
UNIFORMLY FACTORING WEAKLY COMPACT OPERATORS

KEVIN BEANLAND AND DANIEL FREEMAN

Abstract. Let X and Y be separable Banach spaces. Suppose Y either has a

shrinking basis or Y is isomorphic to C(2N) andA is a subset of weakly compact

operators from X to Y which is analytic in the strong operator topology. We

prove that there is a reflexive space with a basis Z such that every T ∈ A
factors through Z. Likewise, we prove that if A ⊂ L(X,C(2N)) is a set of

operators whose adjoints have separable range and is analytic in the strong

operator topology then there is a Banach space Z with separable dual such

that every T ∈ A factors through Z. Finally we prove a uniform version of

this result in which we allow the domain and range spaces to vary.

1. Introduction

Recall that if X and Y are Banach spaces then a bounded operator T : X → Y

is called weakly compact if T (BX) is weakly compact, where BX is the unit ball

of X. If there exists a reflexive Banach space Z and bounded operators T1 :

X → Z and T2 : Z → Y with T = T2 ◦ T1 then T1 and T2 are both weakly

compact by Alaoglu’s theorem and hence T : X → Y is weakly compact as well.

Thus it is immediate that any bounded operator which factors through a reflexive

Banach space is weakly compact. In their seminal 1974 paper [11], Davis, Figiel,

Johnson and Pe lczyński proved that the converse is true as well. That is, every

weakly compact operator factors through a reflexive Banach space. Likewise, every

bounded operator whose adjoint has separable range factors through a Banach

space with separable dual. Using the DFJP interpolation technique, in 1988 Zippin

proved that every separable reflexive Banach space embeds into a reflexive Banach

space with a basis and that every Banach space with separable dual embeds into a

Banach space with a shrinking basis [30].

For each separable reflexive Banach space X we may choose a reflexive Banach Z

with a basis such that X embeds into Z. It is natural to consider when the choice

of Z can be done uniformly. That is, given a set of separable reflexive Banach

spaces A, when does there exist a reflexive Banach space Z with a basis such that

X embeds into Z for every X ∈ A? Szlenk proved that there does not exist a

Banach space Z with separable dual such that every separable reflexive Banach
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space embeds into Z [29]. Bourgain proved further that if Z is a separable Banach

space such that every separable reflexive Banach space embeds into Z then every

separable Banach space embeds into Z [9]. Thus, any uniform embedding theorem

must consider strict subsets of the set of separable reflexive Banach spaces. In his

Phd thesis, Bossard developed a framework for studying sets of Banach spaces using

descriptive set theory [8, 7]. In this context, it was shown in [14] and [28] that if A
is an analytic set of separable reflexive Banach spaces then there exists a separable

reflexive Banach space Z such that X embeds into Z for all X ∈ A, and in [14]

and [16] it was shown that if A is an analytic set of Banach spaces with separable

dual then there exists a Banach space Z with separable dual such that X embeds

into Z for all X ∈ A. In particular, solving an open problem posed by Bourgain

[9], there exists a separable reflexive Banach space Z such that every separable

uniformly convex Banach space embeds into Z [27]. As the set of all Banach spaces

which embed into a fixed Banach space is analytic in the Bossard framework, these

uniform embedding theorems are optimal.

The goal for this paper is to return to the original operator factorization problem

with the same uniform perspective that was applied to the embedding problems.

That is, given separable Banach spaces X and Y and a set of weakly compact

operators A ⊂ L(X,Y ), we want to know when does there exist a reflexive Banach

space Z such that T factors through Z for all T ∈ A. We are able to answer this

question in the following cases.

Theorem 1. Let X and Y be separable Banach spaces and let A be a set of weakly

compact operators from X to Y which is analytic in the strong operator topology.

Suppose either Y has a shrinking basis or Y is isomorphic to C(2N). Then there is

a reflexive Banach space Z with a basis such that every T ∈ A factors through Z.

Theorem 2. Let X be a separable Banach space and let A ⊂ L(X,C(2N)) be a set

of bounded operators whose adjoints have separable range which is analytic in the

strong operator topology. Then there is a Banach space Z with a shrinking basis

such that every T ∈ A factors through Z.

The idea of factoring all operators in a set through a single Banach space has

been considered previously for compact operators and compact sets of weakly com-

pact operators [3, 18, 26]. In particular, Johnson constructed a reflexive Banach

space ZK such that if X and Y are Banach spaces and either X∗ or Y has the

approximation property then every compact operator T : X → Y factors through

ZK [20]. Later, Figiel showed that if X and Y are Banach spaces and T : X → Y is

a compact operator, then T factors through a subspace of ZK [15]. It is particularly

interesting that the space ZK is independent of the Banach spaces X and Y . In

[10], Brooker proves that for every countable ordinal α, if X and Y are separable

Banach spaces and T : X → Y is a bounded operator with Szlenk index at most

ωα then T factors through a Banach space with separable dual and Szlenk index
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at most ωα+1. This result, combined with the embedding result in [16] gives that

for every countable ordinal α, there exists a Banach space Z with a shrinking basis

such that every bounded operator with Szlenk index at most ωα factors through a

subspace of Z. In section 4 we present generalizations of Theorems 1 and 2 where

the Banach space X is allowed to vary.

The authors thank Pandelis Dodos for his suggestions and helpful ideas about

the paper. Much of this work was conducted at the National Technical University

of Athens in Greece during the spring of 2011. The first author would like to

thank Spiros Argyros for his hospitality and for providing an excellent research

environment during this period.

2. Preliminaries

A topological space P is called a Polish space if it is separable and completely

metrizable. A set X, together with a σ-algebra Σ, is called a standard Borel space if

the measurable space (X,Σ) is Borel isomorphic to a Polish space. A subset A ⊂ X
is said to be analytic if there exists a Polish space P and a Borel map f : P → X

with f(P ) = A. A subset of X is said to be coanalytic if its complement is analytic.

Given some Polish space X, we will be studying sets of closed subspaces of X.

Thus, from a descriptive set theory point of view, it is natural to assign a σ-algebra

to the set of closed subsets of X which then forms a standard Borel space. Let

F (X) denote the set of closed subspaces of X. The Effros-Borel σ-algebra, E(X),

is defined as the collection of sets with the following generator{
{F ∈ F (X) : F ∩ U 6= ∅} : U ⊂ X is open

}
.

The measurable space (F (X), E(X)) is a standard Borel space. If X is a Banach

space, then Subs(X) denotes the standard Borel space consisting of the closed

subspaces ofX endowed with the relative Effros-Borel σ-algebra. As every separable

Banach space is isometric to a subspace of C(2N), the standard Borel space SB =

Subs(C(2N)) is of particular importance when studying sets of separable Banach

spaces.

