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Abstract. Let X be an infinite dimensional uniformly smooth Banach space. We prove
that X contains an infinite equilateral set. That is, there exists a constant λ > 0 and an
infinite sequence (xi)

∞
i=1 ⊂ X such that ‖xi − xj‖ = λ for all i 6= j.

1. Introduction

A subset S of a Banach space X is called equilateral if there exists a constant λ > 0 such
that ‖x − y‖ = λ for all x, y ∈ S with x 6= y. Much of the research on equilateral sets
in Banach spaces is in estimating the maximal size of equilateral sets in finite dimensional
Banach spaces, for some examples see [AP],[P],[S], and [SV]. Much less is known about
equilateral sets in infinite dimensional Banach spaces. Instead of estimating the maximal
size of equilateral sets in finite dimensional spaces, we consider the question of whether or
not an infinite equilateral set exists in some given infinite dimensional Banach space. That is,
given an infinite dimensional Banach space X, does there exist a sequence (xn)∞n=1 ⊂ X and
a constant λ > 0 such that ‖xn − xm‖ = λ for all n 6= m? For example, any subsymmetric
basis is equilateral, such as the unit vector basis for `p for all 1 ≤ p <∞ or the unit vector
basis for Schlumprecht’s space. On the other hand, the unit vector bases for Tsirelson’s space
and the hereditarily indecomposable Gowers-Maurey space are not subsymmetric, and yet
they each have equilateral subsequences. Whether or not a given infinite dimensional Banach
space contains an equilateral sequence is an isometric property. That is, it is possible for
two infinite dimensional Banach spaces to be linearly isomorphic, and yet only one of them
contain an equilateral sequence. Indeed, Terenzi constructed an equivalent norm ||| · ||| on
`1 such that the Banach space (`1, ||| · |||) does not contain an equilateral sequence [T1],[T2].
Terenzi gave two distinct renormings of `1 which do not contain an equilateral sequence,
and these are the only known infinite dimensional Banach spaces which do not contain an
equilateral sequence. However, every renorming of c0 does contain an equilateral sequence
[MV]. Taken together, these two results are somewhat surprising as both `1 and c0 are
not distortable. We show that every uniformly smooth infinite dimensional Banach space
contains an equilateral sequence.
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2. Asymptotic stability

Given a uniformly smooth Banach space X, before we can construct an equilateral se-
quence in X, we will need to first construct a sequence which is very close to being equilateral
in certain ways. In this section we show how certain properties of weakly null sequences can
be stabilized to make them “almost equilateral”.

Let X be a uniformly smooth Banach space. For all x ∈ X \ {0}, there exists a unique
functional φx ∈ SX∗ such that φx(x) = ‖x‖. Furthermore, the map Φ : X \ {0} → SX∗ given
by Φ(x) = φx is uniformly continuous on subsets of X which are bounded away from 0.

Given a normalized weakly null sequence, the next lemma allows us to obtain a subsequence
such that the difference between any two distinct elements is uniformly bounded away from
1. We recall that the spreading model generated by a semi normalized sequence (xi)

∞
i=1 in a

Banach space X is a Banach space (E, ‖ · ‖) with a basis (ei)
∞
i=1 satisfying∥∥∥ n∑

i=1

aiei

∥∥∥ = lim
k1→∞

lim
k2→∞

. . . lim
kn→∞

∥∥∥ n∑
i=1

aixki

∥∥∥, for all n ∈ N and scalars (ai)
n
i=1.

See [O] for an expository reference on spreading models and the use of Ramsey theory in
Banach spaces.

Lemma 2.1. Let X be an infinite dimensional uniformly smooth Banach space and (xi)
∞
i=1 ⊂

X be a normalized weakly null sequence. Then (xi)
∞
i=1 has a subsequence with a spreading

model (ei)
∞
i=1 such that ‖e1 − e2‖ = λ > 1.

