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Abstract
We introduce the notion of a continuous Schauder frame for a Banach space. This
is both a generalization of continuous frames for Hilbert spaces and a generalization
of unconditional Schauder frames for Banach spaces. Furthermore, we generalize
the properties shrinking and boundedly complete to the continuous Schauder frame
setting, and prove that many of the fundamental James theorems still hold in this
general context.
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1 Introduction

Frames and orthonormal bases give discrete ways to represent vectors in a Hilbert
space using series, and continuous frames and coherent states give continuous ways
to represent vectors using integrals.(x j ) j∈J ⊂ H for which there exists constants
0 < A ≤ B such that for any x ∈ H , A‖x‖2 ≤ ∑

j∈J |〈x, x j 〉|2 ≤ B‖x‖2. Given any
frame (x j ) j∈J for a Hilbert space H , there exists a frame ( f j ) j∈J for H , called a dual
frame, such that
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x =
∑

j∈J

〈x, f j 〉x j for all x ∈ H . (1.1)

The equality in (1.1) allows the reconstruction of any vector x in the Hilbert space
from the sequence of coefficients (〈x, f j 〉) j∈J . Continuous frames and coherent states
are a generalization of frames in that instead of summing over a discrete set, we inte-
grate over a measure space. Coherent states were invented by Schrödinger [27] and
were generalized to continuous frames by Ali et al. [2]. The short time Fourier trans-
form and the continuous wavelet transform are two particularly important examples of
continuous frames. Let (M, �,μ) be a σ -finite measure space and let H be a separa-
ble Hilbert space. A weakly measurable function ψ : M → H is a continuous frame
of H with respect to μ if there exists constants A, B > 0 such that for all x ∈ H ,
A‖x‖2 ≤ ∫

M |〈x, ψ(t)〉|2dμ(t) ≤ B‖x‖2. If A = B = 1, then the continuous frame
is called a Parseval frame. As is the case with frames, any continuous frame may be
used to reconstruct vectors using a dual frame. That is, if ψ : M → H is a continuous
frame, then there exists a dual frame φ : M → H such that

x =
∫

M
〈x, φ(t)〉ψ(t)dμ(t) for all x ∈ H . (1.2)

Equation (1.2) involves integrating vectors in a Hilbert space, and is defined weakly
using the Pettis Integral. We will define the Pettis Integral and discuss it further in
Sect. 2.

Frames for Hilbert spaces have been generalized to Banach spaces in multiple
ways, such as atomic decompositions [14], Banach frames [19], framings [9], and
Schauder frames [10]. Given a Banach space X with dual X∗, a sequence of pairs
(x j , f j )∞j=1 ⊆ X × X∗ is called a Schauder frame of X if

x =
∞∑

j=1

f j (x)x j for all x ∈ X . (1.3)

Thus, Schauder frames are direct generalizations of the reconstruction formula (1.1)
for frames in Hilbert spaces. A Schauder frame is called unconditional or a framing
if the series in (1.3) converges in every order.

Coherent states and continuous frames for Hilbert spaces have long been studied
and play important roles in mathematical physics and harmonic analysis. Continuous
frames have been generalized to the Banach space setting in multiple ways such as
through coorbit theory [14–17], Banach frames [1], and p-frames for complemented
subspaces of L p [13]. However, a continuous version of Schauder frames has not
been previously considered. Our formulation of a continuous Schauder frame will
be defined solely in terms of a reconstruction formula analogous to (1.2). The other
generalizations of continuous frames to the Banach space setting each make use of
some additional structure such as groups for coorbit spaces and admissible function
spaces for Banach frames.

Given a Banach space X with dual X∗ and a measure space (M, �,μ), we call a
(w,w∗) measurable map t �→ (xt , ft ) ∈ X × X∗ a continuous Schauder frame of X
if for all x ∈ X ,
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x =
∫

M
ft (x)xtdμ(t). (1.4)

As with continuous frames for Hilbert spaces, the integral in Eq. (1.4) involves
integrating vectors and is defined weakly using the Pettis Integral which we define in
Sect. 2. Unlike series, there is no order for integration, and so all continuous Schauder
frames are by necessity unconditional. In the case that the measure space (M, μ) is
simply the natural numbers with counting measure, then (xn, fn)n∈N is a continuous
Schauder frame if and only if it is an unconditional Schauder frame. Thus, continuous
Schauder frames are indeed generalizations of unconditional Schauder frames.

In the case that the Banach space is a Hilbert space H , then a continuous Schauder
frame (xt , ft )t∈M of H is called a reproducing pair. Note that continuous frames are
reproducing pairs for the case xt = ft for all t ∈ M . Many of the important properties
of continuous frames extend to reproducing pairs, but reproducing pairs allow for
more flexibility in their construction and do not require each map individually to
satisfy frame bounds [4,28,29].

In [7] and [22], they define the properties shrinking and boundedly complete for
Schauder frames and prove that many of James’ classic theorems [21] on shrinking
and boundedly complete Schauder bases can be extended to Schauder frames. In
particular, a Schauder frame (x j , f j )∞j=1 for a Banach space X is shrinking if and
only if ( f j , x j )∞j=1 is a Schauder frame for X∗, and if (x j , f j )∞j=1 is shrinking and
boundedly complete then X is reflexive. On the other hand, in [6] they prove that
every infinite dimensional Banach space which has a Schauder frame also has a non-
shrinking Schauder frame, so unlike for Schauder bases the converse of the previous
theorem for Schauder frames does not hold. In [8], they prove that an unconditional
Schauder frame is shrinking if and only if the Banach space does not contain �1, and
that an unconditional Schauder frame is shrinking and boundedly complete if and only
if the Banach space is reflexive. In Sect. 3 we define what it means for a continuous
Schauder frame to be shrinking or boundedly complete, and we prove theorems on
when the previous stated theorems are true for continuous Schauder frames as well.
In particular, for the case of separable Banach spaces, we prove the following.

Theorem 1.1 Let (xt , ft )t∈M be a continuous Schauder frame of a separable Banach
space X with respect to ameasure space (M, �,μ) such that t �→ ft isw-measurable.
Then the following are equivalent,

(i) The continuous Schauder frame (xt , ft )t∈M is shrinking.
(ii) The dual frame ( ft , xt )t∈M ⊆ X∗ × X∗∗ is a continuous Schauder Frame for X∗.
(iii) X does not contain an isomorphic copy of �1.

We consider the case where X may be non-separable as well. In that case, we must
make an additional assumption about either the structure of X or the structure of the
map t �→ ft . In Sect. 2 we define what it means for a map to be semi-discrete, and in
Sect. 3we prove that if t �→ ft is semi-discrete then (i), (ii), and (iii) in Theorem1.1 are
all equivalent. Furthermore, if every x∗∗ ∈ X∗∗ is the w∗-limit limit of a sequence in
X , then (i), (ii), and (iii) in Theorem 1.1 are all true. Similarly, the following Theorem
is a generalization of the classical James Theorem characterizing unconditional bases
for reflexive Banach spaces.
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Theorem 1.2 Let (xt , ft )t∈M be continuous Schauder frame for a Banach space X
such that either: X is separable, ( ft )t∈M is semi-discrete, or every x∗∗ ∈ X∗∗ is the
w∗-limit of a sequence in X. Then the following are equivalent:

(1) (xt , ft )t∈M is shrinking and boundedly complete,
(2) X does not contain an isomorphic copy of c0 or �1,
(3) X is reflexive.

Lemma 1 in [5] and Lemma 5.3 in [18] show that every continuous frame for a
separable Hilbert space can be approximated by a continuous frame with countable
range. This gives a method for extending results about frames for Hilberts spaces to
results about continuous frames for Hilbert spaces. However, the analogous result for
continuous Schauder frames for separable Banach spaces is not necessarily true. The
key reason for this is that if H is a separable Hilbert space then the space of rank
one operators on H is norm separable, but if X is a separable Banach space with
non-separable dual then the space of rank one operators on X is not norm separable.
Because of this, the above results for continuous Schauder frames require new proofs
and do not follow directly from the corresponding results for discrete Schauder frames
given in [7,8], and [22].

We recommend [30] for a reference on Pettis integrals in Banach spaces and [12]
for a reference on bases in Banach spaces.We thank the referees for their advice which
has led to significant improvements of this paper over the previous versions.

2 The Pettis Integral and Continuous Schauder Frames

For the sake of simplicity, we will be assuming that all Banach spaces we consider are
over R. However, all of our proofs and results are still valid for Banach spaces over
C.

We will be using the Pettis integral to integrate vector valued functions. The main
concept of the Pettis integral is to integrate vector valued functions by considering the
corresponding Lebesgue integrals of the real valued functions formed by composition
with linear functionals. This method allows one to transfer many of the fundamental
properties of Lebesgue integration to the Banach space setting.

Definition 2.1 Let (M, �,μ) be a measure space and let X be a Banach Space. A
weakly measurable map F : M → X is said to be μ-Pettis integrable (or Pettis
integrable if context is understood) if for any E ∈ � there exists xE ∈ X such that
f (xE ) = ∫

E f (F)dμ for all f ∈ X∗ (where this latter integral is Lebesgue). Then
we say

∫
E Fdμ = xE and, in particular,

∫
Fdμ = xM .

If the vector valued map takes values in a dual space X∗ then one can instead
consider just using the weak*-continuous linear functionals.

Definition 2.2 Let (M, �,μ) be a measure space and X be a Banach Space with dual
X∗. A w∗-measurable map G : M → X∗ is said to be μ-Pettis* integrable (or Pettis*
integrable if context is understood) if for any E ∈ � there exists fE ∈ X∗ such that
fE (x) = ∫

E G(x)dμ for all x ∈ X . Then we say
∫ ∗
E Gdμ = fE and, in particular,

∫ ∗ Gdμ = fM .
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Recall that we use the Pettis integral to define continuous Schauder frames, and we
will use the Pettis* integral to define continuous* Schauder frames.

Definition 2.3 Given a Banach space X with dual X∗ and a measure space (M, �,μ),
a (w,w∗)-measurable function t �→ (xt , ft ) ∈ X×X∗ is called a continuous Schauder
frame of X with respect to (M, �,μ) if

x =
∫

M
ft (x)xtdμ(t) for all x ∈ X . (2.1)

The dual map t �→ ( ft , xt ) ∈ X∗ × X is called a continuous* Schauder frame of X∗
with respect to (M, �,μ) if

f =
∫ ∗

M
f (xt ) ft dμ(t) for all f ∈ X∗. (2.2)

We call a continuous Schauder frame (xt , ft )t∈M bounded if supt∈M ‖xt‖‖ ft‖ <

∞. The following lemma allows us to use a change of measure to convert any contin-
uous Schauder frame into a bounded continuous Schauder frame.

