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ABSTRACT. For any closed subset F of [1,00] which is either finite or
consists of the elements of an increasing sequence and its limit, a reflexive
Banach space X with a 1-unconditional basis is constructed so that in
each block subspace Y of X, ¢, is finitely block represented in Y if and
only if p € F. In particular, this solves the question as to whether the
stabilized Krivine set for a Banach space had to be connected. We also
prove that for every infinite dimensional subspace Y of X there is a
dense subset G of F' such that the spreading models admitted by Y are
exactly the ¢, for p € G.

1. INTRODUCTION

In the past, many of the driving questions in the study of Banach spaces
concerned the existence of “nice” subspaces of general infinite dimensional
Banach spaces. Finding counterexamples to these questions involved devel-
oping new ideas for constructing Banach spaces. B. Tsirelson’s construction
of a reflexive infinite dimensional Banach space which does not contain ¢,
for any 1 < p < oo [T] and W.T. Gowers and B. Maurey’s construction
of an infinite dimensional Banach space which does not contain an uncon-
ditional basic sequence [GM] are two important examples. On the other
hand, after Tsirelson’s construction, J-L. Krivine proved that every basic
sequence contains ¢, for some 1 < p < oo finitely block represented [K]
(where the case p = oo refers to ¢p), and it is not difficult to show that every
normalized weakly null sequence in a Banach space has a subsequence with
a l-suppression unconditional spreading model. Thus, though we cannot
always find these properties in infinite dimensional subspaces, they are still
always present in certain finite block or asymptotic structure.
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In his paper on Krivine’s Theorem, Rosenthal proved that given any Ba-
nach space, the set of p’s such that ¢, is finitely block represented in the
Banach space can be stabilized on a subspace [R] (for a simplified proof of
the stability result see also [M, page 133]). That is, given any infinite dimen-
sional Banach space X, there exists an infinite dimensional subspace Y C X
with a basis and a nonempty closed subset I C [1, 0] such that for every
block subspace Z of Y, ¢, is finitely block represented in Z if and only if
p € I. Rosenthal concluded his paper by asking if this stabilized Krivine set
I had to be a singleton. E. Odell and Th. Schlumprecht answered this ques-
tion by constructing a Banach space X with an unconditional basis which
had the property that every unconditional basic sequence is finitely block
represented in every block sequence in X [OS1]. Thus, the stabilized Kriv-
ine set for this space is the interval [1,00]. Later, Odell and Schlumprecht
constructed a Banach space with a conditional basis which had the property
that every monotone basic sequence is finitely block represented in every
block sequence in X [OS2]. At this point, the known possible stabilized
Krivine sets for a Banach space are singletons and the entire interval [1, co.
P. Habala and N. Tomczak-Jaegermann proved that if 1 < p < ¢ < oo and
X is an infinite dimensional Banach space such that ¢, and ¢, are finitely
block represented in every block subspace of X then X has a quotient Z so
that every r € [p, q| is finitely block represented in Z [HT]. They then asked
if the stabilized Krivine set for a Banach space is always connected [HT],
which was later included as problem 12 in Odell’s presentation of 15 open
problems in Banach spaces at the Fields institute in 2002 [O]. We solve the
stabilized Krivine set problem with the following theorem.

Theorem. Let F' C [1,00] be either a finite set or a set consisting of an
increasing sequence and its limit. Then there exists a reflexive Banach space
X with an unconditional basis such that for every infinite dimensional block
subspace Y of X:

(i) For all 1 < p < oo, the space £, is finitely block represented in Y if
and only if p € F.
(ii) If F is finite then the spreading models admitted by Y are exactly
the spaces £, for p € F'.
(iii) If F' is an increasing sequence with limit p,, then every spreading
model admitted by Y is isomorphic to £, for some p € F' and for
every p € F'\ {pu} ¢, is admitted as a spreading model by Y.

This theorem is somewhat surprising in that the corresponding question
for finite representability instead of finite block representability is very dif-
ferent. Indeed, if ¢, is finitely representable in a Banach space X for some
1 < p < 2 then ¢, is finitely representable in X for all r € [p,2]. However,
for 2 < p < oo the Banach space ¢, is finitely representable in ¢, if and only
if r =2 or r = p. Thus the position in [1,00] of the set F' of p’s that are
finitely represented in a space X determines whether F' is an interval.
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Our results show that in the case of block finitely represented, the position
of F' in the interval [1, c0] does not matter.

Theorem 1 also solves several open questions on spreading models raised
by G. Androulakis, E. Odell, Th. Schlumprecht, and Tomczak-Jaegermann
[AOST]. They asked in particular the following three questions: Does there
exist a Banach space so that every subspace has exactly n many different
spreading models? Does there exist a Banach space so that every subspace
has exactly countably infinitely many different spreading models? If a Ba-
nach space admits ¢; and ¢y spreading models in every subspace must it
admit uncountably many spreading models? In [AM2], S.A. Arygros and
the third author have constructed a space so that every subspace admits
every unconditional basis as a spreading model. In [ABM], S.A. Argyros
with the first and third named authors created a Banach space such that
every infinite dimensional subspace admits exactly two spreading models up
to isomorphism, namely ¢1 and ¢y. Theorem 1 includes the case that F' is
an increasing sequence and its limit, and so it is natural to question if the
case of a decreasing sequence is possible. However, B. Sari proved that if
a Banach space admits a countable collection of spreading models which
form a strictly increasing sequence in terms of domination, then the Banach
space admits uncountably many spreading models [S]. Thus, Theorem 1
(iii) would be impossible in the case that F' is a decreasing sequence and its
limit as the spaces {{}pcr would include an increasing sequence in terms
of domination.

Given a Banach space X with a basis, one may consider the set of all
p’s, such that ¢, is admitted as a spreading model by X. Although this
set may fail to coincide with the Krivine set of the space, or may even be
empty [OS1], it is always contained in the Krivine set. Therefore, for a given
subset F of [1,00] when constructing a space X, one way to ensure that F’
is contained in any stabilized Krivine set of X, is to have ¢, admitted as a
spreading model by every subspace of the space for every p € F'. For any
single 1 < p < oo, Tsirelson’s method allows one to build a reflexive space
not containing ¢, that is asymptotic ¢£,. Every spreading model admitted by
this space is isomorphic to £, and the Krivine set of every infinite dimensional
subspace is the singleton {p}. In this paper, for any finite set of p’s, we build
a space with exactly these £,’s hereditarily as spreading models and exactly
these p’s hereditary as Krivine p’s. Moreover, for any increasing sequence
of p’s we get almost the same result. In this case, the only caveat is that,
although the basis of the space X admits only the limit p as a spreading
model, we did not prove that the limit p is admitted in every subspace.