Proof. Every semi-normalized weakly null sequence in a Banach space has a subsequence
with a 1-suppression unconditional spreading model (Proposition 2.3 (b) in [O]). Thus,
after scaling and passing to a subsequence, we may assume that (xi)

∞
i=1 has a normalized 1-

suppression unconditional spreading model (ei)
∞
i=1. Furthermore, as X is uniformly smooth,

[(ei)] will be uniformly smooth as well. This can be seen as the property of being uniformly
smooth is a uniform property of all two dimensional subspaces of a Banach space and for
all ε > 0 every finite dimensional subspace of [(ei)] is (1 + ε)-isomorphic to some subspace
of X (Proposition 2.3 (c) in [O]). As (ei)

∞
i= is 1-suppression unconditional, its sequence of

biorthogonal functionals (e∗i )
∞
i=1 is normalized. We have that e∗1(e1 − e2) = 1 and −e∗2(e1 −

e2) = 1. If ‖e1−e2‖ = 1 then the normalizing unit functional of e1−e2 would not be unique,
and hence ‖e1 − e2‖ > 1. �

The following lemma allows us to choose a sequence which is asymptotically equilateral.

Lemma 2.2. Let X be an infinite dimensional Banach space and (xi)
∞
i=1 ⊂ SX be a nor-

malized weakly null sequence with a spreading model (ei)
∞
i=1 such that ‖e1 − e2‖ = λ > 1.

There exists a subsequence (yi)
∞
i=1 of (xi)

∞
i=1 and a sequence of scalars (ai)

∞
i=1 ⊂ R such that

ai → 1, and limi→∞ ‖akyk − aiyi‖ = λ for all k ∈ N.

Proof. For all x ∈ X, we let φx ∈ SX be a functional such that φx(x) = ‖x‖. We have
that limn→∞ limm→∞ ‖xn − xm‖ = ‖e1 − e2‖ = λ > 1. Let ε > 0 be chosen so that
λ > 1 + ε. By passing to a subsequence of (xi)

∞
i=1, we may assume for all n ∈ N that

λn := limm→∞ ‖xn − xm‖ > 1 + ε. Moreover, we may assume that ‖xn − xm‖ > 1 + ε for
all n,m ∈ N. If λn = λ for all n ∈ N then setting an = 1 for all n ∈ N gives us our desired
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sequence. Thus, after passing to a subsequence again, we may assume that either λn < λ
for all n ∈ N or that λn > λ for all n ∈ N.

We first consider the case that λn < λ for all n ∈ N. We have for all n,m ∈ N that
‖xn‖ = ‖xm‖ = 1, ‖φxn−xm‖ = 1, and φxn−xm(xn − xm) = ‖xn − xm‖ > 1 + ε. Thus,
φxn−xm(xn) > ε for all n,m ∈ N. Let an = 1 + (λ− λn)/ε. Thus an → 1. By the definition
of spreading model, we have that limm→∞ ‖axn − xm‖ exists for all n ∈ N and 0 ≤ a ≤ an.
We have that,

lim
m→∞

‖anxn − xm‖ ≥ lim
m→∞

φxn−xm(anxn − xm)

= (an − 1) lim
m→∞

φxn−xm(xn) + lim
m→∞

φxn−xm(xn − xm)

≥ λ− λn + λn = λ.

Thus, for all n ∈ N, we have that limm→∞ ‖xn − xm‖ = λn < λ ≤ limm→∞ ‖anxn − xm‖.
Hence, we may choose by the Intermediate Value Theorem, applied to the function a 7→
limm→∞ ‖axn− xm‖, a constant 1 < an ≤ an to yield limm→∞ ‖anxn− xm‖ = λ. As an → 1,
we have that an → 1, and hence limm→∞ ‖anxn− amxm‖ = limm→∞ ‖anxn− xm‖ = λ for all
n ∈ N.

We now consider the case that λn > λ for all n ∈ N. By the definition of spreading
models limm→∞ ‖axn − xm‖ exists for all n ∈ N and 0 ≤ a ≤ 1. As limm→∞ ‖xm‖ =
limm→∞ ‖0 · xn − xm‖ = 1 and limm→∞ ‖xn − xm‖ > λ, there exist by the Intermediate
Value Theorem 0 < an < 1 so that limm→∞ ‖anxn − xm‖ = λ > 1 + ε. After passing to a
subsequence of (xi)

∞
i=1, we may assume that ‖anxn − xm‖ > 1 + ε for all m,n ∈ N.