Lemma 2.4 Let (M, �,μ) be ameasure space and X be a Banach space. Suppose that
t �→ xt is aw-measurable map from M to X and that t �→ ft is aw∗-measurable map
from M to X∗ such that ‖ ft‖‖xt‖ = 0 for all t ∈ M. If we let ν(t) = ‖xt‖‖ ft‖μ(t)
for all t ∈ M then

(1) (M, �, ν) is a measure space, and both ν � μ and μ � ν.
(2) t �→ xt/‖xt‖ is w-measurable, and t �→ ft/‖ ft‖ is w∗-measurable.
In particular, if (xt , ft )t∈M is a continuous Schauder frame of X with respect to
the measure space (M, �,μ) then (xt/‖xt‖, ft/‖ ft‖)t∈M is a bounded continuous
Schauder frame of X with respect to the measure space (M, �, ν).

Proof Let �w be the Borel σ -algebra generated by the weak topology on X and
let �w∗ be the Borel σ -algebra generated by the w∗ topology on X∗. Note that the
unit ball of X is w-closed, and hence {x ∈ X : a ≤ ‖x‖ ≤ b} ∈ �w for all real
numbers a < b. Thus, x → ‖x‖ is a measurable map from the measurable space
(X , �w) to R. Likewise, f → ‖ f ‖ is a measurable map from (X∗, �w∗) to R. By
composition, t �→ ‖xt‖ and t �→ ‖ ft‖ are measurable maps from (M, �) to R. Thus,
ν(t) = ‖xt‖‖ ft‖μ(t) defines a measure on (M, �) which is absolutely continuous
with respect toμ. Likewise,μ(t) = ‖xt‖−1‖ ft‖−1ν(t) as ‖xt‖‖ ft‖ = 0 for all t ∈ M
and hence μ is absolutely continuous with respect to ν.

We have that t �→ xt is w-measurable and that t �→ ‖xt‖−1 is measurable and well
defined. Thus, t �→ (xt , ‖xt‖−1) ∈ X ⊕ R is w-measurable. The map from X ⊕ R to
X given by (x, s) �→ sx is weakly continuous. Thus by composition, t �→ ‖xt‖−1xt
w-measurable. The same argument gives that t �→ ‖ ft‖−1 ft is w∗-measurable. ��

The natural numbers are used to index Schauder bases and Schauder frames, and
so it is very easy to work with properties using limits. Continuous frames however
are indexed by arbitrary measure spaces, and so we will have to work with nets over
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a directed set instead. This is a significant difference as many fundamental theorems
for integrals such as the dominated convergence theorem apply to limits for sequences
but do not hold for limits of nets.

Definition 2.5 Let (M, �,μ) be a measure space and X be a Banach space. Suppose
that t �→ xt is a w-measurable map from M to X and that t �→ ft is a w∗-measurable
map from M to X∗. We introduce

D =
{
E ∈ � :

∫

E
‖ ft‖‖xt‖dμ(t) < ∞

}
.

We make D a directed set by defining E � F whenever E ⊆ F , and we refer to the
elements of D as absolutely finite sets.

Recall that byLemma2.4, if (xt , ft )t∈M is a continuous Schauder frame of aBanach
space X with respect to a measure space (M, �,μ) then (xt/‖xt‖, ft/‖ ft‖)t∈M is a
continuous Schauder frame of X with respect to the measure space (M, �, ν) where
ν(t) = ‖xt‖‖ ft‖μ(t). Note that ν(E) = ∫

E ‖ ft‖‖xt‖dμ(t) for all E ∈ � and hence
the absolutely finite sets for (xt , ft )t∈M with respect to (M, �,μ) are just the finite
measure sets in (M, �, ν). The first step of many of our proofs will be to apply Lemma
2.4 to assume that ‖xt‖ = ‖ ft‖ = 1 for all t ∈ M and thatD is the set of finite measure
sets in �.

If (xn)∞n=1 is a Schauder basis, the basis projections are the operators Pn : X →
X defined by Pn(

∑∞
j=1 a j x j ) = ∑n

j=1 a j x j . We let (xt , ft )t∈M be a continuous
Schauder frame of a Banach space X with respect to the measure space (M, �,μ).
For E ∈ �, we define an operator PE : X → X by

PE (x) =
∫

E
ft (x)xtdμ(t) for all x ∈ X .

We refer to PE as a restriction operator. The restriction operators PE for E ∈ D will
play a similar role for continuous Schauder frames as the basis projections play for
Schauder bases.

Wewill prove two fundamental properties about the restriction operators (PE )E∈D.
In Theorem 2.11 we will prove that the restriction operators (PE )E∈D can be used to
locally approximate the identity operator. Secondly, in Theorem 2.13 we will prove
that for each E ∈ D, the restriction operator PE is compact. However, we first use
the restriction operators to prove the following which shows that every continuous
Schauder frame and every continuous* Schauder frame satisfies an unconditionality
inequality.

Lemma 2.6 Let either (xt , ft )t∈M ∈ X × X∗ be a continuous Schauder frame of a
Banach space X or ( ft , xt )t∈M ∈ X∗ × X be a continuous* Schauder frame for X∗.
Then, there exists a constant Bu > 0 such that for every x ∈ X and f ∈ X∗ we have
that ∫

| ft (x) f (xt )|dμ(t) ≤ Bu‖x‖‖ f ‖. (2.3)
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Proof Suppose that either (xt , ft ) ∈ X × X∗ is a continuous Schauder frame of X or
( ft , xt ) ∈ X∗ × X is a continuous* Schauder frame for X∗. In either case, we have
for all x ∈ X and f ∈ X∗ that

| f (x)| =
∣
∣
∣

∫

ft (x) f (xt )dμ(t)
∣
∣
∣ ≤

∫

| ft (x) f (xt )|dμ(t) < ∞. (2.4)

We now fix f ∈ X∗. For all E ∈ D we let FE, f : X → L1(M) be the operator
FE, f (x) = ( ft (x) f (xt ))t∈M . We have for all E ∈ D that

‖FE, f (x)‖ =
∫

E
| ft (x) f (xt )|dμ ≤ ‖x‖‖ f ‖

∫

E
‖ ft‖‖xt‖dμ.

Thus, FE, f : X → L1(M) is a bounded operator for all E ∈ D. For each x ∈ X we
have that

sup
E∈D

‖FE, f x‖ = sup
E∈D

∫

E
| ft (x) f (xt )|dμ =

∫

| ft (x) f (xt )|dμ < ∞ by (2.4).

By the uniform boundedness principle we have for all f ∈ X∗ that there exists D f > 0
such that ‖FE, f ‖ ≤ D f for all E ∈ D. Thus, for all x ∈ X we have that

∫

| ft (x) f (xt )|dμ = sup
E∈D

∫

E
| ft (x) f (xt )|dμ ≤ D f ‖x‖. (2.5)

By switching the roles of x ∈ X and f ∈ X∗ we have for all x ∈ X there exists
Dx > 0 so that for all f ∈ X∗,

∫

| ft (x) f (xt )|dμ = sup
E∈D

∫

E
| ft (x) f (xt )|dμ ≤ Dx‖ f ‖. (2.6)

Let F : X ⊕ X∗ → L1(M) be defined by F((x, f )) = ( ft (x) f (xt ))t∈M for all
(x, f ) ∈ X ⊕ X∗. By (2.5) and (2.6) we have that F is continuous in each coordinate,
and hence F is continuous. Thus, there exists a constant Bu so that for all (x, f ) ∈
X ⊕ X∗ we have that

‖F(x, y)‖L1(M) =
∫

| ft (x) f (xt )|dμ ≤ Bu‖x‖‖ f ‖.

��
We call the least constant Bu to satisfy Lemma 2.6 the unconditionality constant

of (xt , ft )t∈M . Likewise, the suppression unconditionality constant of (xt , ft )t∈M is
the least constant Bs to satisfy | ∫E ft (x) f (xt )dμ(t)| ≤ Bs‖x‖‖ f ‖ for all (x, f ) ∈
X × X∗ and all measurable E ⊆ M . In other words, Bs = supE ‖PE‖. Just like
for unconditional bases, the following proposition shows that these constants satisfy
Bs ≤ Bu ≤ 2Bs .
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Proposition 2.7 Let either (xt , ft )t∈M ∈ X × X∗ be a continuous Schauder frame of
a Banach space X or ( ft , xt )t∈M ∈ X∗ × X be a continuous* Schauder frame for
X∗. If Bu is the unconditionality constant and Bs is the suppression unconditionality
constant, then Bs ≤ Bu ≤ 2Bs.

Proof By Lemma 2.6, we have that the unconditionality constant Bu exists where

∫

| ft (x) f (xt )|dμ(t) ≤ Bu‖x‖‖ f ‖ for all x ∈ X and f ∈ X∗.

Let E ⊆ M be measurable. Then for all x ∈ X and f ∈ X∗ we have that

∣
∣
∣

∫

E
ft (x) f (xt )dμ(t)

∣
∣
∣ ≤

∫

| ft (x) f (xt )|dμ(t) ≤ Bu‖x‖‖ f ‖.

Thus, we have that Bs ≤ Bu .
For x ∈ X and f ∈ X∗ we let Ex, f = {t ∈ M : f (xt ) ft (x) ≥ 0}. We now have

that
∫

| ft (x) f (xt )|dμ(t) =
∣
∣
∣

∫

Ex, f

ft (x) f (xt )dμ(t)
∣
∣
∣ +

∣
∣
∣

∫

Ec
x, f

ft (x) f (xt )dμ(t)
∣
∣
∣

≤ 2 sup
E⊆M

∣
∣
∣

∫

E
ft (x) f (xt )dμ(t)

∣
∣
∣

Thus, we have that Bu ≤ 2Bs . ��
By the definition of the Pettis integral, t �→ (xt , ft ) ∈ X × X∗ is a continuous

Schauder frame of X if and only if for all x ∈ X , f ∈ X∗, and E ∈ � there exists
xE ∈ X such that x = xM and

f (xE ) =
∫

E
ft (x) f (xt )dμ(t). (2.7)

We are primarily interested in the representation of x as x = ∫
M ft (x)xtdμ(t), and

so it may feel tedious to check Eq. (2.7) for all measurable sets E ∈ �. However, the
following example shows that it is necessary to check (2.7) for all E ∈ � and not just
E = M .

Example 2.8 Let (e j ) j∈N be the unit vector basis for c0 with biorthogonal functionals
(e∗

j ) j∈N. Consider the following sequence of pairs in c0 × �1,

(xn, fn)
∞
n=1 = (e1, e

∗
1), (e1,−e∗

1), (e1, e
∗
1), (e2, e

∗
2),

(e2,−e∗
1), (e2, e

∗
1), (e3, e

∗
3), (e3,−e∗

1), (e3, e
∗
1), ...