In the case of two distinct p’s, our construction is rooted in the convexified
Tsirelson’s spaces in the sense of T. Figiel and W.B. Johnson’s description
[FJ] and the work of Odell and Schlumprecht [OS1], [OS2]. The methods we
follow are based on the ones from [ABM]. In particular, for the simplest case
of F' = {1, 00}, our construction reduces to a small modification of the space

.’{é ,» Which is the simplest case of the construction defined in that paper,
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and in which it is shown that %(1) , admits only ¢ and ¢; spreading models
in every subspace. In recent literature, the spaces in [OS1], [0S2], [ABM],
[AM1] and [AMZ2] are referred to as Tsirelson spaces with constraints or
multi-layer Tsirelson spaces. For the sake of understanding our construction
in the simplest case F' = {1,000}, the norm satisfies the following implicit

equation for x € cyg:

1 n
lzll = llzllo v sup 5 > | Bifm,.
i=1

where the supremum is over successive intervals (E;)!_; and (m;)}_; with
(min B;)?_, € S, min E; > (max E;_1)? and m; > max E;_1,

and for each m € N,
1 m
el = gm0 3 1l
1=

where the supremum is over successive intervals (F;)!",. These m-norms
and the way they are combined above are the previously mentioned con-
traints. Since the constraints are based on averages, local and asymptotic
co structure occurs in every subsapce. Furthermore, in contrast to Tsirelson
space, which has homogeneous asymptotic ¢; structure, the above construc-
tion hereditarily provides both #; and ¢y local and asymptotic structure.

In the case that FF = {p; < -+ < p,} C [1,00] we present a space X,
admitting hereditarily ¢,,,...,£p, asymptotic structure and nothing more.
For this purpose we define a new norm, which has n-many layers, each one
corresponding to an ¢p, structure, for k = 1,...,n. The base layer corre-
sponds to the ¢, norm, while for Kk =1,...,n—1 the kt" layer corresponds
to norm ¢,, and it is defined using the previous layers. To avoid the domi-
nation of some of these layers over the rest, to each of these layers, except
for the basic one, some constraints have to be applied. The constraints are
based on p/,-averages, where p/, is the conjugate exponent of p;,.

When F consists of an increasing sequence (pg ) and its limit p,,, count-
ably many layers of the norm are used. In this case, the norm || - || of the
space is defined through the following formulas. We state here the implicit
equations for the norms for the sake of giving insight into our construction,
but we will actually use a different definition in Section 3 in terms of norming
functionals. For 0 < 6 < 1/4 and z € ¢gp(N) we define:

d 1/pw

1 m
lall = Osup | Y- Bl | and o = Osup —0m 3 | Byl
q=1 q=1

where both suprema are are taken over all d € N and successive intervals
(Eq)gz1 of the natural numbers. These | - ||o,» norms are the constraints
applied to the norm of the space. If for some k > 0 the norms || - ||;, have
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been defined for every 0 < i < k and m € N, for z € coo(N) and m € N we
define:

d 1/pk
|z llkm = Osup | D [ Bz,
qg=1
where the supremum is taken over alld € N, 0 < i, < kforg=1,...,d and
(Eq)g:p (mq,)g:1 which satisfy certain growth conditions depending on m.

The norm of the space satisfies the following implicit equation:
2]« = max {||z]loc, [[#[lw, sup{l|@|lm : k,m e N}}.

Using the above description of the norm, it is easy to see that any block
sequence in our space satisfies a lower £, estimate with constant 6. Likewise,
in section 4 we prove that any block sequence satisfies an upper £, estimate
with constant 2. In the case F' is finite with F' = {p; < --- < p,} then the
norm of the space satisfies the same formula, where p,, is replaced with p,.

The paper is organized as follows. In section 2 we give a few preliminary
definitions. Section 3 contains the definition of the spaces. In section 4
we set notation that we will use in our subsequent evaluations and prove
upper and lower estimates on normalized block sequences. In sections 5 and
6 we prove the spaces have the desired spreading model structure. Finally,
in section 7 we show that in every block subspace the only Krivine p’s are
those admitted as spreading models.

The majority of the research included in this paper was conducted while
the first two authors where visiting the National Technical University of
Athens. We sincerely thank Spiros Argyros for his hospitality and enlight-
ening conversations.

2. PRELIMINARIES

We begin with some preliminary definitions. Two basic sequences (x;)
and (y;) are C-equivalent for some C' > 1 if \@_IH doaizil] < || aiyi| <
VC||' Y aizi|| for all scalar sequences (a;). A basic sequence (e;)%2, is finitely
block represented in a basic sequence (x;):°, if for all N € N and € > 0 there
exists a finite block sequence (y;)XY; of (2;)2, which is (14 ¢)-equivalent to
(e;)¥,. For 1 < p < oo, we say that ¢, is finitely block represented in ()32,
if the unit vector basis of ¢, is finitely block represented in (z;)5°; (where
we use the case p = co to mean ).

We say that a basic sequence (e;):° is a spreading model of a basic se-
quence (z;)°, if for all finite sequences of scalars (a;)_; we have that

n n
I aieill = lim o lim (1D o
=1 =1

We say that a Banach space X admits (e;)5°, as a spreading model if (e;)5°,
is equivalent to a spreading model of some basic sequence in X. We say that
X admits £, as a spreading model if X admits a spreading model equivalent
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to the unit vector basis for £,. In the literature, the basic sequence (e;):°; as
well as the Banach space formed by its closed span are both often referred
to as spreading models.

3. THE DEFINITION OF THE SPACE X.

In this section we give the definition of the norming set of the space
X. We apply a variation of the method of saturation under constraints,
introduced by Odell and Schlumprecht in [OS1], [OS2]. The way this method
is applied is similar to the one in [ABM] and it allows £, structure to appear
hereditarily in the space, for a predetermined set of p’s, which is either finite
or consists of an increasing sequence and its limit.

Notation. Let G be a subset of c¢oo(N).

(i) A finite sequence ( fq)gzl of elements of G' will be called admissible
if f1 <---< fgand d < minsupp fi.

(ii) Assume that (f;), is a sequence of functionals in G, and each func-
tional f, has been assigned a positive integer s(f,), called the size of
fq- Then (f,), will be called very fast growing if (maxsupp f,—1)? <
min supp f, and s(f,;) > maxsupp f,—1 for all ¢ > 1.