Since for all m,n ∈ N we have ‖xn‖ = ‖xm‖ = 1 and ‖anxn − xm‖ > 1 + ε, it follows that
φanxn−xm(xn) > ε/an, and, thus,

λ = lim
m→∞

‖anxn − xm‖

= lim
m→∞

φanxn−xm(anxn − xm)

= lim
m→∞

φanxn−xm(xn − xm)− (1− an)φanxn−xm(xn)

≤ lim
m→∞

‖xn − xm‖ − (1− an)ε/an = λn − ε(1/an − 1).

Since λ = limn→∞ λn and 0 < an < 1, for n ∈ N, it follows that an → 1. Hence,
limm→∞ ‖anxn − amxm‖ = limm→∞ ‖anxn − xm‖ = λ for all n ∈ N.

�

By perturbing the asymptotically equilateral sequence given by Lemma 2.2 and passing
to a subsequence, we obtain the following.

Lemma 2.3. Let X be an infinite dimensional uniformly smooth Banach space and (xi)
∞
i=1 ⊂

X be a semi-normalized weakly null sequence. There exists a weakly null block sequence (zi)
∞
i=1

of (xi)
∞
i=1 with limi→∞ ‖zi‖ = 1 and a constant λ > 1 such that limi→∞ ‖zk − zi‖ = λ for all

k ∈ N and limk→∞ limi→∞ φzk−zi(z`) = 0 for all ` ∈ N.

Proof. After passing to a subsequence and scaling, we assume by Lemmas 2.2 and 2.1 that
there exists λ > 1 such that limi→∞ ‖xi‖ = 1 and limi→∞ ‖xk − xi‖ = λ for all k ∈ N. For
each k > ` we may pass to a subsequence of (xi) such that limi→∞ φxk−xi(x`) converges.
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By taking the diagonal and passing to a further subsequence, we may assume that there
exists (b`)

∞
`=1 ⊂ R such that limk→∞ limi→∞ φxk−xi(x`) = b` for all ` ∈ N. Let x∗ be a w∗

accumulation point of {φxk−xi : k, i ∈ N}. As (x`)
∞
`=1 is weakly null, lim`→∞ x

∗(x`) = 0.
Hence, lim`→∞ b` = 0. If there exists a subsequence (j`)

∞
`=1 of N such that bj` = 0 for all

` ∈ N then setting z` = xj` gives our desired sequence. We thus may assume by passing

to a subsequence that b2` > |b`+1| > 0 for all ` ∈ N. We set v` = x2`+1 − b2`+1

b2`
x2`. Thus,

limk→∞ limi→∞ φxk−xi(v`) = 0 for all ` ∈ N. Furthermore, lim`→∞ ‖v`− x2`+1‖ = 0 as b` → 0
and b2` > |b`+1| > 0 for all ` ∈ N. As Φ is uniformly continuous on semi-normalized subsets of
X, we have that limk→∞ limi→∞ φvk−vi(v`) = 0 for all ` ∈ N. After passing to a subsequence
of (vi), we may assume by Lemma 2.2 that there exists a sequence of constants c` → 1 such
that limi→∞ ‖ckvk − civi‖ = λ for all k ∈ N. As the map Φ is uniformly continuous on
semi-normalized subsets of X and ck → 1, we have that limk→∞ limi→∞ φckvk−civi(c`v`) = 0
for all ` ∈ N. Furthermore, we have that (ckvk)

∞
k=1 is weakly null as (x2k+1)

∞
k=1 and (x2k)

∞
k=1

are weakly null. Thus letting zk = ckvk for all k ∈ N gives our desired sequence.
�

Given a Banach space X, recall that the modulus of smoothness of X is the function
ρX : [0,∞)→ [0,∞) defined by

ρX(τ) := sup

{
1

2
‖x+ τy‖+

1

2
‖x− τy‖ − 1 : x, y ∈ SX

}
for all τ ∈ [0,∞).