If we consider N with counting measure, then for all x ∈ c0 and f ∈ �1, f (x) =∫
N
fn(x) f (xn). However, (xn, fn)n∈N is not a continuous Schauder frame. Indeed, let

x = e1 and suppose x3N ∈ c0 is such that for all f ∈ �1, f (x3N) = ∫
3N fn(e1) f (xn).
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Then for all n ∈ N, e∗
n(x3N) = 1. Thus, x3N = (1, 1, 1, ...) /∈ c0 which is a contradic-

tion.

Many results for Schauder bases for Banach spaces may be used to build intuition
for continuous Schauder frames. However, there are often surprising differences. A
sequence of vectors (x j )∞j=1 is a Schauder basis for a Banach space X , if and only if
the biorthogonal functionals (x∗

j )
∞
j=1 are a w∗-Schauder basis for X∗. That is, for all

f ∈ X∗, the series
∑∞

j=1 f (x j )x∗
j converges w∗ to f . What is particularly interesting

about Example 2.8 is that although (xn, fn)n∈N is not a continuous Schauder frame
of c0, we do have that the dual ( fn, xn)n∈N is a continuous* Schauder frame of �1.
Indeed, if f ∈ �1 and E ⊆ N then

fE =
∑

n∈E∩(3N−2)

f (e(n+2)/3)e
∗
(n+2)/3 +

∑

n∈E∩3N
f (en/3)e

∗
1 −

∑

n∈E∩(3N−1)

f (e(n+1)/3)e
∗
1 .

As f ∈ �1, we have that all the above series converge in norm to an element of �1.
Thus, in contrast to the case for Schauder bases, we have that it is possible to have a
continuous* Schauder frame ( ft , xt )t∈M for a dual space X∗ such that (xt , ft )t∈M is
not a continuous Schauder frame for X . However, we will prove in Lemma 2.9 that
the converse still holds for continuous Schauder frames. That is, if (xt , ft )t∈M is a
continuous Schauder frame for X then ( ft , xt )t∈M is a continuous* Schauder frame
for X∗. As duality techniques are ubiquitous in functional analysis, this result will be
very useful for us. In Sect. 3 we will go further and characterize when ( ft , xt )t∈M is
a continuous Schauder frame of X∗ and not just a continuous* Schauder frame.

Lemma 2.9 Let (M, �,μ) be a measure space and X be a Banach space. Suppose
that t �→ xt is aw-measurable map from M to X and that t �→ ft is aw∗-measurable
map from M to X∗. If (xt , ft )t∈M is a continuous Schauder frame for X then the dual
frame ( ft , xt )t∈M is a continuous* Schauder frame for X∗.

Proof We assume that (xt , ft )t∈M is a continuous Schauder frame of X . Fix f ∈ X∗
and let E ∈ �. We have by Lemma 2.6 that the map x �→ ∫

E ft (x) f (xt )dμ(t)
defines a bounded linear functional on X . Thus, there exists fE ∈ X∗ such that
fE (x) = ∫

E ft (x) f (xt )dμ(t) for all x ∈ X . Furthermore, f (x) = ∫
ft (x) f (xt )dμ(t)

for all x ∈ X and hence fM = f . This proves that ( ft , xt )t∈M is a continuous*
Schauder Frame for X∗. ��

The following lemma will be essential in proving approximation properties of
continuous frames.

Lemma 2.10 Let (xt , ft )t∈M be a continuous Schauder frame for a Banach space X
over a measure space (M, �,μ). For all ε > 0 and x ∈ X, there exists F ∈ D such
that if G ∈ D with G ∩ F = ∅ then

| f (PG(x))| =
∣
∣
∣

∫

G
ft (x) f (xt )dμ(t)

∣
∣
∣ ≤ ε‖ f ‖ for all f ∈ X∗.
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Proof For the sake of contradiction, we assume that for some ε > 0 there exists
a sequence of disjoint sets (En)

∞
n=1 ⊆ D and a sequence of norm one functionals

(gn)∞n=1 ⊆ X∗ such that
∫
En

ft (x)gn(xt )dμ(t) ≥ ε for all n ∈ N. After passing to a
subsequence, we may assume that there exists (an)∞n=1 ⊆ R such that

lim
n→∞

∫

Ek

ft (x)gn(xt )dμ(t) = ak for all k ∈ N.

After passing to a further subsequence we may assume that

∣
∣
∣
∣ak −

∫

Ek

ft (x)gn(xt )dμ(t)

∣
∣
∣
∣ < 2−kε for all k < n. (2.8)

As
∫ | ft (x)gn(xt )|dμ(t) < ∞ for all n ∈ N and (Ek)

∞
k=1 is a sequence of disjoint

sets, we may assume after passing to a further subsequence that

∣
∣
∣
∣

∫

Ek

ft (x)gn(xt )dμ(t)

∣
∣
∣
∣ < 2−kε for all n < k. (2.9)

For all n ∈ N let hn := g2n − g2n−1. By (2.8) we have for all k < n that

∣
∣
∣
∣

∫

E2k

ft (x)hn(xt )dμ

∣
∣
∣
∣ ≤

∣
∣
∣
∣a2k −

∫

E2k

ft (x)g2n(xt )dμ

∣
∣
∣
∣

+
∣
∣
∣
∣a2k −

∫

E2k

ft (x)g2n−1(xt )dμ

∣
∣
∣
∣ < 2 · 2−2kε.

Likewise, by (2.9) we have for all k > n that

∣
∣
∣
∣

∫

E2k

ft (x)hn(xt )dμ

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

E2k

ft (x)g2n(xt )dμ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

E2k

ft (x)g2n−1(xt )dμ

∣
∣
∣
∣ < 2 · 2−2kε.

In the case, n = k, we have that

∫

E2n

ft (x)hn(xt )dμ ≥
∣
∣
∣
∣

∫

E2n

ft (x)g2n(xt )dμ

∣
∣
∣
∣

−
∣
∣
∣
∣

∫

E2n

ft (x)g2n−1(xt )dμ

∣
∣
∣
∣ > ε − 2−2nε.

Thus, by combining the three above inequalities, we have for all N ∈ N and n ≥ N
that

hn(P∪k≥N E2k x) =
∫

∪k≥N E2k

ft (x)hn(xt )dμ > ε − 2
∞∑

k=N

2−2kε ≥ ε/3. (2.10)
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As ‖hn‖ ≤ 2 for all n ∈ N, there exists a w∗-accumulation point h ∈ X∗
of (hn)∞n=1. By (2.10) we have that

∫
∪k≥N E2k

ft (x)h(xt )dμ ≥ ε/3 for all N ∈
N. On the other hand, as (E2k)

∞
k=1 is a sequence of disjoint sets, we have that

limN→∞
∫
∪k≥N E2k

ft (x)h(xt )dμ = 0. Thus we have a contradiction. ��
The Pettis integral is a weak integral in the sense that it is defined in terms of

linear functionals. Thus by definition, a continuous Schauder frame is a coordinate
system for X in the weak topology. The following theorem can be interpreted as
stating that a continuous Schauder frame is also a coordinate system for X in the norm
topology. Or in other words, the restriction operators (PE )E∈D can be used to locally
approximate the identity operator in the norm topology. This is significant as weak
properties for Pettis integrals in infinite dimensional Banach spaces often do not imply
norm properties [26].

Theorem 2.11 Let (xt , ft )t∈M be a continuous Schauder frame of a Banach space X
over a measure space (M, �,μ). Then

lim
E∈D

‖x − PEx‖ = lim
E∈D

‖PEc x‖ = 0 for all x ∈ X .

Proof By Lemma 2.4 we may assume thatD is the set of finite measure sets in M . Let
x ∈ X and ε > 0. By Lemma 2.10 there exists F ∈ D such that | f (PG(x))| ≤ ε‖f‖
for all f ∈ X∗ and all G ∈ D with G ∩ F = ∅. Let H ∈ D with H � F . There exists
f ∈ X∗ with ‖ f ‖ = 1 and f (x − PH (x)) = ‖x − PH (x)‖. We have that

‖x − PH (x)‖ = f (x − PH (x))

= f (PHc (x))

=
∫

Hc
ft (x) f (xt )dμ

= lim
E∈D

∫

E∩Hc
ft (x) f (xt )dμ as D is the set of finite measure subsets of M,

= lim
E∈D

f (PE∩Hc (x))

≤ lim
E∈D

ε‖ f ‖ as (E ∩ Hc) ∩ F = ∅,

= ε

Thus, ‖x − PH x‖ ≤ ε for all H � F . This proves that limE∈D ‖x − PEx‖ = 0. ��
The following corollary is a useful way to express Theorem 2.11.

Corollary 2.12 Let (xt , ft )t∈M be a continuous Schauder frame of a Banach space X
over a measure space (M, �,μ). For all ε > 0 and x ∈ X, there exists E ∈ D such
that

∫

Ec
| ft (x) f (xt )|dμ(t) ≤ ε‖ f ‖ for all f ∈ X∗.
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Proof Let ε > 0 and x ∈ X . By Theorem 2.11, there exists E ∈ D such that ‖x −
PFx‖ < ε for all F � E . Let f ∈ X∗. We denote M+ = {t ∈ M : ft (x) f (xt ) > 0}
and M− = {t ∈ M : ft (x) f (xt ) < 0}.
∫

Ec
| ft (x) f (xt )|dμ(t) =

∫

Ec∩M+
ft (x) f (xt )dμ(t) +

∫

Ec∩M−
− ft (x) f (xt )dμ(t)

=
(

sup
F�E

∫

Fc
ft (x) f (xt )dμ(t)

)

+
(

sup
F�E

∫

Fc
− ft (x) f (xt )dμ(t)

)

≤
(

sup
F�E

‖x − PF‖‖ f ‖
)

+
(

sup
F�E

‖x − PF‖‖ f ‖
)

≤ 2ε‖ f ‖

We previously showed that the restriction operators (PE )E∈D can be used to locally
approximate the identity operator in the norm topology. For the case of Schauder
frames and Schauder bases, the restriction operators are used to locally approximate
the identity operator using finite rank operators. The following theorem shows that a
continuous Schauder frame may be used to locally approximate the identity operator
using compact operators. We note that the corresponding theorem for continuous
Banach frames is a fundamental result in [1].

Theorem 2.13 Let (xt , ft )t∈M be a continuous Schauder frame for a Banach space X
over a measure space (M, �,μ). Then PE is a compact operator for every E ∈ D.

Proof By Lemma 2.4, we may assume that ‖xt‖ = ‖ ft‖ = 1 for all t ∈ M and that
μ(E) < ∞ for all E ∈ D.

