ∈ NBX and m ∈ N

}
+ 1 ≤ rWS(T ).

Thus we have that %WS(T ) ≤ rWS(T ). �

We finish this section with the following immediate corollary of Theorem 14.

Corollary 19. The following hold:

a) If T ∈ WS(X,Y ) then %WS(T ) < ω1. In other words, there is a countable
ξ such that T ∈WSξ(X,Y ).

b) If WS(X,Y ) is a SOT-Borel subset of L(X,Y ) then %WS(WS(X,Y )) < ω1.
In other words, there is a countable ξ such that WSξ(X,Y ) = WS(X,Y ).
In particular, this is the case whenever WS(X,Y ) = L(X,Y ).

4. Applications and Examples

4.1. Spaces not containing `1. We begin with the following theorem.

Theorem 20. Let X and Y be separable such that Y does not contain `1. Then

%W(W(X,Y )) < ω1 and %R(R(X,Y )) < ω1.

In other words, there is a countable ordinal ξ satisfying, Wξ(X,Y ) =W(X,Y ) and
Rξ(X,Y ) = R(X,Y ).
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To prove this theorem, we first recall the notion of `ξ1 spreading model for 1 ≤
ξ < ω1. A space X admits an `ξ1-spreading model if there is a sequence (xn) in X

and a δ > 0 such that for all (ai)`i=1 ∈ c00 and (ni)`i=1 ∈ Sξ the following holds:

(10) ‖
∑̀
i=1

aixni‖ ≥ δ
∑̀
i=1

|ai|.

Note that an `11 spreading model coincides with the usual notion of `1 spreading
model. If a space admits an `ξ1 spreading model then the Bourgain `1 index [10] is
greater than or equal to ωξ. If a space has unbounded Bourgain `1 index it must
contain `1. This yields the following well-known fact.

Fact 21. If X does not contain `1 then there is an minimum ξ with 0 ≤ ξ < ω1

such that for all ζ > ξ, X does not admit an `ζ1 spreading model.

In [7], the authors prove a dichotomy concerning `ξ1 spreading models (also see
[6, Theorem III.3.11] for the exact statement). We need the following consequence
of this dichotomy which is, in some sense, a quantized version of Mazur’s theorem.

Theorem 22. [7][6, Theorem III.3.11] Let ξ be a countable ordinal and (xn) be
weakly null sequence such that no subsequence admits an `ξ1 spreading model. Then
for every ε > 0 there there is a (ni)`i=1 ∈ Sξ and convex scalars (ai)`i=1 such that

max
i≤`

ai < ε and ‖
∑̀
i=1

aixni‖ < ε.

The proof of Theorem 20 immediately follows from combining Fact 21 with the
following proposition.

Proposition 23. Let ξ be a countable ordinal and suppose that Y admits no
`ξ1 spreading model. Then %W(W(X,Y )) ≤ ξ and %R(R(X,Y )) ≤ ξ; that is,
W(X,Y ) =Wξ(X,Y ) and R(X,Y ) = Rξ(X,Y ).

Proof. The case of R(X,Y ) follows directly from the definition.
Let T ∈ W(X,Y ) and (xn) be a normalized basic sequence in X. By passing

to a subsequence and relabeling we may assume that Txn → y weakly for some
y ∈ Y . If Txn → y in norm, then for all ε > 0 there exists N ∈ N such that
‖TxN−TxN+1‖ < ε = ε‖sN−sN+1‖. Note that (N,N+1) ∈ Sη for all 1 ≤ η < ω1.