If X and Y are separable Banach spaces, then the space L(X,Y ) of all bounded

linear operators from X to Y carries a natural structure as a standard Borel space

whose Borel sets coincide with the Borel sets generated by the strong operator

topology (i.e. the topology of pointwise convergence on nets). In this paper when

we refer to a Borel subset of L(X,Y ) it is understood that this is with respect to

the Borel σ-algebra generated by the strong operator topology. There are several

papers in which L(X,Y ) is considered with this structure [4, 5, 6].

Both the set of all separable reflexive Banach spaces and the set of all Banach

spaces with separable dual are coanalytic subsets of SB. This fact is essential in the

proofs of the universal embedding theorems for analytic sets of separable reflexive

Banach spaces and analytic sets of Banach spaces with separable dual [14],[16],[28].
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Thus, we will naturally need the following theorem to prove our universal factor-

ization results for analytic sets of weakly compact operators and analytic sets of

operators whose adjoints have separable range.

Proposition 3. For X,Y ∈ SB the following are coanalytic subsets of L(X,Y ).

(a) The set of weakly compact operators.

(b) The set of operators whose adjoints have separable range (these operators

are called Asplund operators).

Before proving Proposition 3, we will need to introduce some more results from

descriptive set theory. Given a Polish space E, let K(E) be the space of all compact

subsets of E. The space K(E) is Polish when equipped with the Vietoris topology,

which is the topology on K(E) generated by the sets{
{K ∈ K(E) : K∩U 6= ∅} : U ⊂ E is open

}
and

{
{K ∈ K(E) : K ⊆ U} : U ⊂ E is open

}
.

When studying sequences in the unit ball of a separable Banach space X, we note

that the the space BN
X is a Polish space when endowed with the product topol-

ogy. We will always consider B`∞ , the ball of `∞, to be equipped with the weak∗

topology. In [7] (also see [12, Theorem 2.11]) Bossard proves the following theorem.

This result is used to prove that the Szlenk index is a Π1
1 rank of the collection of

Banach spaces with separable duals.

Theorem 4 ([7]). The set

Σ = {K ∈ K(B`∞) : K is norm-separable}

is coanalytic in the Vietoris topology of K(B`∞).

We will show that for all X,Y ∈ SB the set of operators whose adjoints have

separable range is coanalytic in L(X,Y ) by showing that the set is Borel reducible

to Σ ⊂ K(B`∞). To do this, we will define a map Φ : L(X,Y )→ K(B`∞), and use

the following theorem to show that it is Borel.

Theorem 5. [22, Theorem 28.8] Let X and Y be Polish spaces and A ⊂ Y ×X be

such that for each y ∈ Y the set Ay = {x ∈ X : (y, x) ∈ A} is compact. Consider

the map ΦA : Y → K(X) defined by ΦA(y) = Ay. Then A is Borel if and only if

ΦA is a Borel map.

By the Kuratowski and Ryll-Nardzewski selection theorem [23] we can find a

sequence of Borel maps (sn)n∈N such that sn : F (C(2N)) → C(2N) for each n ∈ N
and (sn(E))∞n=1 is dense in E. In addition, for all n ∈ N let dn : SB → C(2N)

be a Borel map such that (dn(X))n∈N is dense in BX for all X ∈ SB and for

p, q ∈ Q and m, k ∈ N if qdm(X) + pdk(X) ∈ BX then there is an ` ∈ N with

d`(X) = qdm(X) + pdk(X). We will also assume that dn(X) 6= 0 for all X ∈ SB
and n ∈ N. Working with the sequences (sn) and (dn) will be easier for us than

dealing with the Effros-Borel σ-algebra or Vietoris topology directly.



UNIFORMLY FACTORING WEAKLY COMPACT OPERATORS 5

Proof of Proposition 3. Item (a) is proved in [6, Proposition 9] and follows from the

fact that weakly compact operators are exactly those operators that take bounded

sequences in X to sequences that do not dominate the summing basis of c0.

The proof of (b) requires a bit more effort, but it follows the same outline as

the proof that the collection of all spaces with separable dual (SD) is coanalytic

[8]. Let A(X,Y ) denote the collection of operators in L(X,Y ) whose adjoints have

separable range. Let BL(X,Y ) denote the unit ball of L(X,Y ). It is enough to

prove that the collection of T ∈ A(X,Y ) with ‖T‖ 6 1 is coanalytic as a subset of

BL(X,Y ). For T ∈ BL(X,Y ) and y∗ ∈ BY ∗ let

fT∗y∗ =

(
T ∗y∗(di(X))

‖di(X)‖

)∞
i=1

∈ B`∞ .

For T ∈ BL(X,Y ) let KT = {fT∗y∗ : y∗ ∈ BY ∗}. Notice that KT can be identified

with T ∗(BY ∗) via the homeomorphism T ∗(y∗) 7→ fT∗y∗ . Here T ∗(BY ∗) is endowed

with the weak∗ topology. So, KT is compact in B`∞ with the weak∗ topology.

Define DL ⊂ BL(X,Y ) ×B`∞ as follows

(T, f) ∈ DL ⇐⇒ f ∈ KT .

Using the following characterization, the set DL is Borel.

(T, f) ∈ DL ⇐⇒ ∀n,m, k ∈ N ∀q, p ∈ Q we have

(pTdn(X) + qTdm(X) = Tdk(X) =⇒

p‖dn(X)‖f(n) + q‖dm(X)‖f(m) = ‖dk(X)‖f(k)).

Notice that for each T ∈ BL(X,Y ) the set DT = {f : (T, f) ∈ DL} is equal to KT

and is therefore compact. Applying Theorem 5, Φ : L(X,Y )→ K(B`∞) defined by

Φ(T ) = KT is a Borel map. Finally, note that

T ∈ A(X,Y ) ⇐⇒ Φ(T ) = KT ∈ Σ = {K ∈ K(B`∞) : K is norm-separable}.

Using Proposition 4 we have that A(X,Y ) with ‖T‖ 6 1 is Borel reducible to a

coanalytic set and is hence itself coanalytic. �

Concerning reflexive Banach spaces with bases as well as Banach spaces with

bases and separable dual, Argyros and Dodos [2, Theorems 83, 84 and 91] proved

the following deep theorem (see also [12, Theorems 7.4 and 7.8]).

Theorem 6 ([2]). Let A ⊂ SB be an analytic collection of reflexive Banach spaces

(resp. Banach spaces with shrinking bases) such that each X ∈ A has a basis. Then

there is a reflexive Banach space ZA (resp. Banach space with shrinking bases) with

a basis that contains every X ∈ A as a complemented subspace.