For the sake of contradiction, we assume that PE is not compact for some E ∈ D.
As PE is not a compact operator, there exists a normalized sequence (yn)∞n=1 in X and
ε > 0 such that ‖PE (yn − ym)‖ ≥ ε for all n = m. By Rosenthal’s �1 Theorem, we
may assume after passing to a subsequence that either (PE yn)∞n=1 is w-Cauchy or that
(PE yn)∞n=1 is equivalent to the unit vector basis of �1.

We first consider the case that (PE yn)∞n=1 is w-Cauchy. For all t ∈ E , we have that
| ft (yn − ym)| ≤ ‖ ft‖(‖yn‖ + ‖ym‖) = 2. As μ(E) < ∞, we may use the dominated
convergence theorem to obtain the following.

lim sup
m,n≥N

‖PE (yn − ym)‖ = lim sup
m,n≥N

∥
∥
∥
∥

∫

E
ft (yn − ym)xt dμ(t)

∥
∥
∥
∥

≤ lim sup
m,n≥N

∫

E
| ft (yn − ym)|‖xt‖dμ(t)

= lim sup
m,n≥N

∫

E
| ft (yn − ym)|dμ(t) = 0 by dominated convergence.

This contradicts that ‖PE (yn − ym)‖ ≥ ε for all n = m.
We now consider the case that (PE yn)∞n=1 is equivalent to the unit vector basis of �1.

There exists C > 0 such that C−1 ∑ |a j | ≤ ‖∑
a j PE y j‖ for all (a j )

∞
j=1 ∈ �1. Let
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(γ j )
∞
j=1 be a sequence of independent ±1 symmetric random variables. Khintchine’s

inequality states that there exists a uniform constant B1 > 0 such that expectation
satisfies

E

∣
∣
∣
∣
∣
∣

n∑

j=1

γ j a j

∣
∣
∣
∣
∣
∣
≤ B1

⎛

⎝
n∑

j=1

|a j |2
⎞

⎠

1/2

for all n ∈ N and (a j )
n
j=1 ∈ �n1 .

For each n ∈ N we define a random vector zn by zn = 1
n

∑n
j=1 γ j y j . Note that

every realization of zn satisfies that C−1 ≤ ‖PEzn‖. We now calculate the following
expectation.

E‖PEzn‖ = E

∥
∥
∥
∥

∫

E
ft (zn)xtdμ

∥
∥
∥
∥

= n−1
E

∥
∥
∥
∥
∥
∥

∫

E

⎛

⎝
n∑

j=1

γ j ft (y j )

⎞

⎠ xtdμ

∥
∥
∥
∥
∥
∥

≤ n−1
∫

E
E

∣
∣
∣
∣
∣
∣

n∑

j=1

γ j ft (y j )

∣
∣
∣
∣
∣
∣
‖xt‖dμ

≤ n−1B1

∫

E

⎛

⎝
n∑

j=1

| ft (y j )|2
⎞

⎠

1/2

‖xt‖dμ by Khintchine’s inequality.

≤ n−1B1

∫

E

⎛

⎝
n∑

j=1

‖y j‖2
⎞

⎠

1/2

dμ as ‖xt‖ = ‖ ft‖ = 1.

= n−1B1n
1/2μ(E) as ‖y j‖ = 1.

Hence, we have that limn→∞ E‖PEzn‖ = 0. This contradicts that for all n ∈ N, every
realization of zn satisfies that C−1 ≤ ‖PEzn‖. As we have a contradiction in both
cases, PE must be compact. ��

We now have the following immediate corollary.

Corollary 2.14 Let (xt , ft )t∈M be a continuous Schauder frame for a Banach space
X over a measure space (M, �,μ). Then either X is finite dimensional or∫
M ‖xt‖‖ ft‖dμ(t) = ∞.

Proof If
∫
M ‖xt‖‖ ft‖dμ(t) = ∞ then M ∈ D. Hence PX = IX is compact by

Theorem 2.13 and consequently X is finite dimensional by Riesz’s Lemma. ��
Let (M, �,μ) be a measure space and let X be a Banach space. The measure space

(M, �,μ) is called semi-finite if for all F ∈ � with μ(F) = 0 there exists E ∈ �

with E ⊆ F and 0 < μ(E) < ∞. Analogously, we say that a map 
 : M → X is
semi-discrete with respect to (M, �,μ) if for all ε > 0 and all F ∈ M with 0 < μ(F)
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there exists E ∈ � with E ⊆ F and 0 < μ(E) so that ‖
(s) − 
(t)‖ < ε for all
s, t ∈ E . If X is separable then every measurable map 
 : M → X is semi-discrete.
However, it is possible for X to be separable, but for a measurable map 
 : M → X∗
to not be semi-discrete. If μ is a Baire measure on a locally compact Hausdorff space
M and 
 : M → X is continuous then 
 is semi-discrete. This case covers most of
the interesting examples of continuous frames, and in general it may be convenient to
think of semi-discrete as being a measure theoretic version of a map being continuous
almost everywhere.

We will be using the property of a map being semi-discrete to prove results for non-
separable Banach spaces. The following shows that the change of measure technique
from Lemma 2.4 preserves semi-discrete.

Lemma 2.15 Let (M, �,μ) be a measure space and X be a Banach space. Suppose
that t �→ xt is aw-measurable map from M to X and that t �→ ft is aw∗-measurable
map from M to X∗ such that ‖ ft‖‖xt‖ = 0 for all t ∈ M. Let ν(t) = ‖xt‖‖ ft‖μ(t)
for all t ∈ M. If t �→ xt is semi-discrete with respect to (M, �,μ) then t �→ ‖xt‖−1xt
is semi-discrete with respect to (M, �, ν). Likewise, if t �→ ft is semi-discrete with
respect to (M, �,μ) then t �→ ‖ ft‖−1 ft is semi-discrete with respect to (M, �, ν).

Proof We assume that t �→ xt is semi-discrete with respect to (M, �,μ). Let F ∈ �

with ν(F) > 0 and let ε > 0. We have that t �→ ‖xt‖ is measurable by Lemma 2.4.
Thus, there exists δ > 0 and Fδ ⊆ F such that ν(Fδ) > 0 and ‖xt‖ ≥ δ for all t ∈ Fδ .
We have that μ(Fδ) > 0 as ν is absolutely continuous with respect to μ. As t �→ xt
is semi-discrete with respect to (M, �,μ), there exists E ⊆ Fδ such that 0 < μ(E)

and ‖xt − xs‖ < εδ for all s, t ∈ E . Note that 0 < ν(E) as μ is absolutely continuous
with respect to ν. We have for all s, t ∈ E that

∥
∥‖xt‖−1xt − ‖xs‖−1xs

∥
∥ ≤ ∥

∥‖xt‖−1xt − ‖xs‖−1xt
∥
∥ + ∥

∥‖xs‖−1xt − ‖xs‖−1xs
∥
∥

= ∣
∣‖xt‖−1 − ‖xs‖−1

∣
∣‖xt‖ + ‖xs‖−1‖xt − xs‖

= ∣
∣‖xs‖ − ‖xt‖

∣
∣‖xs‖−1 + ‖xs‖−1‖xt − xs‖

< (εδ)δ−1 + δ−1(εδ) = 2ε.

This proves that t �→ ‖xt‖−1xt is semi-discrete with respect to (M, �, ν). The same
argument gives that if t �→ ft is semi-discrete with respect to (M, �,μ) then t �→
‖ ft‖−1 ft is semi-discrete with respect to (M, �, ν). ��

The following is a key result that gives us conditions on when we can calculate P∗∗
E

for E ∈ D. As every measurable map into a separable Banach space is semi-discrete,
we have that the following lemma applies to every Banach space X such that X∗ is
separable.

Lemma 2.16 Let (xt , ft )t∈M be a continuous Schauder frame for a Banach space X.
If either ( ft )t∈M is semi-discrete or every element of X∗∗ is the w∗ limit of a sequence
in X then for all x∗∗ ∈ X∗∗ and E ∈ D we have that

P∗∗
E x∗∗ =

∫

E
x∗∗( ft )xtdμ(t). (2.11)
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Proof Let x∗∗ ∈ X∗∗ with ‖x∗∗‖ = 1 and let E ∈ D. By Lemma 2.4 we may assume
that ‖xt‖ = ‖ ft‖ = 1 for all t ∈ E and that μ(E) < ∞. As PE is compact, P∗∗

E x∗∗ ∈
X . To show (2.11) we thus need to prove that P∗∗

E x∗∗( f ) = ∫
E x∗∗( ft ) f (xt )dμ(t)

for all f ∈ X∗.
We first assume that there exists a sequence (xn)∞n=1 in X which w∗ converges to

x∗∗. As (xn)∞n=1 isw∗-convergent, we have by the uniform boundedness principle that
there exists a constant B > 0 such that ‖xn‖ ≤ B for all n ∈ N. Let f ∈ X∗. We have
for all n ∈ N and t ∈ E that

| ft (xn) f (xt )| ≤ ‖ ft‖‖xn‖‖ f ‖‖xt‖ ≤ B‖ f ‖. (2.12)

Note that limn→∞ ft (xn) f (xt ) = x∗∗( ft ) f (xt ) for all t ∈ E . As μ(E) < ∞ and
| ft (xn) f (xt )| ≤ B‖ f ‖, we may use the dominated convergence theorem in the fol-
lowing argument.

P∗∗
E x∗∗( f ) = x∗∗(P∗

E f )

= lim
n→∞ P∗

E f (xn)

= lim
n→∞

∫

E
ft (xn) f (xt )dμ(t)

=
∫

E
x∗∗( ft ) f (xt )dμ(t) by (2.12) and dominated convergence.

Thus we have proven that P∗∗
E x∗∗( f ) = ∫

E x∗∗( ft ) f (xt )dμ(t).
We now consider the case that ( ft )t∈M is semi-discrete. Let ε > 0. Consider a

maximal collection (E j ) j∈J of disjoint subsets of E such that for all j ∈ J ,μ(E j ) > 0
and ‖ ft − fs‖ < ε for all s, t ∈ E j . Note that J must be countable as μ(E) < ∞. If
μ(E \ ∪ j∈J E j ) = 0 then as ( ft )t∈M is semi-discrete there exists E0 ⊆ E \ ∪ j∈J E j

with μ(E0) > 0 and ‖ ft − fs‖ < ε for all t, s ∈ E0. This would contradict that
(E j ) j∈J is maximal. Hence, μ(E \ ∪ j∈J E j ) = 0. As J is countable, there exists a
finite collection (E j )

N
j=1 such that μ(E \ ∪N

j=1E j ) < ε. For each 1 ≤ j ≤ N we
choose some t j ∈ E j .