The modulus of smoothness quantifies the uniform smoothness of SX , and a Banach space

is uniformly smooth if and only if limτ→0+
ρX(τ)
τ

= 0.
Let X be a Banach space and let (xj)

∞
j=1 ⊂ X such that limj→∞ ‖x + xj‖ exists for all

x ∈ X. The map x 7→ limj→∞ ‖x + xj‖ is called a type. See [G] for a reference on types.
The following Lemma gives a relationship between types and uniform smoothness.

Lemma 2.4. Let X be a uniformly smooth Banach space and let Y ⊆ X be a subspace. Let
(xj)

∞
j=1 ⊂ X be a seminormalized weakly null sequence such that limj→∞ ‖y− axj‖ exists for

all y ∈ Y and a ∈ R. Define ||| · ||| on Y ⊕R by |||(y, a)||| = limj→∞ ‖y − axj‖. Then Y ⊕R is
a uniformly smooth Banach space under the norm ||| · ||| with modulus of smoothness at most
the modulus of smoothness of X.

Proof. Let ρX : [0,∞) → [0,∞) be the modulus of smoothness of X. Let τ > 0, and
(x, a), (y, b) ∈ SY⊕R. Since limj→∞ ‖x− axj‖ = 1 and limj→∞ ‖y − bxj‖ = 1, we have that,

1

2
|||(x, a) + τ(y, b)|||+ 1

2
|||(x, a)− τ(y, b)||| − 1

= lim
j→∞

1

2
||x− axj + τ(y − bxj)||+ lim

i→∞

1

2
||x− axi − τ(y − bxj)|| − 1

= lim
j→∞

1

2

∥∥∥∥ x− axj
‖x− axj‖

+ τ
y − bxj
‖y − bxj‖

∥∥∥∥+
1

2

∥∥∥∥ x− axj
‖x− axj‖

− τ y − bxj
‖y − bxj‖

∥∥∥∥− 1

≤ ρX(τ).

Thus, ρY⊕R(τ) ≤ ρX(τ) and hence Y ⊕ R is uniformly smooth under the norm ||| · |||. �
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Lemma 2.5. Let X be a uniformly smooth Banach space and let Y ⊆ X be a subspace. Let
(xj)

∞
j=1 ⊂ X be a seminormalized weakly null sequence such that limj→∞ ‖y− axj‖ exists for

all y ∈ Y and a ∈ R. Define ||| · ||| on Y ⊕ R by |||(y, a)||| = limj→∞ ‖y − axj‖. Then for all
z, y ∈ Y and a, b ∈ R,

φ(y,a)((z, b)) = lim
j→∞

φy−axj(z − bxj).

Proof. Let (y, a) ∈ SY⊕R. We have that

φ(y,a)((y, a)) = |||(y, a)||| = lim
j→∞
‖y − axj‖ = lim

j→∞
φy−axj(y − axj).

Let (z, b) ∈ SY⊕R such that φ(y,a)((z, b)) = 0. Assume that limj→∞ φy−axj(z−bxj) 6= 0. Thus,
there exists c > 0, σ ∈ {−1, 1}, and a subsequence (kj)j∈N of N such that σφy−axkj (z−bxkj) ≥
c for all j ∈ N. Let λ > 0.

|||(y, a) + λσ(z, b)||| = lim
j→∞
‖y − axj + λσ(z − bxj)‖

≥ lim inf
j→∞

φy−axkj (y − axkj + λσ(z − bxkj))

= lim
j→∞

φy−axkj (y − axkj) + λ lim inf
j→∞

σφy−axkj (z − bxkj)

≥ 1 + λc.

Hence, we have that

φ(y,a)(σ(z, b)) = lim
λ→0

|||(y, a) + σλ(z, b)||| − |||(y, a)|||
λ

≥ (1 + λc)− 1

λ
= c.

This is a contradiction as we have assumed that φ(y,a)((z, b)) = 0. Thus limj→∞ φy−axj(z −
bxj) = 0 for all (z, b) ∈ φ−1(y,a)(0). We have as well that limj→∞ φy−axj(y−axj) = φ(y,a)((y, a)).