Although it is possible for us to apply Theorem 6 as a black box, we give some

brief description here about how the space ZA is constructed. Let A ⊂ SB be an

analytic collection of reflexive spaces. Since the map from SN
C(2N) to SB given by

(xn)n∈N 7→ [xn]n∈N is Borel and the set of basic sequences in a Banach space is
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Borel, we obtain an analytic set B of basic sequences in SC(2N) such that for every

reflexive Banach space X ∈ A there exists (xn) ∈ B such that (xn) is a basis for X

and for every (xn) ∈ B we have that [xn] ∈ A. Instead of working with an analytic

collection of Banach spaces A, we can now work with an analytic collection of basic

sequences B. Therefore the following theorems imply the previous one.

Theorem 7 ([2]). Let A ⊂ C(2N)
N

be an analytic collection of shrinking and

boundedly complete basic sequences. There is a reflexive Banach space Z with a

basis (zn) such that if (xn) ∈ A then there exists a subsequence (kn) of N such that

(xn) is equivalent to (zkn) and [zkn ] is complemented in Z.

Theorem 8 ([2]). Let A ⊂ C(2N)
N

be an analytic collection of shrinking basic

sequences. There is a Banach space Z with a shrinking basis (zn) such that if

(xn) ∈ A then there exists a subsequence (kn) of N such that (xn) is equivalent to

(zkn) and [zkn ] is complemented in Z.

To prove these theorems, Argyros and Dodos, give a procedure to amalgamate

an analytic collection of basic sequences B into a tree basis (xα)α∈Tr, where Tr

is a finitely branching tree. That is, they construct (xα)α∈Tr ⊂ SC(2N) such that

(xα)α∈Tr ⊂ SC(2N) is a basic sequence under any ordering which preserves the tree

order, [xα] is reflexive, and every (xn) ∈ B is equivalent to a branch of (xα)α∈Tr.

Moreover, every branch of the tree is bounded complete and shrinking basis from our

analytic collection. Furthermore, if (αn)n∈N is a branch of Tr then the restriction

operator P : [xα]α∈Tr → [xαn ]n∈N given by P (
∑
aαxα) =

∑
aαnxαn is a bounded

projection.

Given an analytic collection A of weakly compact operators, our goal is to ob-

tain an analytic collection B of normalized shrinking and boundedly complete basic

sequences such that for every T ∈ A, there exists (xn) ∈ B such that T factors

through [xn]. We then are able to apply Theorem 7 and obtain a separable re-

flexive Banach space Z such that every T ∈ A factors through a complemented

subspace of Z. Hence, every T ∈ A factors through Z itself. This idea of creating a

complementably universal Banach space Z in order to lift operators defined on an

analytic collection of Banach spaces with bases was used by Dodos in [13], where he

characterizes the sets of separable Banach spaces C for which there exist a separable

Banach space Z such that `1 does not embed into Z and every X ∈ C is a quotient

of Z.

3. Parametrized Factorization

Notation 1. In the rest of the paper we set the following notation.

(a) X denotes a separable Banach space, Y denotes a Banach space with a

Schauder basis and y0 ∈ Y . The vector y0 will be prescribed depending on

the space Y which we are considering.



UNIFORMLY FACTORING WEAKLY COMPACT OPERATORS 7

(b) Let T ∈ L(X,Y ). Denote by (yTn )n∈N a normalized basis of Y that depends

on T and for k ∈ N, let PTk : Y → [yTn : n 6 k] be the natural projection.

(c) Define the following set depending on T and y0.

ET := co(T (BX) ∪ {±y0}).

(d) The following set depends on the basis (yTk ) and ET

WT =
⋃
k∈N

PTk (ET ).

Note that WT is closed, bounded, convex and symmetric. Also, PTk (WT ) ⊂
WT for each k ∈ N.

(e) Let W ⊂ Y be closed, convex, bounded and symmetric and for each m ∈ N
define

Wm := 2mW + 2−mBY .

(f) Let ‖ · ‖Wm denote the Minkowski gauge norm of the set Wm. That is,

‖y‖Wm = inf{λ > 0 :
y

λ
∈Wm}.

(g) Let

ZT = {z ∈ Y :

∞∑
m=1

‖z‖2Wm
T
<∞} and ‖z‖T =

( ∞∑
m=1

‖z‖2Wm
T

) 1
2

.

The following items are proved in [11]. The reader may also consult [12, Appen-

dix B] for a nice treatment of this material.

Theorem 9 ([11]). The following hold.

(a) There exist T1 : X → ZT and T2 : ZT → Y such that T = T2T1; in

other words, T factors through ZT . Furthermore, T2 is constructed to be

one-to-one.

(b) If y0 =
∑
k aky

T
k and ak 6= 0 for each k ∈ N then yTn ∈ span WT for each

n ∈ N. Let zTn = T−1
2 (yTn ) for each n ∈ N (this is well defined as T2 is

one-to-one). The sequence (zTn )n∈N is a (not normalized) basis for ZT .

(c) The space ZT is reflexive if and only if WT is weakly compact.

(d) If T is weakly compact and (yTn ) shrinking then WT weakly compact.

We sketch of the first part of (b). Note that y0 ∈WT and PT1 (y0) = a1y
T
1 . Hence

yT1 ∈ spanWT because PT1 (WT ) ⊂ WT . Also, for n > 1, (PTn − PTn−1)y0 = any
T
n ∈

WT −WT . Thus yTn ∈ spanWT for each n ∈ N.

Item (b) above essentially states that including a vector y0 in WT that is sup-

ported on all coordinates of the basis of Y ensures that the interpolation space ZT

has a basis, which we denote (zTn ). Therefore whenever we refer to ZT with basis

(zTn ) it is assumed that the vector y0 contained in ET satisfies the assumptions of

item (b) with respect to the basis (yTn ) of Y .

In the next lemma, however, y0 can be any vector in Y .
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Lemma 10. Let B ⊂ L(X,Y ) be Borel. Then the following hold:

(a) The map B 3 T 7→ ET ∈ F (Y ) is Borel.

(b) The map B 3 T 7→ WT ∈ F (Y ) is Borel. Moreover, for each m ∈ N the

map B 3 T 7→Wm
T ∈ F (Y ) is Borel.

(c) The map B × Y 3 (T, y) 7→ ‖y‖Wm
T

is Borel.

The proof of Lemma 10 will rely on the following elementary observation from

Descriptive Set Theory [12, page 83].

Fact 11. Suppose E is a standard Borel space, P is a Polish space and for each

n ∈ N, fn : E → P is a Borel map. Then the map Φ : E → F (P ) defined by

Φ(x) = {fn(x) : n ∈ N} for all x ∈ E is Borel.

Proof of Lemma 10(a). Let (xn)n∈N be dense in BX and let U be a non-empty

open subset of Y . Notice that

ET ∩ U 6= ∅ ⇐⇒ ∃n ∈ N, q1, q2,∈ Q ∩ [0, 1], δ ∈ {±1} with

q1 + q2 = 1, q1(Txn) + δq2y0 ∈ U.