Let f ∈ X∗. As X is w∗-dense in X∗∗ there exists x ∈ X with ‖x‖ ≤ ‖x∗∗‖ = 1
such that |x∗∗(P∗

E f ) − P∗
E f (x)| < ε‖ f ‖ and |x∗∗( ft j ) − ft j (x)| < ε for all 1 ≤ j ≤

N . If 1 ≤ j ≤ N and s ∈ E j then

|x∗∗( fs) − fs(x)| ≤ |x∗∗( fs) − x∗∗( ft j )|
+ |x∗∗( ft j ) − ft j (x)| + | ft j (x) − fs(x)|

≤ ‖x∗∗‖‖ fs − ft j ‖ + |x∗∗( ft j ) − ft j (x)| + ‖ ft j − fs‖‖x‖
< ε + ε + ε

Thus, we have that

|x∗∗( fs) − fs(x)| < 3ε for all s ∈ ∪N
j=1E j . (2.13)
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We now have the following estimate.

∣
∣P∗

E f (x) −
∫

E
x∗∗( ft ) f (xt )dμ(t)

∣
∣

≤
∫

∪N
j=1E j

| ft (x) − x∗∗( ft )|| f (xt )|dμ(t) +
∫

E\∪N
j=1E j

| ft (x) − x∗∗( ft )|| f (xt )|dμ(t)

≤
∫

∪N
j=1E j

3ε‖ f ‖dμ(t) +
∫

E\∪N
j=1E j

2‖ f ‖dμ(t) by (2.13),

< 3εμ(E)‖ f ‖ + 2ε‖ f ‖

As |x∗∗(P∗
E f ) − P∗

E f (x)| < ε‖ f ‖ we have that

|P∗∗
E x∗∗( f ) −

∫

E
x∗∗( ft ) f (xt )dμ(t)| < ε‖ f ‖ + 3εμ(E)‖ f ‖ + 2ε‖ f ‖.

As ε > 0 is arbitrary we have that P∗∗
E x∗∗( f ) = ∫

E x∗∗( ft ) f (xt )dμ(t). Hence,
P∗∗
E x∗∗ = ∫

E x∗∗( ft )xtdμ(t). ��

3 Shrinking and Boundedly Complete Continuous Schauder Frames

The properties shrinking and boundedly complete play fundamental roles in the theory
and application of Schauder bases. The properties are extended to atomic decom-
positions and Schauder frames in [7,8] and [22], and they prove that many of the
fundamental James theorems for bases extend to Schauder frames. The goal for this
section is to extend these results to continuous Schauder frames as well. The natural
numbers are used to index Schauder bases and Schauder frames, and so it is very
easy to work with properties using limits. Continuous frames however are indexed
by arbitrary measure spaces. We extend the definitions of shrinking and boundedly
complete in [7] by using limits over the net D.

Definition 3.1 A continuous Schauder Frame (xt , ft )t∈M for a Banach space X is
called shrinking if limE∈D ‖P∗

Ec f ‖ = 0 for all f ∈ X∗.

Lemma 3.2 Let (M, �,μ) be a measure space and let (xt , ft )t∈M be a continuous
Schauder frame of a Banach space X. If (xt , ft )t∈M is shrinking then for all H ∈ �

we have that

lim
E∈D

‖P∗
(H∪E)c f ‖ = 0 for all f ∈ X∗.

Proof Let f ∈ X∗. Assume that (xt , ft )w∈M is shrinking. Thus, for every ε > 0 there
exists Eε ∈ D such that ‖P∗

Ec f ‖ < ε for all E ∈ D with Eε ⊆ E . Let x ∈ X . We
consider the two sets

F+
x = {t ∈ M : ft (x) f (xt ) > 0} and F−

x = {t ∈ M : ft (x) f (xt ) < 0}.
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As
∫

ft (x) f (xt )dμ is integrable, both F+
x and F−

x are σ -finite. Choose increasing
sequences (F+

x,n)n∈N, (F−
x,n)n∈N ⊆ D such that ∪F+

x,n = F+
x and ∪F−

x,n = F−
x . We

now have the following estimate for all ε > 0.

∫

Ec
ε

| ft (x) f (xt )|dμ =
∫

(Eε∪F−
x )c

ft (x) f (xt )dμ −
∫

(Eε∪F+
x )c

ft (x) f (xt )dμ

= lim
n→∞

∫

(Eε∪F−
x,n)

c
ft (x) f (xt )dμ − lim

n→∞

∫

(Eε∪F+
x,n)

c
ft (x) f (xt )dμ

≤ lim
n→∞ ‖P∗

(Eε∪F−
x,n)

c f ‖‖x‖ + lim
n→∞ ‖P∗

(Eε∪F+
x,n)

c f ‖‖x‖ ≤ 2ε‖x‖

Thus, for all x ∈ X and ε > 0 we have that
∫
Ec

ε
| ft (x) f (xt )|dμ < 2ε‖x‖. Let

H ∈ M and E ∈ D with Eε ⊆ E .

‖P∗
(E∪H)c f ‖ = sup

‖x‖=1

∣
∣
∣
∣

∫

Ec∩Hc
ft (x) f (xt )dμ

∣
∣
∣
∣ ≤ sup

‖x‖=1

∫

Ec
ε

| ft (x) f (xt )|dμ ≤ 2ε

Thus, limE∈D ‖P∗
(H∪E)c f ‖ = 0. ��

Before continuing, we recall some definitions about basic sequences in Banach
spaces. If (xn)∞n=1 is a sequence in a Banach space, then sequences of the form

(
∑mn+1−1

j=mn
b j x j )∞n=1 are called block sequences of (xn)∞n=1 where (mn)

∞
n=1 is an

increasing sequence of natural numbers and (b j )
∞
j=1 is a sequence of scalars. If (x j )

∞
j=1

is a sequence in a Banach space (X , ‖ · ‖X ) and (y j )∞j=1 is a sequence in a possibly
different Banach space (Y , ‖ · ‖Y ), then (x j )∞j=1 and (y j )∞j=1 are called C-equivalent

where 1 ≤ C < ∞, if C−1‖∑
a j x j‖ ≤ ‖∑

a j y j‖ ≤ C‖∑
a j x j‖ for all scalars

(a j )
∞
j=1 ∈ c00. We give the following well known lemma which shows that being

equivalent to the unit vector basis of �1 is preserved by block sequences.

Lemma 3.3 Let (x j )∞j=1 be a sequence of unit vectors in a Banach space X which is
C-equivalent to the unit vector basis of �1. Then every normalized block sequence of
(x j )∞j=1 is C-equivalent to the unit vector basis of �1.

Proof Let (
∑mn+1−1

j=mn
b j x j )∞n=1 be a normalized block sequence of (xn)∞n=1 and let

(an)∞j=1 ∈ c00 be a sequence of scalars. We have that,

∥
∥
∥

∞∑

n=1

an

mn+1−1∑

j=mn

b j x j
∥
∥
∥ ≤

∞∑

n=1

|an|
∥
∥
∥

mn+1−1∑

j=mn

b j x j
∥
∥
∥ =

∞∑

n=1

|an|.

For the other direction, we have that

∥
∥
∥

∞∑

n=1

an

mn+1−1∑

j=mn

b j x j
∥
∥
∥ =

∥
∥
∥

∞∑

n=1

mn+1−1∑

j=mn

anb j x j
∥
∥
∥
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≥ C−1
∞∑

n=1

mn+1−1∑

j=mn

|anb j |

= C−1
∞∑

n=1

|an|
mn+1−1∑

j=mn

|b j |

≥ C−1
∞∑

n=1

|an|
∥
∥
∥

mn+1−1∑

j=mn

b j x j
∥
∥
∥

= C−1
∞∑

n=1

|an|

��
A Schauder basis for a Banach space X is shrinking if and only if its biorthog-

onal functionals form a Schauder basis for the dual X∗, and if the Schauder basis
is unconditional then shrinking is also equivalent to �1 not embedding into X [21].
These characterizations of shrinking hold for Schauder frames as well [7,22,26]. The
following theorem extends these results to continuous Schauder frames for separable
Banach spaces. Our proof is fundamentally different from the discrete case, and will
instead use a theorem of Odell and Rosenthal that states that if X is a separable Banach
space then �1 does not embed into X if and only if every x∗∗ ∈ X∗∗ is the w∗-limit
of a sequence in X [25]. As the following theorem considers when ( ft , xt )t∈M is a
continuous Schauder frame of X∗, we will require that t �→ ft is weak measurable
instead of just w∗-measurable.

Theorem 3.4 Let (xt , ft )t∈M be a continuous Schauder frame of a separable Banach
space X with respect to ameasure space (M, �,μ) such that t �→ ft isw-measurable.
Then the following are equivalent,

(i) The continuous Schauder frame (xt , ft )t∈M is shrinking.
(ii) The dual frame ( ft , xt )t∈M ⊆ X∗ × X∗∗ is a continuous Schauder frame for X∗.
(iii) �1 does not embed isomorphically into X.
(iv) Every x∗∗ ∈ X∗∗ is the w∗-limit of a sequence in X.

Proof Note that (i i i) ⇔ (iv) is the theorem of Odell and Rosenthal [25].
We first prove (i i) ⇒ (i). Let ε > 0 and f ∈ X∗. Assume that ( ft , xt )t∈M ⊆

X∗ × X∗∗ is a continuous Schauder frame for X∗. For all H ∈ � and x ∈ X ,

(P∗
H f )(x) = f (PH x) =

∫

H
ft (x) f (xt )dμ(t).

Thus, P∗
H is the restriction operator for the continuous Schauder frame ( ft , xt )t∈M of

X∗. By Theorem 2.11, limE∈D ‖P∗
Ec f ‖ = 0. Hence (xt , ft )t∈M is shrinking.

We now prove (i) ⇒ (i i i) by contrapositive and assume that �1 embeds into X .
As �1 is not distortable, there exists a sequence of unit vectors (yn)∞n=1 in X which is
2-equivalent to the unit vector basis of �1. That is, 2−1 ∑ |an| ≤ ‖∑

an yn‖ ≤ ∑ |an|
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for all (an)∞n=1 ∈ �1. Note that we automatically obtain that ‖∑
an yn‖ ≤ ∑ |an| by

the triangle inequality because ‖yn‖ = 1 for all n ∈ N. Let 0 < ε < 1/3. We will
inductively choose a sequence of disjoint sets (En)

∞
n=1 ⊆ D and a block sequence

(z j )∞j=1 of (y j )∞j=1 such that ‖zn − PEn yn‖ < ε for all n ∈ N.
We start with z1 = y1 and choose E1 ∈ D such that ‖z1−PE1(z1)‖ < ε.We now let

k ∈ N and assume that (En)
k
n=1 and (z j )kj=1 have been chosen. Choose M ∈ N such

that (z j )kj=1 is a block sequence of (yn)
M
n=1.Wehave that P∪k

j=1E j
is a compact operator

by Theorem 2.13. Thus, there exists a unit vector zk+1 ∈ span(yn)∞n=M+1 such that
‖P∪k

j=1E j
zk+1‖ < ε/2. Choose E � ∪k

j=1E j such that ‖zk+1 − PEzk+1‖ < ε/2. Let

Ek+1 = E \ ∪k
j=1E j . We have that

‖zk+1 − PEk+1 zk+1‖ ≤ ‖zk+1 − PEzk+1‖ + ‖P∪k
j=1E j

zk+1‖ < ε/2 + ε/2.