We now suppose that, after passing to a subsequence and relabeling, (Txn − y)
is seminormalized weakly null and C-basic for some constant C ≥ 1. Let ε > 0.
Theorem 22 states that there exists (ni)`i=1 ∈ Sξ and convex scalars (ai)`i=1 such
that

max
1≤i≤`

ai <
ε

12(‖y‖+ 1)
and ‖

∑̀
i=1

ai(Txni
− y)‖ < ε

12C
.
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Using the above, there is a k ∈ {1, . . . `} such that

|
k∑
i=1

ai −
∑̀
i=k+1

ai| ≤
ε

4(‖y‖+ 1)
and ‖

k∑
i=1

aisi −
∑̀
i=k+1

aisi‖∞ = |
∑̀
i=k+1

ai| ≥
1
2
.

Since (Txi − y) is a basic sequence with basis constant at most C,

‖
k∑
i=1

ai(Txni − y)‖ < ε

12
and ‖

∑̀
i=k+1

ai(Txni − y)‖ < ε

6
.

Therefore we have

‖
k∑
i=1

aiTxni −
∑̀
i=k+1

aiTxni‖ ≤ ‖
k∑
i=1

ai(Txni − y)‖+ ‖
∑̀
i=k+1

ai(Txni − y)‖

+ ‖(
k∑
i=1

ai −
∑̀
i=k+1

ai)y‖

<
ε

4
+

ε

4(‖y‖+ 1)
‖y‖

<
ε

2
≤ ε|

∑̀
i=k+1

ai|

Thus T ∈ Wξ(X,Y ). �

We recall that if ξ is a countable ordinal, then Tξ denotes the Tsirelson space of
order ξ.

Corollary 24. Let ξ be a countable ordinal. Then ξ < %W(L(Tξ)) = %R(L(Tξ)) <
ω1. In particular, there is a countable ordinal ζ such that

Wξ(Tξ) = Rξ(Tξ) (Wζ(Tξ) = Rζ(Tξ) = L(Tξ).

Proof. Since Tξ is reflexive and has an unconditional basis, Wξ(Tξ) = Rξ(Tξ) and
W(Tξ) = R(Tξ) = L(Tξ). Since Tξ is asymptotic `ξ1, the identity operator on Tξ is
in L(Tξ) \ Rξ(Tξ). Therefore,

Wξ(Tξ) = Rξ(Tξ) (W(Tξ) = R(Tξ) = L(Tξ).

Corollary 19 b) yields that %W(L(Tξ)), %R(L(Tξ)) < ω1, as desired. �

Let (un) denote Pe lczyński’s universal basis [15] and U be the closed linear space
of (un). By definition, every basic sequence is equivalent to a subsequence of (un)
whose closed linear span is complemented in U . For this space we have the following
proposition.

Proposition 25. Let ξ be a countable ordinal.

a) There is a T ∈ W(U) \Wξ(U).
b) There is a T ∈ R(U) \ Rξ(U).

Moreover, both W(U) and R(U) are coanalytic non-Borel subsets of L(U).
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Proof. Let ξ be a countable ordinal and Uξ denote a complemented copy of Tξ
inside of U . Let Pξ be the projection from U onto Uξ. Recall that Uξ is the closed
linear span of some subsequence of (un). Since Uξ is asymptotic `ξ1 and reflexive,
Pξ ∈ W(U) \Wξ(U).

As ξ < ω1 was arbitrary, we have that %W(W(U)) = ω1. Corollary 19 b) yields
that W(U) is coanalytic non-Borel. The case of R(U) is exactly the same. �

4.2. Examples where W(X,Y ) or R(X,Y ) are SOT-Borel subsets. If either
X or Y is reflexive then W(X,Y ) = L(X,Y ). Likewise, if either X or Y do not
contain `1 then R(X,Y ) = L(X,Y ). In each case the operator ideal is Borel and
therefore %W(L(X,Y )) ≤ %R(L(X,Y )) < ω1. Below we provide two examples of
non-reflexive spaces such that W(X) is a Borel subset of L(X).

In each example the spaceW(X) is a codimension-one subspace of L(X). We do
not, however, have a general theorem that states thatW(X) is a SOT-Borel subset
of L(X) whenever W(X) is a hyperplane of L(X).