For n ∈ N and q1, q2 ∈ Q ∩ [0, 1] we define τn,q1,q2 : B → Y 2 and p : Y 2 → Y by

τn,q1,q2(T ) = (q1Txn, δq2y0) and p((z1, z2)) = z1 + z2.

Using the definition of strong operator topology, the map τn,q1,q2 is Borel. The

map p is continuous, and hence p ◦ τn,q1,q2 is Borel. The set {p ◦ τn,q1,q2(T ) : n ∈
N and q ∈ Q∩ [0, 1]} is dense in ET . Hence, the map B 3 T 7→ ET ∈ F (Y ) is Borel

by Fact 11. �

Proof of Lemma 10(a). Let (xn)n∈N be dense in BX and let U be a non-empty open

subset of Y . For n, k ∈ N and q1, q2 ∈ Q ∩ [0, 1] we define the map fn,k,q : B → Y

by

fn,k,q(T ) = Pk(q1Txn + q2y0).

Using the same argument used in the proof of Lemma 10(b), we have that fn,k,q is

a Borel map. The set {fn,k,q(T ) : n, k ∈ N and q1, q2 ∈ Q ∩ [0, 1]} is dense in WT .

Hence, the map B 3 T 7→ WT ∈ F (Y ) is Borel by Fact 11. The same argument

gives that the map B 3 T →Wm
T ∈ F (Y ) is Borel for each m ∈ N. �

Proof of Lemma 10(c). Let r ∈ R with r > 0 and notice that for (W, y) ∈ F (Y )×Y

‖y‖W < r ⇐⇒ ∃q ∈ Q with 0 < q < r and y ∈ qW.

Thus, the map F (Y ) × Y 3 (W, y) 7→ ‖y‖W is Borel as qW is closed. The map

(T, y) 7→ (Wm
T , y) is Borel by part (c). Hence, the map (T, y) 7→ ‖y‖Wm

T
is Borel. �

The next remark follows directly from the definition of the basis (see Theorem

9(b)).
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Remark 12. Suppose (yTn ) is a basis for Y and y0 =
∑
k∈N aky

T
k where ak 6= 0 for

all k ∈ N. Let (zTn ) be the basis give by Theorem 9(b). Then a sequence (xn)n∈N

in C(2N) is 1-equivalent to (zTn )n∈N if and only if for each (an)n ∈ c00

∞∑
m=1

‖
∞∑
n=1

any
T
n ‖2Wm

T
= ‖

∞∑
n=1

anxn‖2

Lemma 13. Let B ⊂ L(X,Y ) be a Borel set, suppose that the map B 3 T 7→
(yTn )n∈N ∈ Y N is Borel and the vector y0 ∈ Y has the property that for every T ∈ B,

y0 =
∑
k∈N aky

T
k with ak 6= 0. Then the following set

F = {(T, (xn)) ∈ B × C(2N)N : (zTn ) is 1-equivalent to (xn)}

is Borel in L(X,Y )× C(2N)N.

Proof. For k, p,N ∈ N and a = (a1, ..., ak) ∈ Qk, we let

Ak,N,a =

{
(T, (xn)) ∈ B × C(2N)N :

∑
1≤m≤N

∥∥∥∥ k∑
n=1

any
T
n

∥∥∥∥2

Wm
T

≤
∥∥∥∥ k∑
n=1

anxn

∥∥∥∥2}
and

Bk,p,N,a =

{
(T, (xn)) ∈ B × C(2N)N :

∥∥∥∥ k∑
n=1

anxn

∥∥∥∥2

− 1

p
≤

∑
1≤m≤N

∥∥∥∥ k∑
n=1

any
T
n

∥∥∥∥2

Wm
T

}
.

The sets Ak,N,a, Bk,p,N,a ⊂ B × C(2N)N are Borel as the maps T 7→ (yTn )n∈N and

(T, y) 7→ ‖y‖Wm
T

are Borel. By Remark 12, we have that F =
⋂
k,N∈N;a∈QAk,N,a ∩⋂

k,p∈N;a∈Q
⋃
N∈NBk,p,N,a, and hence F is Borel.

�

The next proposition is our main tool for proving Theorems 1 and 2.

Proposition 14. Suppose that B ⊂ L(X,Y ) is a Borel collection of weakly compact

operators (resp. operators whose adjoints have separable range) such that

(a) The map B 3 T 7→ (yTn )n∈N ∈ Y N is Borel.

(b) The vector y0 ∈ Y has the property that for every T ∈ B, y0 =
∑
k∈N aky

T
k

with ak 6= 0.

(c) The basis (zTn ) (see Theorem 9(b)) is boundedly complete and shrinking

(resp. shrinking).

Then there is a reflexive space (resp. space with separable dual) with a basis ZB

such that each T ∈ B factors through ZB.

Proof. We prove the weakly compact case. The case of operators whose adjoints

have separable range is analogous. By Lemma 13, the set

{(T, (xn)) ∈ B × C(2N)N : (zTn ) is 1-equivalent to (xn)}

is Borel in L(X,Y )× C(2N)N. Hence, the set

ZB = {(xn) ∈ C(2N)N : ∃T ∈ B such that (zTn ) is 1-equivalent to (xn)}
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is analytic in C(2N)N. By Theorem 7 there is a reflexive space ZB such that if (zTn ) ∈
ZB the space ZT is isomorphic to a complemented subspace of ZB. That is, there

exists an embedding IT : ZT → ZB and a bounded projection PT : ZB → IT (ZT ).

Given the factorization T1 : X → ZT and T2 : ZT → Y with T = T2T1, we now have

the factorization ITT1 : X → ZB and T2I
−1
T PT : ZB → Y with T = T2I

−1
T PT ITT1.

Thus, each T ∈ B factors through ZB. �

Theorem 15. Suppose Y has a shrinking basis and A ⊂ L(X,Y ) is an analytic

collection of weakly compact operators. Then there is a reflexive space with a basis

ZA such that each T ∈ A factors through ZA.

Proof. By Proposition 3 the collection of all weakly compact operators from X to

Y (for separable X and Y ) is coanalytic. Using Lusin’s separation theorem [22,

Theorem 28.1] there is a Borel set B of weakly compact operators such that A ⊂ B.

It suffices to show that the hypotheses of Proposition 14 are satisfied for B. Let

(yn) be a shrinking basis for Y . Let y0 =
∑
k∈N

1
2k yk. For each T ∈ B, set yTn = yn

for each n ∈ N. Clearly, T 7→ (yTn )n∈N is Borel, as it is constant. Using Theorem

9, for each T ∈ B the space ZT is reflexive and has a basis (zTn )n∈N. Therefore the

hypotheses of Proposition 14 are satisfied. This finishes the proof. �

Next we prove Theorem 1 and Theorem 2 for Y = C(2N). We will use the method

of slicing and selection developed by Ghoussoub, Maurey and Schachermayer [17].