This finishes our induction. As (z j )∞j=1 is a normalized block sequence of (y j )∞j=1,
(z j )∞j=1 is 2-equivalent to the unit vector basis of �1 by Lemma 3.3. The constant 1
vector g ∈ �∞ satisfies ‖g‖ = 1 and g(e j ) = 1 for all j ∈ N where (e j )∞j=1 is the
unit vector basis of �1. Thus, as (z j )∞j=1 is 2-equivalent to (e j )∞j=1 there exists f ∈ X∗
such that ‖ f ‖ ≤ 2 and f (z j ) = 1 for all j ∈ N. For all n ∈ N,

P∗
En

f (zn) = f (PEn zn)

= f (zn) − f (zn − PEn zn)

≥ f (zn) − ‖ f ‖‖zn − PEn zn‖
> 1 − 2ε

> 1/3 as ε < 1/3.

Thus, ‖P∗
En

f ‖ > 1/3 for all n ∈ N. As (En)
∞
n=1 is a sequence of disjoint sets in D,

we have that limE∈D P∗
EC f does not converge in norm to 0. Thus, (xt , ft )t∈M is not

shrinking.
We now prove (iv) ⇒ (i i) directly.We assume that every x∗∗ ∈ X∗∗ is thew∗-limit

of a sequence in X . Note that this assumption also implies that �1 does not embed into
X . By Lemma 2.4, we may assume that ‖xt‖ = ‖ ft‖ = 1 for all t ∈ M and that D is
the set of finite measure sets in M . Recall that ( ft , xt )t∈M is a continuous* Schauder
frame for X∗ by Lemma 2.9. In particular, for all f ∈ X∗ and H ∈ �, we have that

P∗
H f (x) = f (PH x) =

∫

H
ft (x) f (xt )dμ(t) for all x ∈ X . (3.1)

To prove that ( ft , xt )t∈M is a continuous Schauder frame for X∗ we need to prove for
all f ∈ X∗ and H ∈ � that

x∗∗(P∗
H f ) = P∗∗

H x∗∗( f ) =
∫

H
x∗∗( ft ) f (xt )dμ(t) for all x∗∗ ∈ X∗∗. (3.2)
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Note that equation (3.2) holds for all H ∈ D by Lemma 2.16. Let H ∈ �, f ∈
X∗, and x∗∗ ∈ X∗∗ with ‖ f ‖ = ‖x∗∗‖ = 1. We now claim that x∗∗(P∗

H f ) =
limE∈D x∗∗(P∗

E∩H f ). Assuming the claim is true, we have the following.

x∗∗(P∗
H f ) = lim

E∈D
x∗∗(P∗

E∩H f )

= lim
E∈D

∫

H∩E
x∗∗( ft ) f (xt )dμ(t) by Lemma 2.16,

=
∫

H
x∗∗( ft ) f (xt )dμ(t)

Thus proving the claim will complete our proof. Let (yn)∞n=1 be a sequence of unit
vectors in X which w∗-converges to x∗∗. By Corollary 2.12, there exists a nested
sequence F1 ⊆ F2 ⊆ F3 . . . in D such that

∫

Fc
m

| ft (yn) f (xt )|dμ < 2−m for all n ≤ m. (3.3)

We have that ( ft (y j ))∞j=1 is convergent for all t ∈ M , | ft (yi − y j ) f (xt )| ≤ 2 for all
t ∈ M and i, j ∈ N, andμ(E) < ∞ for all E ∈ D. We may thus apply the Dominated
Convergence Theorem and pass to a subsequence of (yn)∞n=1 so that

∫

Fm
| ft (yi − y j ) f (xt )|dμ < 2−m for all i, j > m. (3.4)

Let ε > 0. After possibly passing to a subsequence, we may assume by Ramsey’s
Theorem that one of the following two mutually exclusive properties holds.

(1)
∫
Fc
m

| ft (yn) f (xt )|dμ < 2ε for all m < n.

(2)
∫
Fc
m

| ft (yn) f (xt )|dμ ≥ 2ε for all m < n.

We will prove that (1) implies our claim and that (2) leads to a contradiction.
We first assume that (1) holds. As yn →w∗ x∗∗ we may choose N ∈ N such that
|x∗∗(P∗

H f )− P∗
H f (yn)| < ε for all n ≥ N . Let E � FN and choose n ≥ N such that

|x∗∗(P∗
H∩E f ) − P∗

H∩E f (yn)| < ε. We now have that

|x∗∗(P∗
H f ) − x∗∗(P∗

H∩E f )|
≤ |x∗∗(P∗

H f ) − P∗
H f (yn)| + |P∗

H f (yn) − P∗
H∩E f (yn)|

+ |P∗
H∩E f (yn) − x∗∗(P∗

H∩E f )|
< ε + |P∗

H f (yn) − P∗
H∩E f (yn)| + ε

= ∣
∣
∫

H∩Ec
ft (yn) f (xt )dμ

∣
∣ + 2ε

≤
∫

H∩Ec
| ft (yn) f (xt )|dμ + 2ε



Journal of Fourier Analysis and Applications (2020) 26 :66 Page 21 of 30 66

≤
∫

Fc
N

| ft (yn) f (xt )|dμ + 2ε < 2ε + 2ε by (1).

Thus, we have that limE∈D x∗∗(P∗
H∩E f ) = x∗∗(P∗

H f ) which proves our claim.
We now assume that (2) holds. We will obtain a contradiction by constructing a

block sequence of (yn)∞n=1 which is equivalent to the unit vector basis of �1. Let F0 = ∅
and En = Fn \ Fn−1 for all n ∈ N. Choose N0 ∈ N such that 2−N0+2 < ε/2. For all
n ≥ N0 we apply (2) and (3.3) to obtain

∫

En

| ft (yn) f (xt )|dμ =
∫

Fc
n−1

| ft (yn) f (xt )|dμ −
∫

Fc
n

| ft (yn) f (xt )|dμ > 2ε − ε/2.

(3.5)
Let zn = y2n − y2n−1 for all n ≥ N0. We will prove that (zn)∞n=N0

is equivalent to
the unit vector basis of �1. Indeed, let (an)∞n=N0

∈ �1 with
∑ |an| = 1 and let Bu be

the unconditionality constant of (xt , ft )t∈M . Then,

Bu
∥
∥
∥

∞∑

n=N0

anzn
∥
∥
∥ ≥

∫ ∣
∣
∣ ft

( ∞∑

n=N0

anzn
)
f (xt )

∣
∣
∣dμ

≥
∞∑

m=N0

∫

E2m

∣
∣
∣ ft

( ∞∑

n=N0

anzn
)
f (xt )

∣
∣
∣dμ

≥
∞∑

m=N0

( ∫

E2m

∣
∣
∣ ft

(
am y2m +

∞∑

n=m+1

anzn
)
f (xt )

∣
∣
∣dμ

−
∫

Fc
2m−1

∣
∣
∣ ft

(
am y2m−1 +

m−1∑

n=N0

anzn
)
f (xt )

∣
∣
∣dμ

)

≥
∞∑

m=N0

( ∫

E2m

∣
∣
∣ ft

(
am y2m +

∞∑

n=m+1

anzn
)
f (xt )

∣
∣
∣dμ − 2−m

(
|am | +

m∑

n=N0

2|an |
))

by (3.3),

≥
∞∑

m=N0

(
|am |

∫

E2m

∣
∣
∣ ft (y2m) f (xt )

∣
∣
∣dμ − 2−m

∞∑

n=m+1

|an | − 2−m
(
|am | +

m∑

n=N0

2|an |
))

by (3.4),

≥
∞∑

m=N0

(
|am |

∫

E2m

∣
∣
∣ ft (y2m) f (xt )

∣
∣
∣dμ − 2−m+1

)
as

∑
|an | = 1,

≥
∞∑

m=N0

|am |
∫

E2m

∣
∣
∣ ft (y2m) f (xt )

∣
∣
∣dμ − ε/2 as 2−N0+2 < ε/2,

≥
∞∑

m=N0

|am |(2ε − ε/2) − ε/2 by (3.5),

= ε as
∑

|an | = 1.
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Hence, we have that ‖ ∑∞
n=N0

anzn‖ ≥ εB−1
u

∑∞
n=N0

|an |. On the other hand,

∥
∥
∥

∞∑

n=N0

anzn
∥
∥
∥ ≤

∞∑

n=N0

|an |
(‖y2n‖ + ‖y2n−1‖

) = 2
∞∑

n=N0

|an |.

Thus, (zn)∞n=N0
is equivalent to the unit vector basis of �1, which is a contradiction. ��

Theorem 3.4 characterizes when (xt , ft )t∈M is a shrinking continuous Schauder
frame for a separable Banach space X . Characterizing shrinking for separable Banach
spaces is the most important case, but it is also of interest to determine when a con-
tinuous Schauder frame for a non-separable Banach space is shrinking. This is more
challenging because we no longer have the theorem of Odell and Rosenthal. Note that
the proofs of (i i) ⇒ (i) ⇒ (i i i) do not depend on X being separable, and are hence
still valid when (xt , ft )t∈M is a continuous Schauder frame for any Banach space X .
To prove the remaining direction (i i i) ⇒ (i i) for a non-separable Banach space X ,
we need to assume that either X has some additional structure or that the continuous
Schauder frame (xt , ft )t∈M has some additional structure.

Theorem 3.5 Let (xt , ft )t∈M be a continuous Schauder frame of a Banach space X
with respect to a measure space (M, �,μ) such that t �→ ft is w-measurable. In the
case that ( ft )t∈M is semi-discrete then the following are equivalent,

(i) The continuous Schauder frame (xt , ft )t∈M is shrinking.
(ii) The dual frame ( ft , xt )t∈M ⊆ X∗ × X∗∗ is a continuous Schauder Frame for X∗.
(iii) �1 does not embed isomorphically into X.