Let & € [2,w] and let F' = {py : 1 <k < &}U{pe, } C [1,00] with py T pe,
in the case that {o = w and p; < p2 < -+ < pgy—1 < pg, otherwise.

We now define the norming set of the space X. We do so inductively
by defining an increasing sequence of subsets of coo(N). To some of the
functionals that we construct we shall assign an order, a size or both. Fix a
positive real number 0 < 6 < 1/4. Let Wy = {+£e]}jen. To the functionals
in Wy we don’t assign an order or size. Assume that for some m € NU {0}
the set W), has been defined, below we describe how the set Wy, 41 is defined.

Functionals of order-0, or of order-£,. Define

d d
/
W= 9§ cqfgr L < o< fa € Wi, § el <1
g=1 q=1

A functional f =6 23:1 cqfq as above will be called of order-0. In some
cases, for convenience these functionals shall also be referred to as functionals
of order-&y.

If a functional f of order-0 has the form f = 637 (1 /n) /P £, with
d < n, then the size of f is defined to be s(f) = n. If a functional f of
order-0 is not of this form then we do not assign any size to it.

If m+1 =1 then we define W7 = WyuU WP , otherwise m+1 > 2 and we
shall include more functionals in Wy, 1, as described below.
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Functionals of order-k, with 1 < k < &. Define

d d
Wk = {HZcqfq : Z ]cq|p;c <1, (fq)gzl is an admissible and very
q=1 q=1
fast growing sequence of functionals in W,,, each one

of which has order strictly smaller than k‘}

A functional f = 923:1 cqfq as above will be called of order-£ with size
s(f) =min{s(fy) : ¢=1,...,d}.

If ¥ =1 and p; = 1, we replace the condition Zgzl |cq\p/1 < 1 with
the condition max{|cs| : ¢ = 1,...,d} < 1. Note that if & is finite and
&0 = ko + 1, then very fast growing sequences of functionals of order-ky are
not used. Observe also that some functionals may be of more than one order
or have multiple sizes, however, this shall not cause any problems.

Ifm+1 22, let Wy = (Upckega Wi 1) UWi and W = U_ Wi, The
space X is the completion of cyo(N) under the norm induced by W, i.e. for
x € ¢op(N) the norm of z is equal to sup{|f(x)|: f € W}.

Remark 3.1. The following are clear from the definition of the norming
set.

(i) For every fi < --- < fq in W and real numbers (cq)fll:1 with

Zgzl Icqo ]p,fo < 1, the functional f =6 Zgzl Ccqfq is also in W.

(ii) For every 1 < k < & and every admissible and very fast growing
fi1 <+ < fgin W each one of which has order strictly smaller than
k and real numbers (cq)gzl with 22:1 g [Pk < 1, the functional

f= Hijzl Cqfq is also in W.

Remark 3.2. For every f € W and subset E of the natural numbers, we
have that f|g, the restriction of f onto E, is also in W. In particular, if f
is of order-k, then f|g is also of order-k and s(f|g) = s(f). One can also
check that the norming set W is closed under changing signs, i.e. if f € W
and g is such that |f| = |g|, then g is also in W. Therefore, the unit vector
basis of ¢go(N) forms a 1-unconditional basis for X.

Recall that functionals of order-0 are also called functionals of order-&y.

Remark 3.3. For every m > 0, 1 < ¢ < & and f € W,,, which is of
order-(, there exist f; < --- < fgin W,,,_1 and real numbers cy, ..., cq with
Soa_i leglPs < 1 such that f = 030 cof,. If moreover ¢ =k < &, then
( fq)g:1 is an admissible and very fast growing sequence of functionals, each
one of which has order strictly smaller than k.

Before proceeding to the study of the properties of the space X, let us
briefly explain the ingredients of the norming set W, without getting into
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too many details. If 1 < & < w and we have determined a set F' = {p; <
o+ < pgyt C [1,00], then every element f of the norming set falls into one
of the following three categories:

(i) The functional f is an element of the basis, i.e. f € {£e;},.
(ii) The functional f is of order-0, i.e. f =6 23:1 cqfq where f1 < --- <
fa4 can be any successive elements of the norming set, combined with

coefficients (cq)q in the unit ball of Eplé .
0

(iii) The functional f is of order-k with 1 < k < p, i.e. f =146 2221 cqfq
where the sequence f; < --- < f; are successive elements of the
norming set satisfying certain constraints, while the coefficients (¢;),
are in the unit ball of EPZ-'

The functionals of order-0 provide €p§0 structure to the space and, since
the ep&o is the smallest of the £, norms for p € F', their construction is not
subject to any constraints. On the other hand, for 1 < k < &, the func-
tionals of order k provide £, structure. One has to define these functionals
carefully, in order not to demolish the desired £, structure, for k < ¢ < &.
This is the role of the constraints, which become more restrictive as k be-
comes smaller.

One can verify that the norm induced by the norming set W is alterna-
tively described by the implicit formula given in the introduction.

4. BASIC NORM EVALUATIONS ON BLOCK SEQUENCES OF X.

In this section we prove a simple, but useful, lemma and we also prove that
block sequences in X have an upper /,,, estimate and a lower EPSO estimate.
We start with some notation, which in conjunction with the next lemma,
will be used frequently throughout the paper. Here, the range of a vector is
the smallest closed interval containing the support.

Notation. Let 1 < --- < x,, be a finite block sequence in X and f =
0 Z;l:l cqfq be a functional of order-¢, 1 < ¢ < §p. Define the following :

Ay = {ge{l,...,d}:ran fyNranz; # @ for at most one 1 < j < m},
Ay = {1,...,d}\ Ay,
B = {je{l,...,m}: there exists ¢ € A; with ran f, Nranz; # &}
A{ = {¢g€ A :ran fyNranz; # @} for j € B,
C; = H(cq)qu{ . for j € B,

p

¢
g = 0 Z (cq/Cj)fq for j € B and
qEA{
E, = {je{l,...,m}: ran fyNranz; # &}, for g € As.
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The following lemma follows immediately from our choice of notation. As
in Remark 3.3, here we also use the fact that order-0 functionals can be
referred to as order-§y functionals.

Lemma 4.1. Let 21 < ... < x,, be a finite block sequence in X and f =
0 Zj:l cqfq be a functional of order-¢ for some 1 < ¢ < &. The functionals

(9j)jeB are order-¢ functionals in W, we have that (3 C’pC)l/pC <1, and

the following holds:

(1) |f Zﬂfj < ZCj|gj($J +0 Z’Ctﬂ Z%
j=1

jEB qEA2 JEE,

j€B

Moreover, if Ay = {¢1 < --- < ¢} then maxF,, < minFE,,, , for i =
L,...,r—1 and max F;, < minFE,,_, for e = 1,...,r — 2. Thus, for each

1 < j < m there exists at most two sets F, such that xj € Fy.