This method was used to give alternate proofs of Zippin’s theorems that every

reflexive separable Banach space embeds into a reflexive Banach space with a basis

and every Banach space with separable dual embeds into a Banach space with a

shrinking basis. Dodos and Ferenczi [14] showed that it is possible to parametrize

this slicing and selection procedure. We will use their parametrized selection in

our proof. They proved that given an analytic collection A of separable reflexive

Banach space (respectively Banach spaces with separable dual), there exists an

analytic collection A′ of separable reflexive Banach spaces with bases (respectively

Banach spaces with shrinking bases) such that for all X ∈ A there exists Z ∈ A′

such that X embeds into Z. Before proceeding to the proof, we must introduce

several notions involved in the slicing and selection procedure.

Let E be a compact metric space. A metric ∆ : E × E → R is a fragmentation

if for every non-empty closed subset K of E and ε > 0 there exists an open subset

V of E with K ∩V 6= ∅ and such that sup{∆(x, y) : x, y ∈ K ∩V } 6 ε. Recall that

K(E) is the space of all compact subsets of E. In [17] they prove the following.

Theorem 16 ([17]). Let E be a compact metric space and ∆ be a fragmentation on

E. Then there is a function s∆ : K(E) → E called the dessert selection satisfying

the following:

(i) For every non-empty K ∈ K(E), we have s∆(K) ∈ K.

(ii) If K ⊂ C are in K(E) and s∆(C) ∈ K, then s∆(K) = s∆(C).
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(iii) If (Km) are descending in K(E) and K = ∩mKm, then

lim
m

∆(s∆(Km), s∆(K)) = 0.

Definition 17. Let Z be a standard Borel space. A parametrized Borel fragmen-

tation on E is a map D : Z × E × E → R such that for each z ∈ Z, setting

Dz(·, ·) := D(z, ·, ·) the following are satisfied.

(1) For z ∈ Z, the map Dz : E × E → R is a fragmentation on E.

(2) The map D is Borel.

Let D be a parametrized Borel fragmentation on a compact metric space E with

respect to some standard Borel space Z. Define sD : Z×K(E)→ E by sD(z,K) =

sDz
(K) where sDz

is the dessert selection associated to the fragmentation Dz and

given by Theorem 16. We need the following important theorem of Dodos.

Theorem 18. [12, Theorem 5.8] Let E be a compact metrizable space and Z be a

standard Borel space. Let D : Z×E×E → E be a parametrized Borel fragmentation.

Then the parametrized dessert selection sD : Z × K(E) → E associated to D is

Borel.

For convenience, we restate Theorem 2.

Theorem 19. Let X be a separable Banach space and let A ⊂ L(X,C(2N)) be a

set of bounded operators whose adjoints have separable range which is analytic in

the strong operator topology. Then there is a Banach space Z with a shrinking basis

such that every T ∈ A factors through Z.

Proof. Let A ⊂ L(X,C(2N)) be an analytic collection of operators whose adjoints

have separable range. Using Proposition 3 the space of all operators whose adjoints

have separable range is coanalytic. Therefore we may apply Lusin’s theorem [22,

Lemma 28.1] to find a Borel set B of operators whose adjoints have separable range

such that A ⊂ B.

Our tool is Proposition 14. The main step in the proof is to define a parametrized

Borel fragmentation and use the associated parametrized dessert selection to pick a

basis (yTn )n∈N of C(2N) such that T 7→ (yTn )n∈N is Borel. To begin, however, we fix

y0 ∈ C(2N) to be the sum of a function that separates points in 2N and the constant

function 1. Recall that the closed set ET (used below) contains y0. Once we define

the basis (yTn ) for each T we must show that the assumptions of Proposition 14(b)

are satisfied for y0.

Define the map D : B × 2N × 2N → R by

D(T, σ, τ) = sup{|sn(ET )(σ)− sn(ET )(τ)| : n ∈ N}

We claim that for each T ∈ B, DT = D(T, ·, ·) is a fragmentation.

To see this, we will follow the argument in [17]. It will be convenient to define

a new operator T0 : X ⊕1 `
2
1 → C(2N) by T0(x, a, b) = T (x) + ay0 + bId for
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all (x, a, b) ∈ X ⊕1 `
2
1. Here Id is the identity function on 2N. Note that T ∗0 has

separable range because T ∗ has separable range. As Id ∈ T0(BX⊕1`21
), the following

defines a metric on C(2N),

∆(σ, τ) = sup{|f(σ)− f(τ)| : f ∈ T0(BX⊕1`21
)} for all σ, τ ∈ C(2N).

As co(T (BX) ∪ {±y0}) = ET ⊆ T0(BX⊕1`21
), we have that if ∆ is a fragmentation

then DT = D(T, ·, ·) is a fragmentation. We denote the point evaluation at σ ∈ 2N

by δσ. Thus, ∆(σ, τ) = ‖T ∗0 (δσ)− T ∗0 (δτ )‖. As T ∗0 has separable range, the metric

∆ will be separable on 2N. Given ε > 0 and σ ∈ 2N, we have that the closed ε-ball

about σ in the ∆ metric is given by

B∆(σ, ε) := {τ ∈ 2N : ∆(σ, τ) 6 ε} = ∩f∈T0(B
X⊕1`21

){τ ∈ 2N : |f(σ)− f(τ)| 6 ε}.

Thus, B∆(σ, ε) is closed in the usual topology on 2N. Let ε > 0 and K ⊆ 2N be

closed and non-empty. We let A ⊂ K be a countable subset which is dense in the ∆

metric. Thus, K ⊆ ∪σ∈AB∆(σ, ε/2). By the Baire Category Theorem, there exists

σ ∈ A such that B∆(σ, ε/2)∩K is not relatively nowhere dense. Thus, there exists

a non-empty open set V ⊆ B∆(σ, ε/2) ∩K, as B∆(σ, ε/2) ∩K is closed. We have

that K ∩ V 6= ∅ and sup{∆(x, y) : x, y ∈ K ∩ V } 6 ε. Thus, ∆ is a fragmentation.

Invoking the Borelness of the maps (sn)n∈N and the map T 7→ ET , we have that

D is a parametrized Borel fragmentation according to Definition 17. By Theorem

18 there is a Borel map s : B × K(2N) → 2N such that sT : K(2N) → 2N defined

by sT (K) = s(T,K) is a dessert selection associated to the fragmentation DT . We

will use sT to select a basis for C(2N).