Example 26. Let J denote the quasi-reflexive space of R.C. James [11] (see [1,
page 62], for a modern presentation). Let (en) be the unit vector basis of J and
(e∗n) be the associated biorthogonal functionals. The basis (en) is shrinking but not
boundedly complete. In [13], the authors give the following characterization of the
space of the weakly compact operators on J :

T ∈ W(J) ⇐⇒ lim
k→∞

∞∑
i=1

e∗k(Tei) = 0.

Note that for each k ∈ N the sum
∑∞
i=1 e

∗
k(Tei) converges since the sequence

(
∑n
i=1 ei)

∞
n=1 is weakly Cauchy. It follows that W(J) is an SOT-Borel subset of

L(J). Indeed, note that

T ∈ W(J) ⇐⇒ ∀m ∃K such that ∀k ≥ K,∀n ∈ N, |
n∑
i=1

e∗k(Tei)| ≤
1
m

Now, for each m, k, n ∈ N, the set

Am,n,k = {T ∈ L(J) : |
n∑
i=1

e∗k(Tei)| ≤
1
m
}

is SOT-closed in L(J). Thus W(J) is SOT-Borel.
Finally, since J since does not contain an `1 spreading model, Proposition 23

implies that W1(J) =W(J).

Example 27. In [8, Proposition 4.3], it is shown that for any Banach space X such
that L(X) = RI ⊕ SS(X), the set SS(X) is a SOT-Borel subset of L(X). Clearly
if, in addition, W(X) = SS(X) then W(X) is an SOT-Borel subset of L(X). In
the papers [5, 16], the authors construct examples of non-reflexive HI spaces with
the above property.
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4.3. Coanalytic complete ideals with bounded local rank. In this section
we show that the ranks %R and %W are not, in general, coanalytic ranks.

To get started, we recall the definiton of the James-tree space JT . Let JT be
the completion of c00(N<N) equipped with the norm

(11) ‖z‖ = sup
{( d∑

i=1

(∑
t∈si

z(t)
)2)1/2}

,

where the above supremum is taken over all families (si)di=1 of pairwise incomparable
non-empty segments of N<N. A segment s of N<N is a set consisting of pairwise
comparable nodes of N<N satisfying

(12) ∀s, t, s′ ∈ N<N (s v t v s′ and s, s′ ∈ s⇒ t ∈ s).

Let (zt)t∈N<N denote the standard Hamel basis of c00(N<N).
Let p and q with 1 ≤ p, q <∞ and define the following unconditional version of

JT : Let Zp,q be the completion of c00(N<N) equipped with the norm

(13) ‖z‖ = sup
{( d∑

i=1

(∑
t∈si

|z(t)|p
)q/p)1/q}

,

where the above supremum is taken over all families (si)di=1 of pairwise incomparable
non-empty segments of N<N.

Theorem 28. [9, Theorem 4] Let p such that 1 ≤ p <∞.

a) SS(`p, Zp,2p) is a co-analytic complete (in particular, non-Borel) subset of
L(`p, Zp,2p).

b) SS(`p, Zp,2p) = SS2(`p, Zp,2p).

In particular, %SS is not a coanalytic rank on SS(X,Y ).

Recall that a coanalytic set B of a Polish space P is coanalytic complete if there
is a Borel map H : Tr → P such that H−1(B) = WF. As WF is not Borel,
coanalytic complete sets are not Borel. In the case of weakly compact operators,
we have the following analogue of Theorem 28.

Theorem 29. The following are satisfied:

a) W(JT ) is a coanalytic complete subset of L(JT ).
b) %W(W(JT )) < ω1; that is, there is countable ξ such thatW(JT ) =Wξ(JT ).

In particular, %W is not a coanalytic rank on W(JT ).

Proof. It is well-known that JT does not contain `1. Therefore b) follows from
Proposition 23.