Note that applying Holder’s inequality to (1), gives the following inequal-
ity, which in most cases will be more convenient for us than (1).

(2) f Em::rj < H(gj(xj))jEBHZ 4 +9H<fq(z wj))qu ’
i=1 ’ o

JEE, ¢

Proposition 4.2. Let 1 < --- < a2, be a normalized finite block sequence
in X and ();)7; be scalars. The following holds:

Ol il < <2l ()il

Proof. We first prove the lower inequality. Note that this is trivial in the
case that pg, = 0o , thus we assume that pg, < co. For each j € {1,...,m}
find f; so that fj(x;) = 1 and supp f; = supp ;. Without loss of generality,
we may assume that (37, |Ai|Pé0)YPo = 1 and A; > 0 for all 1 < i < m.

Thus, 0377, |)\j\p50/pl€o f; € W. Therefore

imj QZM [P<o/Peo £ (ZA x) —6<ZM !pf()) = 0.
j=1

The upper inequality clearly follows from the following claim that we will
prove by induction on n € N. For all n € NU {0} and f € W, (see Remark
3.3) we have

1/p1

3) f(ZAjwj) <2 (S
j=1 j=1



10 K. BEANLAND, D. FREEMAN, AND P. MOTAKIS

The case of f € Wy = {=ej} is trivial. Assume that the above holds for
some n > 0. Let f € Wyy1. Then f = 92321 cqfq is of order-¢ and
fi<--- < fqarein in W, and Zgzl ]cq]p/C < 1.

By (2) after Lemma 4.1 then applying the inductive hypothesis, we obtain
the following:

" 1/p¢ P\ 1/p¢
FO N < [ Dol +o | D 1| D Ny
Jj=1 JjEB q€A2 jEE,
1/p¢ pc/P1 1/p¢
(4) < [ D0 e +20 [ Y[ D Iyl
JjEB qgeA2 \jEE,

By the last part of Lemma 4.1, for each j there exists at most two distinct
q € Ay such that j € E,. This fact together with p; < p¢ imply that

pe/p1 1/p¢ . 1/p1

I DN D BIPYE SR DIPYE

qE€A2 \JEE, J=1

Combining relations (4) and (5) together with 0 < 6 < 1/4, we obtain the
desired bound in (3).
O

5. SPREADING MODELS OF X.

In this section we define the a-indices in a very similar manner as they
have been defined in [ABM], [AM1] and [AM2]. Although previously the a-
indices were used to describe the action of certain averages of functionals on
a block sequence, in our case this is not exactly the same. Here, the indices
are used to study the action of functionals of a certain order on a block
sequence. However, the principle is the same and we retain this notation.
As is the case in these papers, the indices determine the spreading models
admitted by a block sequence in the space X. As a consequence we prove
that every spreading model admitted by a weakly null sequence in X must
equivalent to the unit vector basis of £, for some ¢ € 1, &ol.

Definition 5.1. Let (z;); be a block sequence in X and let 1 < k < &.
Assume that for every very fast growing sequence (f;), of functionals in W,
each one of which has order strictly smaller than k, and every subsequence
(xj,)i of (z;); we have that lim; | f;(x;,)| = 0. Then we say that the aj-index
of (z;); is zero and write a<i{(x;);} = 0. Otherwise we write acp{(x;);} >
0.

Remark 5.2. Let (z;); be a block sequence in X and 1 < m < k < §. If
ac<k{(z;);} = 0 then also a«p{(z;);} =0.
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The following characterization has appeared in similar forms in [ABM],
[AM1] and [AM2]. We omit the proof as it is simple and straightforward.

Proposition 5.3. Let 1 < k < {p and (z;); be a block sequence in X. The
following assertions are equivalent:
(i) acf{(z;);} = 0.
(ii) For every € > 0 there exist jo,i9 € N such that for every f € W
of order strictly smaller than k with s(f) > ip and every j > jo we
have that |f(z;)| < e.

Lemma 5.4. Let 1 <k < and (x;); be a bounded block sequence in X
such that a«p{(x;);} > 0. Then (z;); has a subsequence with a spreading
model that dominates the unit vector basis for £, . That is, there exists
€ > 0 and a subsequence (z;,); of (z;); such that for every natural numbers
m < ip < -+ < i, and every real numbers Ay, ..., A, the following holds:

m
E :/\tsz‘t
t=1

Z e [|(Ao)elly,, -

Proof. By the definition of the a.j, index, there exists ¢’ > 0, a subsequence
of (z;);, again denoted by (z;); and a very fast growing sequence (f;); of
functionals of order strictly smaller than k, such that |f;(z;)| > ¢’ for all
J € N. We may also assume that ran f; C ranx; for all j € N. Set ¢ = ¢’
and note that for every m < j; < --- < jp, and every real numbers (¢;);™;
with 37 |ei/Pk < 1 the functional f = 031", ¢;f;, is of order-k. Let
m < j1 < -+ - < Jm, be natural numbers and Ay, ..., A, be real numbers. We
have the following estimate:

Z)\twjt > sup {Qthfjt (Z )\txjt> : Z lee|P < 1}
t=1 t=1 t=1

t=1

m m

sup {92 el - (g ) ek < 1}
t=1 t=1

0<’ sup {Z lceAe] Z oo < 1}

t=1 t=1

m 1/pk
= £ (Z )\t‘pk> .
t=1

Lemma 5.5. Let (x;); be a normalized block sequence and 2 < ¢ < & such
that a<ip{(x;);} = 0 for every 1 < k < (. Then (z;); has a subsequence
with a spreading model that is 2-dominated by the unit vector basis for £, .
In particular, there exists a subsequence (xj,); of (x;); such that for every

WV

O
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natural numbers m < i1 < --- < i, and every real numbers Aq,..., A, the
following holds:

Z )\tlet

< 3 [(Me)e ||e

Proof. We first consider the case in which ( is finite, i.e. ( = k' + 1 with
1<K < &o-

Using Proposition 5.3 we pass to a subsequence, again denoted by (z;);
such that for any 5 > jo > 2 and any f € W of order strictly smaller than
k' with s(f) > minsupp z;, we have that

. -1

(6) |f (z5)] < (jo max supp zj, 1)