Define a sequence (tTn )∞n=1 in 2<N as follows: Let tT1 = ∅. Let φ : 2<N → N ∪ {0}
denote the unique bijection satisfying φ(s) < φ(t) if either |s| < |t|, or |s| = |t|
and s <lex t. Fix n ∈ N with n > 2 and t = φ−1(n − 1). By Theorem 16 there

is a unique it ∈ {0, 1} such that tait ≺ sT (Vt), where Vs := {σ ∈ 2N : s ≺ σ} for

s ∈ 2<N. Set

(1) tTn = taj where j = it + 1 (mod 2) and yTn = χVtTn
.

Note that yT1 ≡ 1, the constant function 1. As in (see [17] and [12, Claim 5.13 pg.

79]) (yTn )∞n=1 is a normalized monotone basis of C(2N). Also note that for T ∈ B,

by definition, y0 =
∑
k∈N aky

T
n and ak 6= 0 for each k ∈ N. Therefore we may apply

Theorem 9(b) to see that the corresponding sequence (zTn )n∈N is a basis for ZT .

In [17, Theorem III.1, page 503] or [12, page 80] they prove (zTn )n∈N is a shrinking

basis for ZT . It remains to prove the next claim.

Claim 20. The map B 3 T 7→ (yTn )∞n=1 ∈ C(2N)N is Borel.

Proof. It is enough to show that for each n ∈ N the map T 7→ yTn is (call it ψ)

Borel. Fix n ∈ N. If n = 1 let t = ∅; otherwise, let t = φ−1(n− 1). Let

B0 = {T ∈ B : ta1 ≺ s(T, Vt)} and B1 = B \B0.
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Let

ft : B → B ×K(2N) be defined by ft(T ) = (T, Vt).

Then B0 and B1 are Borel since B0 = f−1
t (s−1(Vta1)) and B1 = f−1

t (s−1(Vta0)).

By definition

ψ(T ) = yTn =

{
χV

ta0
T ∈ B0

χV
ta1

T ∈ B1.

Since ψ−1(χV
ta0

) = B0 and ψ−1(χV
ta1

) = B1, our claim is proved. �

Finally, invoking Proposition 14, the proof is complete. �

Proof of Theorem 1. Now assume that A ⊂ L(X,C(2N)) is an analytic collection

of weakly compact operators. This proof follows the same outline as the proof of

Theorem 2. Indeed, it is enough to show that ZT is reflexive. Note that we already

know (zTn ) is a shrinking basis for ZT .

By Theorem 9(c) it is enough to show that WT is weakly compact. This is

proved in [12, Lemma 5.18]. Let T2 : ZT → C(2N), be as in Theorem 9(b). Set

K = T−1
2 (ET ) (note that T−1

2 is well defined on ET ). Since ET is weakly compact

and T2 is weak-weak continuous, K is a weakly compact subset of ZT . For k ∈ N let

Qk : ZT → span{zTn : n 6 k} be the natural projection. Since (zTn )∞n=1 is shrinking

we may use [11, Lemma 2] (also see [12, Lemma B.10]) to conclude that

K ′ = K ∪
⋃
k∈N

Qk(K)

is weakly compact. Note that T2(K ′) is also weakly compact and

T2(K ′) = ET ∪
⋃
k∈N

T2(Qk(K)) = ET ∪
⋃
k∈N

Pk(ET ) =
⋃
k∈N

Pk(ET ) = WT .

This completes the proof. �

Corollary 21. Suppose Z is a complemented subspace of C(2N) and A ⊂ L(X,Z)

be an analytic collection of weakly compact operators (resp. a collection of operators

whose adjoints have separable range). Then there is a reflexive space (resp. space

with separable dual) ZA such that each T ∈ A factors through ZA.

4. Analytic collections of spaces

In this section we present generalizations of Theorems 1 and 2. Our goal is

to uniformly factor sets of operators of the form T : X → Y , where X and Y

are allowed to vary. Our previous results relied on the fact that both the set

of separable Banach spaces and the set of bounded operators between two fixed

separable Banach spaces can be naturally considered as standard Borel spaces.

However, the set of operators between separable Banach spaces which are allowed

to vary is not immediately realized as a standard Borel space. To get around this,

we will code operators using sequences.
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Let X,Y ∈ SB and define CX,Y ⊂ C(2N)N by

(wn)n∈N ∈ CX,Y ⇐⇒ wk ∈ Y ∀k ∈ N and (∀n,m, l ∈ N ∀q, r ∈ Q

dn(X) = qdm(X) + pdl(X) =⇒ wn = qwm + pwl) and

(∃K ∈ N ∀(ai)i ∈ Q<N ‖
∑
i

aiwi‖ 6 K‖
∑
i

aidi(X)‖).

The map defined by CX,Y 3 (wk)k∈N 7→ T ∈ L(X,Y ), where T is the unique

operator Tdn(X) := wn for each n ∈ N, is an isomorphism. Define L ⊂ SB×SB×
C(2N)N by

(X,Y, (wk)) ∈ L ⇐⇒ (wk)k∈N ∈ CX,Y .
Recall that Bossard [8] proved that the set {(Y, y) : y ∈ Y } is Borel in SB×C(2N).

Therefore, by counting quantifiers, the definition of CX,Y yields that L is a Borel

subset of SB × SB × C(2N)N. Thus L is a Standard Borel space.

Proposition 22. The following subsets of L are coanalytic.

W = {(X,Y, (wk)) ∈ L : the operator T ∈ L(X,Y ) defined by

Tdk(X) = wk for all k ∈ N, is weakly compact}

SR = {(X,Y, (wk)) ∈ L : the adjoint of the operator T ∈ L(X,Y ) defined by

Tdk(X) = wk for all k ∈ N has separable range}

Proof. In [6] it is proved that an operator T : X → Y is weakly compact if for every

bounded sequence (xn) in BX the image (Txn) does not dominate the summing

basis of c0. Let [N] denote the set of all infinite increasing sequences in N. This

gives us the following characterization of W

(X,Y, (wk)) ∈ W ⇐⇒ ∀(ki)i∈N ∈ [N], ∀n ∈ ∃(ai) ∈ Q<N,

‖
∑
i∈N

aiwki‖ <
1

n
sup
k∈N

∣∣∣∣∑
i>k

ai

∣∣∣∣.
Therefore W is coanalytic.

It remains to show that SR is coanalytic. As before it suffices to consider

triples (X,Y, (wk)n∈N) whose corresponding operators are norm at most 1. Call

this collection SR1. The proof follows the proof of Proposition 3 after making the

following changes to accommodate the triples (X,Y, (wk)) ∈ SR1. Let y∗ ∈ BY ∗
and (X,Y, (wk)) ∈ SR1. Define

f(X,Y,(wk)),y∗ =

(
y∗(wn)

‖dn(X)‖

)∞
n=1

∈ B`∞ .

and

K(X,Y,(wk)) = {f(X,Y,(wk)),y∗ : y∗ ∈ BY ∗}.
Finally, define D ⊂ L×B`∞ by

((X,Y, (wk)), f) ∈ D ⇐⇒ f ∈ K(X,Y,(wk)).
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As before, D is Borel and the map Φ : L → K(B`∞) defined by Φ((X,Y, (wk)) =

K(X,Y,(wk)) is Borel with

(X,Y, (wk)) ∈ SR ⇐⇒ Φ((X,Y, (wk))) = Σ.