In the case that every element of X∗∗ is the w∗ limit of a sequence in X then all of
(i),(ii), and (iii) are true.

Proof Note that the proofs of the cases (i i) ⇒ (i) and (i) ⇒ (i i i) in Theorem 3.4
hold here as well.

We now assume that ( ft )t∈M is semi-discrete and prove (i i i) ⇒ (i i). By Lemma
2.4, we may assume that ‖xt‖ = ‖ ft‖ = 1 for all t ∈ M and that D is the set of finite
measure sets in M . Recall that ( ft , xt )t∈M is a continuous* Schauder frame for X∗.
Thus, for all f ∈ X∗ and all measurable H ⊆ M there exists fH ∈ X∗ with fM = f
and fH (x) = ∫

H ft (x) f (xt )dμ(t) for all x ∈ X . To prove that ( ft , xt )t∈M is a contin-
uous Schauder frame for X∗ we need to prove that x∗∗ fH = ∫

H x∗∗( ft ) f (xt )dμ(t)
for all x∗∗ ∈ X∗∗.

Let f ∈ X∗ and x∗∗ ∈ X∗∗ with ‖ f ‖ = 1 = ‖x∗∗‖. Let H ∈ �. Either there
exists a σ -finite H0 ⊆ H such that the integral

∫
H0

x∗∗( ft ) f (xt )dμ(t) does not exist
or the set {t ∈ H : x∗∗( ft ) f (xt ) = 0} is σ -finite. Thus, we may assume without loss
of generality that H is σ -finite. As H is σ -finite and ( ft )t∈H is semi-discrete, there
exists a subset H1 ⊆ H with μ(H \ H1) = 0 such that the set { ft }t∈H1 is separable.
Hence, we may may choose a sequence (yn)∞n=1 in X with ‖yn‖ = 1 for all n ∈ N so
that limn→∞ ft (yn) = x∗∗( ft ) for all t ∈ H1 and limn→∞ fH (yn) = x∗∗( fH ). The
remaining proof of (i i i) ⇒ (i i) then follows the same as that of the separable case in
Theorem 3.4.
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We now assume that every element of X∗∗ is the w∗ limit of a sequence in X . Thus
�1 cannot embed into X and hence (i i i) is true. The proof of (i i i) ⇒ (i i) in Theorem
3.4 started off by assuming that �1 does not embed into X and then used that X was
separable to obtain that every element of X∗∗ is the w∗ limit of a sequence in X . No
other properties of X being separable were used in Theorem 3.4 and hence we may
use the same proof to obtain (i i) here. Thus, we have that (i i) ⇒ (i) ⇒ (i i i) ⇒ (i i)
and that (i i i) is true. Hence, all of (i),(ii), and (iii) are true. ��

We now consider the generalization of boundedly complete to the continuous set-
ting.

Definition 3.6 Let (xt , ft )t∈M be a continuous Schauder frame for a Banach space
X . We say that (xt , ft )t∈M is boundedly complete if for all x∗∗ ∈ X∗∗ we have that
P∗∗
E x∗∗ = ∫

E x∗∗( ft )xtdμ for all E ∈ D and limE∈D P∗∗
E x∗∗ ∈ X .

The duality between shrinking bases and boundedly complete bases is very useful
in functional analysis. We will extend this to continuous Schauder frames, but we first
prove the following lemma.

Lemma 3.7 Let (xt , ft )t∈M bea continuous Schauder frame for aBanach space X over
a measure space (M, �,μ). Suppose that the dual frame ( ft , xt )t∈M is a continuous
Schauder frame for X∗. Then for all H ∈ �,

P∗
H f =

∫

H
f (xt ) ft dμ for all f ∈ X∗.

That is, P∗
H is the restriction operator for the Schauder frame ( ft , xt )t∈M.

Proof Let f ∈ X∗ and H ∈ �. As ( ft , xt )t∈M is a continuous Schauder frame for X∗,
there exists fH ∈ X∗ such that fH = ∫

H f (xt ) ft dμ. As (xt , ft )t∈M is a continuous
Schauder frame for X , we have that

(P∗
H f )(x) = f (PH x) =

∫

H
ft (x) f (xt )dμ(t) for all x ∈ X .

Thus, fH (x) = (P∗
H f )(x) for all x ∈ X . Hence, fH = P∗

H f . ��
Proposition 3.8 Let (xt , ft )t∈M be a continuous Schauder frame for a Banach space
X. Suppose that the dual frame ( ft , xt )t∈M is a continuous Schauder frame for X∗.
Then ( ft , xt )t∈M is boundedly complete.

Proof Let x∗∗∗ ∈ X∗∗∗. As X ⊆ X∗∗, the restriction of x∗∗∗ to X is some functional
x∗ ∈ X∗. Let E ∈ D and y∗∗ ∈ X∗∗. Note that P∗∗

E is compact by Theorem 2.13, and
hence P∗∗

E (y∗∗) ∈ X . We now have that,

(P∗∗∗
E x∗∗∗)(y∗∗) = x∗∗∗(P∗∗

E y∗∗)
= x∗(P∗∗

E y∗∗) because P∗∗
E y∗∗ ∈ X ,

= y∗∗(P∗
E x

∗)
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=
∫

E
x∗(xt )y∗∗( ft )dμ by Lemma 3.7,

=
∫

E
x∗∗∗(xt )y∗∗( ft )dμ.

As P∗∗∗
E is compact, we have that P∗∗∗

E x∗∗∗ ∈ X∗. Hence, P∗∗∗
E x∗∗∗ =∫

E x∗∗∗(xt ) ft dμ.

We may now take the limit over the net D to achieve,

lim
E∈D

∫

E
x∗∗∗(xt ) ft dμ = lim

E∈D

∫

E
x∗(xt ) ft dμ = x∗ ∈ X∗.

Thus, ( ft , xt )t∈M is boundedly complete. ��
Frames for Hilbert spaces are nicely characterized as projections of Riesz bases for

larger Hilbert spaces [20]. Likewise, Schauder frames for Banach spaces are charac-
terized as projections of Schauder bases for larger Banach spaces [10]. Except for the
casewhere a Schauder frame is the union of a basiswith finitelymany other vectors, the
construction in [10] will always result in a Banach space which contains c0 [23]. How-
ever, a different construction can be used to prove that a Schauder frame is shrinking
or boundedly complete if and only if it is the projection of a shrinking or boundedly
complete Schauder basis [6]. This allows for constructing and studying frames by
working directly with bases and then projecting onto a subspace. Essentially, a redun-
dant frame may be dilated to a non-redundant basis. However, this concept of dilation
is only possible for continuous frames over purely atomic measures. The following
proposition shows that the reverse direction is still valid for continuous frames in
that projecting continuous Schauder frames onto closed subspaces gives a continuous
Schauder frame.

Proposition 3.9 Let (xt , ft )t∈M be a continuous Schauder frame for a Banach space
X. Let Y ⊆ X be a complemented subspace and let P : X → Y be a bounded
projection.

(1) (Pxt , ft |Y )t∈M ⊆ Y × Y ∗ is a continuous Schauder frame for Y .
(2) If (xt , ft )t∈M is shrinking then (Pxt , ft |Y )t∈M is shrinking.
(3) If (xt , ft )t∈M is boundedly complete then (Pxt , ft |Y )t∈M is boundedly complete.

Proof Let y ∈ Y and g ∈ Y ∗. Let E ⊆ M be measurable and let PE be the restriction
operator for the Schauder frame (xt , ft )t∈M of X . Let IY : Y → X be the inclusion
operator of Y into X . We will prove that PPE IY is the restriction operator for the
frame (Pxt , ft |Y )t∈M . We have that

g(PPE IY y) = P∗g(PE IY y)

=
∫

E
ft (IY y)P

∗g(xt )dμ

=
∫

E
ft |Y (y)g(Pxt )dμ.
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Thus, PPE IX y = ∫
E ft |Y (y)Pxtdμ. Furthermore, PPM IY y = y as (xt , ft )t∈M is

a continuous Schauder frame of X . Hence (Pxt , ft |Y )t∈M is a continuous Schauder
frame of Y .

We now assume that (xt , ft )t∈M is shrinking. Let E ∈ D and g ∈ Y ∗. We have
that

lim
E∈D

‖(PPEc IY )∗g‖ = lim
E∈D

‖I ∗
Y P

∗
Ec (P∗g)‖ ≤ lim

E∈D
‖P∗

Ec (P∗g)‖ = 0.

Thus, (Pxt , ft |Y )t∈M is shrinking.
We now assume that (xt , ft )t∈M is boundedly complete. Let y∗∗ ∈ Y ∗∗ and E ∈ D.

As, PPE IY : Y → Y is a compact operator, (PPE IY )∗∗y∗∗ ∈ Y ⊆ Y ∗∗. Let g ∈ Y ∗.
We have that

((PPE IY )∗∗y∗∗)(g) = (P∗∗
E (I ∗∗

Y y∗∗))(P∗g)

=
∫

E
I ∗∗
Y y∗∗( ft )P∗g(xt )dμ as (xt , ft )t is boundedly complete,

=
∫

E
y∗∗( ft |Y )g(Pxt )dμ.

Thus, (PPE IY )∗∗y∗∗ = ∫
E y∗∗( ft |Y )Pxtdμ. As (xt , ft )t∈M is boundedly complete

there exists x ∈ X such that limE∈D P∗∗
E (I ∗∗

Y y∗∗) = x . Thus, we have that

lim
E∈D

(PPE IY )∗∗y∗∗ = P∗∗ lim
E∈D

P∗∗
E (I ∗∗

Y y∗∗)

= P∗∗x
= Px ∈ Y because x ∈ X .

Thus, limE∈D(PPE IY )∗∗y∗∗ ∈ Y and (Pxt , ft |Y )t is boundedly complete. ��
We now prove the analogue of Theorem 3.5 for boundedly complete Schauder

frames.

Theorem 3.10 Let (xt , ft )t∈M be a continuous Schauder frame for a Banach space X
such that either ( ft )t∈M is semi-discrete or every x∗∗ is the w∗-limit of a sequence in
X. Then (xt , ft )t∈M is boundedly complete if and only if c0 does not embed into X.

Proof We first assume that (xt , ft )t∈M is not boundedly complete. By Lemma 2.16,
P∗∗
E x∗∗ = ∫

E x∗∗( ft )xtdμ for all E ∈ D and x∗∗ ∈ X∗∗. As (xt , ft )t∈M is not
boundedly complete, there exists x∗∗ ∈ X∗∗ such that limE∈D

∫
E x∗∗( ft )xtdμ does

not converge to an element of X . Hence, the net limE∈D
∫
E x∗∗( ft )xtdμ is not norm

Cauchy. This gives that there exists δ > 0 and a sequence of sets V1 ⊆ W1 ⊆ V2 ⊆
W2 ⊆ ... in D such that for un := ∫

Wn\Vn x
∗∗( ft )xtdμ, we have ‖un‖ ≥ δ for every

n ∈ N.
Let f ∈ X∗. Let Bs be the suppression unconditionality constant of (xt , ft )t∈M .