We will show by induction on n, where W = U, W), (see Remark 3.3) that for
every m < j1 < -+ < jm, every real numbers Ai,..., A\, and every f € W,

the following holds:

m
(7) 'f(z N )| < 2 I,
t=1
For f € Wy the result holds. Let f =60 Zzzl cqfq be a functional in W,.
We distinguish two cases, concerning the order of f
Case 1: The functional f is of order-n with ¢ < n < &. By Inequality (2)
after Lemma 4.1, we have that

m 1/pn Py /P
’f (Zmﬁ) < (Zwy@v) +0 [ D 1 | D M,
t=1 teB gEA2 teE,
1/pn po/pi\ /P
(8) < (ZIM””) +02 [ Y[ D I by (7).
teB gE€As \tEE,

The fact that p; < p, and for each 1 < ¢ < m there exists at most two
distinct ¢ € Ay such that ¢t € E; implies that

pn/pc\ /P

m 1/p¢
9) Do Do e <2 (Zw“) |

q€Az \teE, t=1

Combining relations (8) and (9) with 0 < § < 1/4, we get that | f (3 /%, Mezj, )|
is bounded by the desired value. Note that for convenience we have implic-
itly assumed that p, < oo, but the case that p, = co would only require
trivial modification.

Case 2: The functional f is of order-k” with 1 < k” < k'.
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Set
to = min{t:ran f Nranz;, # @} and
go = min{q: maxsupp f; > minsupp iL‘jt0+1}.
We shall prove the following;:

Z Cqfq (Z Atxjt)
t=1

q>qo

(10) 0 < Omax{|\| : t > to}.

Since ( fq)g:1 is admissible, we have that d < maxsuppz;, . Also, ( fq)g:1
is very fast growing and hence for ¢ > gg we have that

s(fq) = maxsupp fy, > minsupp Tjpia-

Moreover the functionals f, are of order strictly smaller than &', therefore
for ¢ > qo and t > to, (6) yields that | fy(z},)| < 1/ (jio+1 max supp »’tho) and
since d < maxsuppzj, , by keeping ¢ fixed, we obtain >0 leqfq(zj,)] <
1/jto+1. Similarly, summing over the ¢ which are strictly greater than ¢,
since m < ji,+1 We obtain:

Z cqfq (Z )\t:rjt> ‘ =
t=1

q>qo

> coly (i At:cjt>

q>qo t>10

< Z | Al Z |cq.fq (25,)]

t>to q>qo

N |
< max A (m/jie+1) < max ||

Thus, (10) holds. We now observe the following:

Z ¢qfq (Z Atxjt) Z Cqfq ()‘toxjto)
t=1

q<qo q<qo

Moreover, the inductive assumption yields that

fao (Z Atxjt)
t=1

Combining (10), (11) and (12) with 0 < 6 < 1/4 we get that | f(D )% Mexj,)]
is bounded by the desired value.

The proof for the case in which ( is finite is complete. Assume now that
¢ = & = w and pass to a subsequence of (x;); generating as a spread-
ing model some sequence (z;);. The previous case implies that (z;); is
2-dominated by the unit vector basis of ¢, for all k& < & and hence, by
taking a limit, it is also 2-dominated by the unit vector basis of épgo which
yields the desired result.

(12 <2l -

The next result explains that the a.g-indices of a given block sequence
determine the spreading models admitted by it.
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Proposition 5.6. Let (z;); be a normalized block sequence in X. Then
(z;); admits an £,  spreading model, for some ¢ € [1,&]. The following
describes more precisely the spreading models admitted by (x;);.

a. Let 2 < k < &, then the following assertions are equivalent:
(i) ack{(z;);} >0 and acp{(z;);} =0for 1 <K <k.
(ii) There exists a subsequence of (z;); that generates an ¢, spread-
ing model, while no subsequence of (x;); generates an £, , spread-
ing model for 1 < k' < k.
b. The following are equivalent
(i) aca{(z;);} > 0.
(ii) There exists a subsequence of (z;); that generates an £, spread-
ing model.
c. The following are also equivalent:
(i) For every 1 < k < & we have that ap{(z;);} =0.
(ii) Every subsequence of (z;); has a further subsequence generating
an Epio spreading model.

Note that in the case & is finite and &y = ko + 1, then c.(i) is equivalent to
acky{(;);} = 0.

Proof. We shall only prove a. as the others are proved similarly, using
Proposition 4.2 and Lemmas 5.4, 5.5. Assume that the first assertion of
a. holds. Note that on every subsequence of (x;); the acj_;-index is zero,
and hence, applying Lemma 5.5, it has a further subsequence which admits a
spreading model dominated by the unit vector basis of £,,, . This in particular
implies that no subsequence of (z;); generates an /£, , spreading model for
1 < k' < k. Moreover, applying Lemma 5.4 we pass to a subsequence (z;,);,
of (x;);, generating some spreading model dominating the usual vector basis
of £, . Since ac—1{(x;);} = 0, Lemma 5.5 implies that this spreading model
has to be ¢, .

We assume now that the second assertion of a. holds. We first note that
acip{(x;);} > 0. If this were not the case, then on every subsequence of (z;);
the acp-index would be zero and hence, by Lemma 5.5, every spreading
model admitted by it is dominated by the unit vector basis of £, . This
means that no subsequence of (z;); can generate an ¢, spreading model,
which is absurd. Therefore the natural number ky = min{k € [1,&) :
acip{(xj);} > 0} is well defined and kg < k. We shall prove that ky = k and
this will complete the proof.

Assume that kg < k and apply Lemma 5.4 to pass to a subsequence (z;,);
of (x); generating some spreading model which dominates the usual basis
of £y, . If ko =1 then by Proposition 4.2 we conclude that (xj,); generates
an ¢y, spreading model, where 1 = kg < k, which is absurd. If 1 < ko, then
acky—1{(xj)i} =0 by and Lemma 5.5 we conclude that (z;,); generates an
Epko spreading model, which is absurd for the same reasons.

O
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Remark 5.7. It is not hard to check that for every 1 < k < &, the acp-
index of the basis (e;); is zero and hence it only admits ép&o as a spreading
model.

6. SPREADING MODELS OF INFINITE DIMENSIONAL SUBSPACES OF X.

In the previous section we showed that every spreading model admitted
by X must be /¢, for some p € F'. In this section we show that, starting with
a block sequence generating some spreading model, one may pass to a block
sequence of it generating an other spreading model. We conclude that, in
the case in which F' is finite, the spreading models admitted by every infinite
dimensional subspace of X are exactly the ¢, for p € F. In the case which
F' consists of an increasing sequence and its limit p,, the spreading models
admitted by every infinite dimensional subspace of X may either be the £,
for p € F, or the ¢, for p € F\ {pg,}. We start with two lemmas that
describe the kind of block vectors one has to consider when switching from
one spreading model to an other.