Thus, SR is coanalytic. �

Notation 2. In this new setting we make set the following notation. Note that in

most cases we are simply replacing T by (X,Y, (wk)).

(a) Let (X,Y, (wk)) ∈ L. Denote by (y
(X,Y,(wk))
n )n∈N a normalized basis of

Y that depends on (X,Y, (wk)) and for m ∈ N, let P
(X,Y,(wk))
m : Y →

[y
(X,Y,(wk))
n : n 6 m] be the natural projection.

(b) Let y0 ∈ C(2N) be the sum of a function that separates points and the

constant function 1. Define

E(X,Y,(wk)) := co({wk}k∈N ∪ {±y0}).

(c) Define

W(X,Y,(wk)) =
⋃
m∈N

P
(X,Y,(wk))
m (E(X,Y,(wk))).

The set W(X,Y,(wk)) is closed, bounded, convex and symmetric. Also,

P
(X,Y,(wk))
k (W(X,Y,(wk))) ⊂W(X,Y,(wk)) for each k ∈ N.

(d) Let

Z(X,Y,(wk)) = {z ∈ Y :

∞∑
m=1

‖z‖2Wm
(X,Y,(wk))

<∞}

‖z‖(X,Y,(wk)) =

( ∞∑
m=1

‖z‖2Wm
(X,Y,(wk))

) 1
2

.

The next lemmas, which we state without proof, are analogous to Lemmas 10

and 13.

Lemma 23. Let B ⊂ L be Borel and suppose the map B 3 (X,Y, (wk)) 7→
(y

(X,Y,(wk))
n )n∈N ∈ C(2N)N is Borel. Then the following hold:

(a) The map B 3 (X,Y, (wk)) 7→ E(X,Y,(wk)) ∈ F (C(2N)) is Borel.

(b) The map B 3 (X,Y, (wk)) 7→ W(X,Y,(wk)) ∈ F (C(2N)) is Borel. Moreover,

for each m ∈ N the map B 3 (X,Y, (wk)) 7→ Wm
(X,Y,(wk)) ∈ F (C(2N)) is

Borel.

(c) The map B × Y 3 ((X,Y, (wk)), y) 7→ ‖y‖Wm
(X,Y,(wk))

is Borel.

Lemma 24. Let B ⊂ L be Borel and B 3 (X,Y, (wk)) 7→ (y
(X,Y,(wk))
n )n∈N ∈ Y N be

a Borel map. The set

Z = {((X,Y, (wk)), E) ∈ B × SB : E is isometric to Z(X,Y,(wk))}.

is analytic in L × SB.
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A quick note concerning this lemma is in order. The first step in the proof is to

consider the the set Fu defined below

Fu = {((X,Y, (wk)), (xn)) ∈ B × C(2N)N : (z(X,Y,(wk))
n ) is 1-equivalent to (xn)}.

Reasoning as in the proof of Lemma 13, Fu is Borel. To see that Z is analytic

observe that

((X,Y, (wk)), E) ∈ Z ⇐⇒ ∃(xn) ∈ C(2N) with [xn] = E

and ((X,Y, (wk)), (xn)) ∈ Fu.
(2)

We can now state and prove our main theorem of this section.

Theorem 25. Set

WC(2N) = {(X,Y, (wk)) ∈ W : Y is isomorphic to C(2N)}

SRC(2N) = {(X,Y, (wk)) ∈ SR : Y is isomorphic to C(2N)}

Suppose that A is an analytic subset of WC(2N) (resp. SRC(2N)). Then there is a

separable reflexive Banach space with a basis (resp. space with a shrinking basis)

Z such that for each (X,Y, (wk)) ∈ A the operator T defined by Tdn(X) = wn for

each n ∈ N, factors through Z.

Proof. We will sketch the proof for WC(2N), the proof in the case of SRC(2N) is

analogous. Let A ⊂ WC(2N) be analytic. Proposition 22 and Lusin’s theorem [22,

Lemma 18.1] together tell us that WC(2N) is coanalytic and that there is a Borel

subset B of WC(2N) such that A ⊂ B. The goal is is apply Lemma 24. Following

along the same route we tracked out in the proof of Theorem 2 we can find for

each (X,Y, (wk)) ∈ WC(2N) a basis (y
(X,Y,(wk))
n )n∈N of C(2N) such that the map

(X,Y, (wk)) 7→ (y
(X,Y,(wk))
n )n∈N is Borel, as desired by Lemma 24. Again, using

the same argument, we claim that for (X,Y, (wk)) ∈ WC(2N) the space Z(X,Y,(wk))

(defined above) is reflexive with a basis. Applying Lemma 24 yields that

ZB = {Z ∈ B : ∃(X,Y, (wk)) ∈ B, Z(X,Y,(wk)) = Z}.

is analytic. Therefore, using the same procedure as in the proof of Proposition

14 we obtain a reflexive space ZB such that every operator T coded by a triple

(X,Y, (wk)) ∈ B factors through ZB. �

5. Applications

x In this section we provide several consequences of our uniform factorization

results. In [6] several examples are given of Banach spaces X and Y such that the

space of weakly compact operators from X to Y is coanalytic but not analytic.

For example, let U be the separable Banach space of Pe lczyński which contains

complemented copies of every Banach space with a basis. It is shown in [6] that

the set of weakly compact operators on U is coanalytic but not Borel. In terms of

factorization, we have the following.
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Proposition 26. There does not exist a separable reflexive space Z such that every

weakly compact operator from U to C(2N) factors through Z. In particular, the set

of weakly compact operators from U to C(2N) is not analytic.

Proof. Let ξ be a countable ordinal and let Xξ be the Tsirelson space of order ξ.

For our purposes we just need that Xξ is a reflexive Banach space with a basis and

has Szlenk index ωξω [28]. We consider Xξ as a complemented subspace of U and

let Pξ : U → Xξ be a bounded projection from U onto Xξ. Let iξ : Xξ → C(2N)

be an embedding of Xξ. The operator iξ is weakly compact as Xξ is reflexive, and

hence the operator Tξ := iξ ◦Pξ is weakly compact. If there was a Banach space Z

with separable dual such that for all countable ordinals ξ the operator Tξ factored

through Z, then, since iξ is an isometry, Z would contain an isomorphic copy of

Xξ for all countable ordinals ξ. This would imply that the Szlenk index of Z is

uncountable which contradicts that Z has separable dual [29]. �

Proposition 27. There exists a Banach space Y with a shrinking basis such that

there does not exist a separable reflexive Banach space Z so that every weakly com-

pact operator on Y factors through Z. In particular, the set of weakly compact

operators on Y is not analytic.