Proposition 9 yields that W(JT ) is a coanalytic subset of L(JT ). Therefore,
to prove item a), we need to define a Borel map H : Tr → L(X,Y ) such that
H−1(W(X,Y )) = WF. To define H, we first set notation and collect facts concern-
ing JT :
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(i) For each S ∈ Tr, let JTS := span{zt : t ∈ S}. If S ∈ WF, the space
JTS = span{zt : t ∈ S} is reflexive.

(ii) Suppose (`i)∞i=1 ∈ [N]N. The sequence (z(`1,...,`n))n∈N is isometric to the
summing basis of c0.

(iii) For each S ∈ Tr, let PS be the natural projection from JT to JTS , note
that ‖PS‖ = 1.

Define H : Tr → L(JT ) by H(S) = PS . It is easy to see that H is a Borel map.
Let S ∈ Tr. We now that

(14) S ∈WF ⇐⇒ PS ∈ W(JT ).

Let S ∈ WF. By (i), JTS is reflexive; so, PS ∈ W(JT ). Suppose that S 6∈
WF. Let (`i)∞i=1 ⊂ N such that (`i)ni=1 ∈ S for all n ∈ N. By (ii), the sequence
{z(`1,...,`n) : n ∈ N} is isometric to the summing basis of c0. Therefore PS is not
weakly compact. Thus (14) holds. We have that H−1(W(JT )) = WF, and hence
W(JT ) is a coanalytic complete subset of L(JT ). �

We have the following analogous result for R(X,Y ).

Theorem 30. The following are satisfied:

a) R(`1, Z1,2) is a coanalytic complete subset of L(`1, Z1,2).
b) R(`1, Z1,2) = R2(`1, Z1,2).

In particular, %R is not a coanalytic rank on R(`1, Z1,2).

Proof. We will prove that for every countable ordinal ξ,

(15) Rξ(`1, Z1,2) = SSξ(`1, Z1,2).

This would imply that R(`1, Z1,2) = SS(`1, Z1,2), and our theorem would follow
from Theorem 28. Thus we just need to prove (15).

Let ξ be a countable ordinal. Suppose T 6∈ Rξ(`1, Z1,2). There exists ε > 0 and
(xi) ∈ NB`1 such that for each F ∈ Sξ and scalars (ai)i∈F

‖
∑
i∈F

aiTxni‖ ≥ ε
∑
i∈F
|ai|.

We thus have that,

‖
∑
i∈F

aiTxni
‖ ≥ ε

∑
i∈F
|ai| ≥ ε‖

∑
i∈F

aixni
‖.

It follows that T 6∈ SSξ(`1, Z1,2).
Now suppose T 6∈ SSξ(`1, Z1,2). Find ε > 0 and (xi) ∈ NB`1 such that for all

F ∈ Sξ and scalars (ai)i∈F ,

‖
∑
i∈F

aiTxi‖ ≥ ε‖
∑
i∈F

aixi‖.
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Choose a subsequence (ni) of N such that the following holds:

(16) G ∈ Sξ =⇒
⋃
k∈G

{n2k, n2k+1} ∈ Sξ.

By passing to a further subsequence of (nk) and relabeling we can assume that the
difference sequence dk = xn2k+1 − xn2k

is coordinate-wise convergent and seminor-
malized. By the Bessaga-Pe lczyński selection principle [1, Theorem 1.3.10] we can
assume that (dn) is 2-equivalent to a block sequence of `1 and therefore 2-equivalent
to the unit vector basis of `1. Let G ∈ Sξ and (ai)i∈G be a scalar sequence. By
(16), ∪k∈G{n2k, n2k+1} ∈ Sξ. Therefore

‖
∑
i∈G

aiTdi‖ = ‖
∑
i∈G

aiT (xn2i+1 − xn2i)‖ ≥ ε‖
∑
i∈G

aidi‖ ≥
ε

2

∑
i∈G
|ai|.

It follows that T 6∈ Rξ(`1, Z1,2) �
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