Lemma 6.1. Let &k be in [1,&), 1 < - -+ < zx be a finite normalized block
sequence in X that is 3-dominated by the unit vector basis of Eﬁi, and set
x = K-1/p ZjK:1 xzj. If f is a functional of order-0 in W with s(f) = m

then the following holds:

K pe ml/Peo
< K1/pk +2 ml/p’

(13) | ()]

where in the case pg, = oo we set 1/pg, = 0.

Proof. Let f =6 2321(1/m)1/p/§0 fq be a functional of order-0 with s(f) = m
(recall that d < m). For convenience, we assume that pg, < oo, and the
proof for the case £y = oo requires only trivial modifications. By Lemma
4.1, following the notation used there, applying Holder’s inequality for the
pair (pg,,pg; ), we obtain the following:

1/pe
f(z)] < K~Yw Z:Igt(ﬂcj)lp’EO
jEB
+0 (S am) e f | Y ay
qEA2 JEE,
(14) < KV | VP 130(1/m) e [N (#E,) VP

qEA2
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Recall that #A4s < d < m and the last part of Lemma 4.1 gives that
> geAs #FE, < 2K. Combing these two facts gives us

1/pk

(1/m)Pe ST #E) | < (1/m) /P /7 S #E,

qEA2 qE€A2

(15) S ———

By combining relations (14) and (15) we achieve the desired upper bound.
([

Lemma 6.2. Let (z;); be a normalized block sequence in X and 2 < k+1 <
& with acr{(x;);} = 0. Then there exists a subsequence (z;,); of (z;); such
that for every K < j;; < --- < ji, and every f € W of order at most k£ with
s(f) = m, we have that if z = K~ 1/Pe+1 Zfil zj,, then

3+ K/Pe m/Peo
K1/pr+1 ml/pr+1’

(16) ()] <

where in the case pg, = 0o we set 1/pg, = 0.

Proof. By Lemma 5.5 we may assume for every K < j; < --- < jg that
(zj,)K | is 3-dominated by the unit vector basis of ﬁgﬂ. Using Proposition
5.3 we pass to a subsequence, again denoted by (x;); such that for any
Jj = jo = 2, for any f € W of order strictly smaller than k with s(f) >
minsupp zj, we have that

(17) [f(a7)] < (o maxsuppaj,—1)~" .

Let K < j1 < - < jg, v = K~ 1/Pria Zilil:vji and f = ngzlcqfq be a
functional of order at most k. Using a finite induction on 0 < k' < k, we
shall prove that for every f =6 Z;lzl ¢qfq of order at most &’ there is i € N
such that the following holds:

1-— 6 2 K/po m/Peo
1) 1@< (125 ) e e *

The above in conjunction with 0 < 6 < 1/4 clearly implies the desired result.

If a functional f is of order-0. Then, by Lemma 6.1 for ¢ = 1 we have that

(18) holds. Assume that f =6 Zzzl ¢qfq is of order-k’ with 0 < k' < k and

that (18) holds for every functional with order strictly smaller than k’. Set
to = min{t:ranfNranz;, # @} and

go = min{q : maxsupp f; > minsupp xjt0+1}'
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The same argument used to obtain (10) and (11) in the proof of Lemma 5.5
gives us the following:

(19) 0> cofglw)| < 2/KMPrr,
9790

By the inductive assumption there exists ¢ € N such that:

1—6 2 K1/po S(fqo)l/p§0
(20) 0] foo(x)] < 6 << 1— 0) K 1/prt1 - K1/Per1 2S(fq0)1/pk+1 ’

By the definition of size for functionals which are not of order-0 we have
that s(fq,) = s(f) and hence combining (19) and (20) we conclude that:

1 _ pitt 9 K1/po s(f)"/Peo
[f(@)] < < 1—0 > K1/Pk+1 +90 (Kl/pk-u +28(f)1/pk+1 '

The next proposition allows us to pass from a block sequence admitting
an fp, - spreading model to a further block admitting £,, spreading model
and from block sequence admitting an /), spreading model to a further
block admitting an £, ., spreading model. In the case that {y < w, we use
this to show that the spreading models in every subspace are exactly ¢, for
p € {p1,p2, - ,Pey—1,P¢ }- In the case that g = w we require an additional
argument to show that we have ¢,, spreading model for every k£ < w since
we are not able to show that every block subspace admits an €péo spreading
model.

0

Proposition 6.3. Let (z;); be a normalized block sequence in X.

(i) If (z;); generates an £, spreading model, then there exists a fur-
ther normalized block sequence (y;); of (x;); that generates an £,
spreading model.

(ii) If 1 < k < & and (z;); generates an f,, spreading model, then
there exists a further normalized block sequence (y;); of (z;); that

generates an £, , spreading model.

Proof. Let (x;); be a normalized block sequence in X, generating an £,
spreading model, for some 1 < ¢ < &. Note that by Proposition 4.2 and
Lemma 5.5 we may assume that for every K < j; < --- < jg we have
that ||zj, + - + 2 || <3 K/P<. We distinguish three cases concerning ¢,
namely ( = &), = 1, and 2 < ( < &. We shall only consider the first two
cases, as the last one is proved in an identical manner as the case ( = 1 and
uses Lemma 6.2 instead of Lemma 6.1.

Case 1: ( = &. For every j € N choose f; € W with fj(z;) = 1 and
ran f; C ranx;. Choose an increasing sequence of finite subsets of the natu-
ral numbers (E};); with #E; < min F; and lim; #E; = co. For j € N define
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— _ —1/p".
vy = () 7% S iy = 05171y and g5 = 0%, (#E;) P f.
Then we have the following:

(a) The sequence (y;); is a normalized block sequence of (x;); and for
every j € N we have that g;(y;) > 0/3.

(b) The functional g; is of order-0 with s(g;) = #E; for all j € N.