Proof. Consider the collection Aωω of all shrinking basic sequences whose closed

linear spaces in C(2N)N have and Szlenk index less than or equal to ωω. It is shown

in [8] that Aωω is an analytic subset of C(2N)N. Using Theorem 8 there is a Banach

space Y with a shrinking basis such that for each X in Aωω there is a complemented

subspace of Y isomorphic to X. Now let ξ be a countable ordinal and let Xξ be the

Tsirelson space of order ξ. For this proof, we just need that Xξ is a reflexive Banach

space with a basis and, Szlenk index ωξω and that X∗ξ has Szlenk index at most ωω

[28]. Thus X∗ξ is isomorphic to a complemented subspace of Y . We consider X∗ξ as

a complemented subspace of Y and let Pξ : Y → X∗ξ be a bounded projection from

Y onto X∗ξ . Let iξ : X∗ξ → Y be the identity on X∗ξ . The operator iξ is weakly

compact as Xξ is reflexive, and hence the operator Tξ := iξ ◦Pξ is weakly compact.

If there was a reflexive Banach space Z such that for all countable ordinals ξ the

operator Tξ factored through Z, then, since iξ is an isometry, Z would contain an

isomorphic copy of X∗ξ for all countable ordinals ξ. Thus, Xξ would be a quotient

of Z∗ for all countable ordinals ξ. This would imply that the Szlenk index of Z∗ is

uncountable which contradicts that Z is reflexive [29]. �

In contrast to the negative results of Proposition 26 and Proposition 27, we have

the following theorem.

Theorem 28. Let X be a Banach space with a shrinking basis such that X∗∗ is

separable. The set of weakly compact operators on X is a Borel subset of L(X). In

particular, there exists a reflexive Banach space Z such that every weakly compact

operator on X factors through Z.
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Proof. Let (xk)∞k=1 be a shrinking basis forX with biorthogonal functionals (x∗k)∞k=1,

and let D ⊂ X∗∗ be dense. We denote the set of weakly compact operators on X

by W(X). By Gantmacher’s Theorem, an operator T ∈ L(X) is weakly compact if

and only if T ∗∗(X∗∗) ⊆ X. In particular,

(3) T ∈ W(X)⇔ T ∗∗f ∈ X ∀f ∈ D.

Since (xk)∞k=1 is a w∗−basis for X∗∗,

(4) f = w∗ − lim
n→∞

n∑
i=1

x∗i (f)xi for all f ∈ X∗∗.

Thus, we have for all f ∈ X∗∗ that

(5)

T ∗∗f ∈ X ⇔ T ∗∗f = ‖·‖− lim
n→∞

n∑
k=1

x∗k(T ∗∗f)xk ⇔ lim
M→∞

lim
N→∞

∥∥∥∥∥
N∑

k=M

x∗k(T ∗∗f)xk

∥∥∥∥∥ = 0

Note that T ∗∗(x) = T (x) for all x ∈ X. Since T ∗∗ is w∗ to w∗ continuous,

T ∗∗f = w∗ − lim
n→∞

n∑
i=1

x∗i (f)T (xi) for all f ∈ X∗∗.

Hence, for all k ∈ N, we have that

x∗k(T ∗∗f)xk = lim
n→∞

x∗k

(
n∑
i=1

x∗i (f)T (xi)

)
xk.

Substituting into (5) gives,

T ∗∗f ∈ X ⇔ lim
M→∞

lim
N→∞

lim
n→∞

∥∥∥∥∥
N∑

k=M

x∗k

(
n∑
i=1

x∗i (f)T (xi)

)
xk

∥∥∥∥∥ = 0

Thus, W(X) is Borel by 3.

�

Let J be the quasi-reflexive space of James [19]. Laustsen [24, Theorem 4.3]

proved the following result by constructing the required space. As J has a shrinking

basis and J∗∗ is separable, we obtain it as a corollary of Theorem 28.

Proposition 29. There is a reflexive space Z such that every weakly compact

operator on J factors through Z.

In [25], Lindenstrauss showed that for each separable Banach space X there is

a separable Banach space Y such that Y ∗∗/Y is isomorphic to X. In particular,

the space Y has separable bidual. Therefore, Theorem 28 yields that whenever Y

has a shrinking basis, every weakly compact operator on Y factors through a single

reflexive space.

Proposition 30. Let X and Y be separable Banach spaces. Then every closed

norm-separable set S of weakly compact operators is Borel in the strong operator

topology.
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Proof. Let (Tk)k∈N be a dense subset of S and (dk)k∈N be dense in BX . Then

T ∈ S ⇐⇒ ∀m ∈ N, ∃k ∈ N such that ∀j ∈ N, ‖(T − Tk)dj‖ <
1

m
.

From this characterization it follows that S is Borel. �

One corollary of Proposition 30 is that if X∗ or Y has the approximation prop-

erty, then the set of compact operators from X to Y is Borel. In [20] Johnson

proved that there is a space ZK such that every operator which is the uniform

limit of finite rank operators (independent of the spaces X and Y ) factors through

ZK . In particular this implies that whenever either X∗ or Y has the approximation

property every compact operator from X to Y factors through ZK . Johnson and

Szankowski [21] proved that there is no separable Banach space such that every

compact operator factors through it. The following result follows from Proposition

30 and Theorem 1 and is a weaker version of Johnson’s Theorem.

Corollary 31. If Y is Banach space with a shrinking basis or is isomorphic to

C(2N) then there exists a reflexive space Z such that if X is a separable Banach

space with the approximation property then every compact operator from X to Y

factors through Z.

Proof. Let Y either be a Banach space with a shrinking basis or be isomorphic to

C(2N). By Proposition 30 and Theorem 1, there exists a reflexive Banach space

Z such that every compact operator from U to Y factors through Z. If X is a

separable Banach space with the approximation property then X is isomorphic

to a complemented subspace of U . Every compact operator from X to Y has a

compact factorization through U and hence factors through Z as well. �

Proposition 32. There exists a separable hereditarily indecomposable Banach space

X, with HI dual and non-separable bidual, and a reflexive Banach space Z such that

every weakly compact operator on X factors through Z.

Proof. In [1] the authors construct an HI space X with a shrinking basis such that

X∗ is HI and X∗∗ is non-separable and on which every operator is a scalar multiple

of the identity plus a weakly compact operator. Once again it suffices to show that

the set of weakly compact operators on X is Borel. In [1] they prove that each

weakly compact operator on X is strictly singular. It is shown in [4] that when the

strictly singular operators have codimension-one in L(X) they are a Borel subset.

It follows that the set of weakly compact operators on X is a Borel subset of L(X).

Hence, we may apply Theorem 1. �
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