We have by Lemma 2.16 that
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∫

M
|x∗∗( ft ) f (xt )|dμ ≤ 2 sup

E∈D

∣
∣
∣

∫

E
x∗∗( ft ) f (xt )dμ

∣
∣
∣

= 2 sup
E∈D

|P∗∗
E x∗∗( f )| ≤ 2Bs‖x∗∗‖‖ f ‖ (3.6)

Thus, | ∫M x∗∗( ft ) f (xt )dμ| < ∞ and as (Wn \ Vn)∞k=1 is pairwise disjoint, we have
that

lim
n→∞ f (un) =

∫

Wn\Vn
x∗∗( ft ) f (xt )dμ = 0.

Thus, (un)∞n=1 is a weak null sequence and δ ≤ ‖un‖ ≤ Bs‖x∗∗‖ for all n ∈ N. By
passing to a subsequence, we may assume without loss of generality that (un)∞n=1 is a
basic sequence. We will now prove that (un)∞n=1 is equivalent to the unit vector basis
of c0. Let (an)∞n=1 ∈ c00. We have that

∣
∣
∣ f (

∞∑

n=1

anun)
∣
∣
∣ =

∣
∣
∣

∞∑

n=1

∫

Wn\Vn
anx

∗∗( ft ) f (xt )dμ

∣
∣
∣

≤ sup
n∈N

|an|
∫

M
|x∗∗( ft ) f (xt )|dμ as (Wn \ Vn)

∞
n=1 is pairwise disjoint,

≤ 2Bs‖x∗∗‖‖ f ‖ sup
n∈N

|an| by (3.6).

Thus, (un)n∈N is equivalent to the unit vector basis of c0.
We now assume that c0 embeds into X . As c0 is not distortable, there exists a

sequence of unit vectors (yn)∞n=1 in X which is 2-equivalent to the unit vector basis
of c0. That is, 2−1 sup |an| ≤ ‖∑∞

n=1 an yn‖ ≤ 2 sup |an| for all (an)∞n=1 ∈ c0. Let
ε > 0. We will inductively choose sequences of sets (En)

∞
n=1, (Fn)

∞
n=1 ⊆ D and a

subsequence (zn)∞n=1 of (yn)∞n=1 such that for all n ∈ N,

(1) En ⊆ Fn ,
(2) En ∩ Fm = ∅ for all m < n,
(3) ‖PGzn‖ < ε2−n for all G ∈ D such that G ∩ Fn = ∅,
(4) ‖PEm zn‖ < ε2−n for all m < n,
(5) ‖zn − PEn zn‖ < ε2−n .

We start with z1 = y1 and choose E1 ∈ D such that ‖z1 − PE1(z1)‖ < ε2−1.
By Lemma 2.10 there exists F1 ∈ D such that E1 ⊆ F1 and ‖PGz1‖ < ε2−1 for all
G ∈ D with G ∩ F1 = ∅. Thus, all the conditions are satisfied.

We now let k ∈ N and assume that (En)
k
n=1, (Fn)

k
n=1 and (zn)kn=1 have been chosen.

Choose M ∈ N such that (zn)kn=1 is a subsequence of (yn)Mn=1. We have that PEn and
PFn are compact operators for all 1 ≤ n ≤ k. As (yn)∞n=M converges weakly to 0,

there exists N > M such that max1≤n≤k ‖PEn yN‖ < ε2−k−1 and
∑k

n=1 ‖PFn yN‖ <

ε2−k−2. Let zk+1 = yN . As zk+1 = limE∈D PEzk+1, we may choose a set E �
∪k
n=1Fn such that ‖zk+1 − PEzk+1‖ < ε2−k−2. Let Ek+1 = E \ ∪k

n=1Fn . Thus,
Fm ∩ Ek+1 = ∅ for all m ≤ k and
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‖zk+1 − PEk+1 zk+1‖ ≤ ‖zk+1 − PEzk+1‖

+
k∑

n=1

‖PFn zk+1‖ < ε2−k−2 + ε2−k−2 = ε2−k−1.

Lastly, we choose Fk+1 ∈ D such that Ek+1 ⊆ Fk+1 and ‖PGzk+1‖ < ε2−k−1 for all
G ∈ D with G ∩ Fk+1 = ∅. This finishes our induction.

Note that for all j, N ∈ N if j < N then EN ∩ Fj = ∅ by (2) and hence
‖PEN z j‖ < ε2− j by (3). Likewise, if N < j then ‖PEN z j‖ < ε2− j by (4). Hence
we have that

‖PEN z j‖ < ε2− j for all j = N . (3.7)

As (zn)∞n=1 is 2-equivalent to the unit vector basis of c0, we have that ‖
∑n

j=1 z j‖ ≤
2 for all n ∈ N. Let x∗∗ ∈ X∗∗ be a w∗-accumulation point of (

∑n
j=1 z j )

∞
n=1. For all

N ∈ N, let fN ∈ X∗ such that ‖ fN‖ = 1 and fN (zN ) = 1.
For all n ≥ N ,

P∗
EN

fN

⎛

⎝
n∑

j=1

z j

⎞

⎠ = fN

⎛

⎝PEN

n∑

j=1

z j

⎞

⎠

= fN (zN ) − fN (zN − PEN zN ) + fN

⎛

⎝
∑

1≤ j≤n; j =N

PEN z j

⎞

⎠

≥ 1 − ‖zN − PEN zN‖ −
∑

j =N

‖PEN z j‖

as fN (zN ) = 1and‖ fN‖ = 1,

> 1 − ε2−N −
∑

j =N

ε2− j by (5) and (3.7)

= 1 − ε

Thus, P∗
EN

fN (
∑n

j=1 z j ) ≥ 1− ε for all n ≥ N . As x∗∗ is a w∗-accumulation point of
(
∑n

j=1 z j )
∞
n=1, we have that x

∗∗(P∗
EN

fN ) ≥ 1− ε. This gives that ‖P∗∗
EN

x∗∗‖ ≥ 1− ε

as ‖ fN‖ = 1 for all N ∈ N. As (En)
∞
n=1 is a sequence of disjoint sets in D by (1) and

(2), we have that limE∈D P∗∗
E x∗∗ cannot converges in norm. Thus, (xt , ft )t∈M is not

boundedly complete. ��
Theorem 3.11 Let (xt , ft )t∈M be continuous Schauder frame for a Banach space X
such that either: X is separable, ( ft )t∈M is semi-discrete, or every x∗∗ ∈ X∗∗ is the
w∗-limit of a sequence in X. Then the following are equivalent:

(1) (xt , ft )t∈M is shrinking and boundedly complete,
(2) X does not contain an isomorphic copy of c0 or �1,
(3) X is reflexive.

Proof (3) ⇒ (2) is clear as c0 and �1 are not reflexive. We now prove that (2) ⇒ (1).
We assume that X does not contain an isomorphic copy of c0 or �1. If either ( ft )t∈M
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is semi-discrete or every x∗∗ ∈ X∗∗ is the w∗-limit of a sequence in X then we may
apply Theorems 3.5 and 3.10 to obtain that (xt , ft )t∈M is shrinking and boundedly
complete. If X is separable, we have that every x∗∗ ∈ X∗∗ is thew∗-limit of a sequence
in X [25] and hence (xt , ft )t∈M is shrinking and boundedly complete.

We now prove that (1) ⇒ (3). We assume that (xt , ft )t∈M is shrinking and bound-
edly complete. Let x∗∗ ∈ X∗∗. Since (xt , ft )t∈M is boundedly complete, there exists
x ∈ X such that x = limE∈D

∫
E x∗∗( ft )xtdμ. Let f ∈ X∗. As (xt , ft )t∈M is shrink-

ing, Theorems 3.4 and 3.5 give that f = ∫
M xt ( f ) ft dμ. We now have that

f (x) = f

(

lim
E∈D

∫

E
x∗∗( ft )xtdμ

)

= lim
E∈D

f

(∫

E
x∗∗( ft )xtdμ

)

by continuity,

= lim
E∈D

∫

E
x∗∗( ft ) f (xt )dμ by definition of the Pettis integral,

=
∫

M
x∗∗( ft ) f (xt )dμ as lim

E∈D

∫

E
x∗∗( ft )xt ( f )dμexists.

On the other hand we have that

x∗∗( f ) =x∗∗
(∫

M
f (xt ) ft dμ

)

=
∫

M
f (xt )x

∗∗( ft )dμ by definition of the Pettis integral.

Compiling the above, we have f (x) = x∗∗( f ) for all f ∈ X∗. Thus x∗∗ = x ∈ X .
As this was for arbitrary x∗∗ ∈ X∗∗ we have that X∗∗ = X as desired. ��

4 Sampling Continuous Schauder Frames

Many important frames for Hilbert spaces arise as samplings of continuous frames.
In particular, wavelet frames, Gabor frames, and Fourier frames are all samplings
of different continuous frames. Notably, all the frames introduced by Daubechies,
Grossmann, and Meyer [11] in “Painless nonorthogonal expansions” are created by
sampling different coherent states. Formally, if (M, �,μ) is a σ -finite measure space
and (xt , ft )t∈M is a continuous frame of a Banach space X and (t j )∞j=1 is a sequence in
M then (xt j , ft j )

∞
j=1 is called a sampling of (xt , ft )t∈M . The discretization problem,

posed by Ali et al. [3], asks when a continuous frame of a Hilbert space can be sampled
to obtain a frame. A solution for certain types of continuous frames was obtained by
Fornasier and Rauhut using the theory of co-orbit spaces [17] and a complete solution
was recently given by Speegle and the second author [18] using the solution of the
Kadison Singer Problem byMarcus et al. [24]. In particular, every bounded continuous
frame on a Hilbert space may be sampled to obtain a discrete frame.
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Problem 4.1 What are some Banach spaces where every bounded continuous
Schauder frame may be sampled to obtain a discrete Schauder frame? What are some
Banach spaces where there exists a bounded continuous Schauder frame which cannot
be sampled to obtain a discrete Schauder frame?

Note that the discretization problemwas solved for continuousHilbert space frames,
and Problem 4.1 is even open for reproducing pairs for Hilbert spaces. One reason for
this is that the structure of positive operators factors heavily into the solution of the
Kadison Singer Problem [24], but if (xt , ft )t∈M is a reproducing pair then xt ⊗ ft is
only a positive operator when ft = λt xt for some λt ≥ 0.
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