Note that lim; s(g;) = oo and therefore, passing to a subsequence, we may
assume that (g;); is a very fast growing sequence of functionals of order-0.
We conclude that a1 {(z;)} > 0 and by Proposition 5.6 we have that (y;);
is the desired sequence.
Case 2: ( = 1. By Proposition 5.6 we have that cc1{(z;);} > 0 and hence,
by passing to a subsequence, there exists ¢ > 0 and a very fast growing
sequence ( f;); of order-0 functionals such that ran f; C ranx; and fj(z;) > €
for all 7 € N. Choose an increasing sequence of finite subsets of the natural
numbers (E;); with min E; < #FE; and lim; #E; = oco. For j € N define
Yy = (HE) VP Yiep, iy v = 15171} and g = 03, (#E;) 7P f5 (if
p1 =1 take g; = HZz‘eEj fj instead). Then we have the following:

(a’) The sequence (y;); is a normalized block sequence of (z;); and for
every j € N we have that g;(y;) > €6/3.
(b’) The functional g; is of order-1 with s(g;) > max{s(f;) : ¢ € E;} for
all j € N.
Once more, lim; s(g;) = oo and as before we conclude that a<o{(z;)} > 0.
By Proposition 5.6 it remains to observe that a<i1{(y;)}; = 0, which is an
easy consequence of the definition of the y;’s and Lemma 6.1. O

Remark 6.4. The proof of Proposition 6.3 implies that the space X does
not admit an Egg spreading model for any 1 < < &. For the definition of

an ng spreading model see [ABM, Definition 1.1].
Corollary 6.5. The space X is reflexive.

Proof. Proposition 6.3 implies that neither ¢y nor ¢; embed into X. By
James’ well known theorem for spaces with an unconditional basis we con-
clude that X is reflexive. O

Remark 6.6. If (z;); is a spreading model generated by a non-norm con-
vergent (not necesssarily Schauder basic) sequence in X, then [AKT, Re-
mark 5, page 581] the reflexivity of the space and Proposition 5.6 im-
ply that, although the sequence (z;); need not be a Schauder basis for
Z = ({z; : j € N}), the space Z must be isomorphic to ¢,, for some p € F.

Lemma 6.7. Let 1 <k < &), K € Nand (z;); be a sequence in X generat-
ing an /£, spreading model. Then for every jo € N there exists a normalized
vector x € span(x;);>j, and a functional f of order-0 with s(f) = K such
that

(21) fla) > DKV e
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where in the case pg, = 0o we set 1/pg, = 0.

Proof. We may clearly assume that (x;); is normalized. Proposition 5.6 in
conjunction with 5.5 imply that we may choose jg < j1 < -+ < jg such
that if y = K ~1/p Zfil xj, then [ly|| < 3. Choose fi,..., fk with ran f; C
ranz;, and fi(z;,) =1fori=1,..., K and define f = HZfil(l/K)_l/pQOfi
and = = y/|y|. O

Theorem 6.8. Let F' = {p; : 1 < ¢ < &} and let Y be an infinite
dimensional subspace of X. Then there exists a dense subset G of F such
that the spreading models admitted by Y are exactly the ¢, for p € G. In
particular, £, is finitely block represented in every block subspace of X for
every p € F.

Proof. Let Y be a block subspace of X. We observe the following:

(i) Every spreading model admitted by Y is equivalent to the unit vector
basis of £, for some 1 < ¢ < §. In particular, there exists 1 < (o <
&o such that Y admits an gpco spreading model.

(i) If 1 < k < §p and Y admits an ¢,, spreading model and, then Y also

admits an £y, ., spreading model.

(iii) If ¥ admits an £, spreading model then Y also admits an £,
spreading model.

(iv) There exists 1 < ko < & such that ¥ admits an ¢, spreading

model.

The statement (i) follows from Proposition 5.6. Statements (i) and (iii)
follow from Proposition 6.3, while (iv) follows from the first and the third.
We now distinguish two cases regarding whether &y is finite or not.

Case 1: If & is finite, statement (i), statement (ii), and a finite inductive
argument yield that Y admits an Kpgo spreading model. By (iii) we have
that Y admits an ¢, spreading model. Once more, by a finite induction we
obtain that G = F' is the desired set.

Case 2: 1f §y = w we shall prove that for every 1 < k < {p, Y admits an £,
spreading model. This in particular implies that G = F or G = F'\ {pg, } is
the desired set. By (ii) it is sufficient to show that Y admits an £, spreading
model. By Proposition 5.6 it is enough to find a normalized block sequence
(xj); in Y and a very fast growing sequence of functionals (f;); of order-0
with fj(l’j) > 0/4, ie. a<1{(xj)j} > 0.

Choose a normalized vector z; in Y and a functional f € W with f(z;) =
1 and set f; = 0f. Then f; is of order-0 with s(f) = 1 and fi(z1) > 6/4.
Assume that we have chosen normalized vectors x; < --- < x; and a very
fast growing sequence of functionals fi, ..., f; of order-0 with fi(z;) > 6/4
for i = 1,...,7. By (iv), there exists 1 < ko < & such that Y admits an
Epko spreading model. Fix K > maxsupp f; and choose kg < k < &y such

that K'/P&o~1/Pk > 3/4 (recall that limy py = P¢,)- By (ii) we may choose a
sequence (y;); in Y generating an ¢,, spreading model. Choose ig € N with
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min supp y;, > (maxsupp l’j)2 and apply Lemma 6.7 to find the desired pair
Tjt1, fi+1- O

Remark 6.9. In the case that F is finite, then clearly the spreading models
admitted by every block subspace of X are exactly the £, for p € F'. In the
case that F' consists of an increasing sequence and its limit pe,, then it is
easily checked that exactly one of the following holds:

(i) The spreading models admitted by every block subspace of X are
exactly the ¢, for p € F.

(ii) There exists a block subspace Y of X, such that the spreading models
admitted by every further block subspace of ¥ are exactly the £,
for p € F'\ {pg, }.

We were unable to determine which one of the above holds, in either case
however on some subspace Y of X, the set of spreading models admitted by
every further subspace of Y is stabilized.

7. THE SET OF KRIVINE p’S OF THE SPACE X.

In this section we prove that for any p ¢ F' = {p¢ : 1 < { <&}, £p is not
finitely block represented in the space X. We conclude that the set of p’s
that are finitely block represented in every block subspace of X is exactly
the set F', which is not connected.

We begin with the following Lemma, whose proof we omit as it follows
from the same argument as the proof of Lemma 6.1.

Lemma 7.1. Let p € [p1,pg,] \ F. Suppose € > 0 and (xj>§y:1 is a finite
block sequence in X which is (1 + €)-equivalent to the unit vector basis of
E;,V I 1 < ¢ <& is such that p < pe and f is a functional of order-C, then
we have the following estimate:

N
1 N1/p¢
‘7:

The next lemma follows directly from the above lemma.

Lemma 7.2. Suppose that (:cj)év:l is a finite block sequence in X that is
(14-¢)-equivalent to the unit vector basis of Eév, 1 < k < & satisfies p < pra1
and N satifies
NYPe1=1/p 99 < (1 4£)72,
If f € W satisfies f(N /P Zf;l xj) = 1/(1 + ¢) then f has non-zero order
less than or equal to k.
We are now ready to prove the second main theorem.

Theorem 7.3. For all p € [1,00] \ F there exists K € N and € > 0 such
that no block sequence (a;j)JK:l in X is (1 4+ ¢)-equivalent to the unit vector

basis of E{f .
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Proof. Let p € [1,00]\ F. If p ¢ [p1,pg,], then the result clearly follows from
Proposition 4.2. Otherwise, we have that p € [p1,pg,] \ F. Find k € N so
that pr, < p < pgs1. Find N, M € N and € > 0 as follows:

Choose N € N such that

(23) NYP > 24 9(N —2)"/? and
N/Pes1
(24) i < 1-20.
Now that N is fixed, we choose € > 0 such that:
1
2 — NP 24 (1 N —2)l/p
(25) SN s 24 (L4 BN - 2,
(26) NYP > (14¢)2*(N —1)Y? and
Nl/pk+1 1
92 AR - _
(27) N < Trep
We set
1
2 - _—N'VP_(1 N — 1)/,
(28) 0= NP - (145 (N - 1)
Notice (26) implies that © > 0. Finally, let M € N so that
(29) MYPeQ > (14 &) MY/P.

Let K = (N —1)M + 1 and consider the following normalized block
sequence which, towards a contradiction, we assume is (1 + ¢)-equivalent to
the unit vector basis of E{f and that M < minsupp x;.

:c1<x§<x§<---<x}v<x§<x§<--~<x%71<$§4<---<m%.

m+1) . Let us mark the following, which

(le. 2" <" for i < jand 2} < x5
is obviously true.
(a) For each m with 1 < m < M the block sequence z1 < z§" < --- < 'y

is (1 + ¢)-equivalent to the unit vector basis of £
Fix m with 1 < m < M. For notational reasons we set " = z1. Find
gm € W with gm(zg\il ") > % By Lemma 7.2 and (27) we conclude
that g, has non-zero order less than or equal to k. Let

dm
gm =0 Cmafma
q=1
be the functionals decomposition according to Remark 3.3, i.e.:
(b) the coefficients (cm,q)g’gl are in the unit ball of £, form =1,..., M
and
(c) the sequence ( fm7q)f1l:1 is an admissible and very fast growing se-

quence of functionals, each one of which has order strictly smaller
than k.
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Define
¢m = min{q : minsupp =5’ < maxsupp fm.q}
We will prove the following three claims:

(i) gm(z1) > O, gm(2}) > © and d,, < maxsupp z;.
(ii) The number g, exists, max supp fm7qm < minsupp z%; and ¢, < dp,

(iii) (minsupp 25")? < minsupp fin.q,.+1 and minsupp 25" < s(fim.gn+1)-

Item (i): Using that gm(z,fil ") = %, (a) and (28) we have

N N
gm(@1) =gm [ D7 | —gm [ D2
p =

NYP —(14¢e)(N-1)?=6>0.

(30)

1+5

The same argument works to show that g,,(z%;) > ©. If d,;, > maxsupp x;
then max supp 1 < minsupp g, which implies that ¢,,(xz1) = 0. This con-
tradiction tells us that d,,, < maxsupp 1.

Item (ii): If ¢y, did not exist then minsuppxy’ > maxsupp fy, 4 for all

q and so gm(Z?] 127") = gm(z1) < 1. On the other hand we clearly have

gm(zj 1 2") > 2 and s0 g, exists.
If maxsupp fin g, = minsupp z’y; then we have:

N-1
Z$ = 9m x1)+ecmqumqm l‘ + gm mN)
(31) =
2+ (1+e)0(N —2)'/7 w
<2+ (1+e — < .
(1428 =27 < L
The last inequality uses (25). This contradicts that fact that gm(ZjV: 1) =
Nl/p
(I4¢) -

Using item (i) we have gp,(z%;) > ©. This fact combined with the fact
that maxsupp fi,q,, < minsuppzy gives us ¢, < di,

Item (iii): By definition of ¢, and the fact that ( !}”mﬂ,)g”:@1 is very fast
growing

(minsupp 25")? < (Maxsupp fin.q,)> < Minsupp frm g, +1 and

minsupp z5° < S(fim.gm+1)-
This proves (iii).
Note that g, + 1 < d,,, by item (ii). Define

dm

Jm = gm}ranx’Nn =0 Z Cm’qu’qhanﬂﬁ.

q=qm+1
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We claim that

1 M
(32) SaIA Y fmeW.

We first assume that (32) holds and finish the proof of our theorem as follows:

1 _ 1
MYP(14¢) > Ml/P me<ZxN>_M1/p mexN ) > M'/Pe@,

This contradicts (29).
All that remains to prove is (32). Note that

M
M1/p me—QZ Z (Cmq/M /p’“) fm.q
m=1qg=qm-+1

Using (b) we obtain that Zm 1 Zq amt1(Cm, o/ MY/Pi)Pk < 1 and therefore

it suffices to show that ((fp, q) T 1) 1<m<nm is  an admissible and very
fast growing sequence of functlonals each one of which has order strictly
smaller than k, which will imply that f is a funtional in W of order-k. First
we check admissibility:

ran IE

Z dy, < M max supp x1

(33) -

< min supp :Lé - min supp x%

< minsupp f1,g,+1-
The first inequality follows from item (i), the second from that fact that
M < maxsuppr; < minsuppzs and the third comes from item (iii) (for
m=1).

Note that by (b) the functionals under consideration have order strictly

smaller than £ and for each m with 1 < m < M the collection (fmq)g:qu

is very fast growing. At last, it suffices to show for each m € N with
2<m < M that
(max supp fr—1,d,,_,)°> < MINSUPP fm,g,,+1 and

max Supp fm*lvdanl < S(fm7QT7L+1)‘
This, however, follows from item (iii) since

max supp fm—1.d,,_, < minsuppzy'.
This proves the claim and finishes the proof of the theorem. O
We are interested in three problems related to the present work.

Problem 1. Let 1 < p; < p2 < oo. Is the space X, p, constructed in this
paper super-reflexive?
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Problem 2. Let 1 < p; < p2 < 0o. Does there exist a space so that in
every block subspace the Krivine set is [p1, p2]? More generally, which types
of closed sets can be hereditary Krivine sets?

Problem 3. Let F' C [2,00) be finite. Does there exist a Banach space X
such that for every infinite dimensional subspace Y of X, £, is finitely repre-
sented in Y if and only if p € {2} U F'? In particular, does our construction
satisfy this?
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