Thus, limj→∞ φy−axj(z − bxj) = φ(y,a)((z, b)) for all (z, b) ∈ Y ⊕ R. �

3. A uniform version of the Inverse Mapping Theorem

Let d ∈ N and U ⊂ Rd be a compact and convex subset whose interior contains the origin.
We denote by C1

0(U,Rd) the space of all continuously differentiable function f : U → Rd,
with f(0) = 0. For f ∈ C1

0(U,Rd), let fi denote the i-th component of f , for i ≤ d. The
derivative function is denoted by Df , i.e.,

Df : U → R(d,d) ξ 7→
[
∂fi
∂xj

(ξ)

]
1≤i,j≤d

.

R(d,d) is the space of d × d matrices. Elements of R(d,d) can be seen as operators on `d2 and
we denote the operator norm on R(d,d) by ‖ · ‖2. We also denote the Euclidean norm on Rd

by ‖ · ‖2.
It follows for f ∈ C1

0(U,R(d,d)) that the map Df(·) lies in C(U,R(d,d)), the space of all
R(d,d)-valued continuous functions on U . For M ∈ C(U,R(d,d)) we let ‖M‖∞ = supξ ‖M(ξ)‖2
and for f ∈ C1

0(U,Rd) we let ‖f‖(1,∞) = ‖Df‖∞. Then ‖ · ‖∞ and ‖ · ‖(1,∞) are norms on

C(U,R(d,d)) and C1
0(U,Rd) respectively, which turn C(U,R(d,d)) and C1

0(U,Rd) into Banach
spaces, and the operator

D : C1
0(U,Rd)→ C(U,R(d,d)), f 7→ Df,
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is an isometric embedding, onto the subspace of continuous functions

M = [M(i,j)] : U → R(d,d), ξ 7→ [M(i,j)(ξ)]1≤i,j≤d,

for which the ith row, [M(i,j)(·)]1≤j≤d is a conservative vector field, for all i = 1, 2, . . . , d.
From these considerations and the Theorem of Arzela-Ascoli we obtain the following com-

pactness criterium.

Proposition 3.1. A bounded subset B ⊂ C1
0(U,Rd) is relatively norm compact if and only

if {Df : f ∈ B} is equicontinuous.

For a decreasing function δ(·) : (0, 1) → (0, 1), with limε→0 δ(ε) = 0, and a real number
R > 0 we let F(δ(·),R) be the set of all f ∈ C1

0(U,Rd) for which ‖Df(0)‖2 ≤ R, Df(0) is
invertible, with ‖Df(0)−1‖2 ≤ R, for which the modulus of continuity of Df is not larger
than δ(·), i.e. ‖Df(ξ)−Df(η)‖2 ≤ ε, for ξ, η ∈ U with ‖ξ − η‖2 ≤ δ(ε). Note that F(δ(·),R)

is a closed and bounded set and {Df : f ∈ F(δ(·),R)} is equicontinuous. Thus, F(δ(·),R) is
compact by Proposition 3.1.

We now state and prove a uniform version of the inverse mapping theorem. This will be
used in proving our main result in Section 4.

Corollary 3.2. Let d ∈ N. For all R > 0 and decreasing functions δ(·) : (0, 1)→ (0, 1), with
limε→0 δ(ε) = 0, there is an η = η(δ(·), R), so that for all f ∈F(δ(·),R) we have ηBd ⊂ f(U),
where Bd denotes the Euclidean unit ball in Rd.

Proof. Assume our claim was not true. Then we could choose a sequence f (n) ⊂ F(δ(·),R), so

that 1
n
Bd 6⊂ f (n)(U), for all n ∈ N.

As F(δ(·),R) is compact, we may assume that f (n) converges in norm to some f ∈ F(δ(·),R).
By the Inverse Mapping Theorem f has a continuously differentiable inverse f−1 on some
neighborhood V ⊂ U of the origin. Since the sequence (Df (n))∞n=1 is bounded, the sequence
(f (n))∞n=1 is equicontinuous and we can find ρ > 0 so that that for all n ∈ N f (n)(ρBd) ⊂ V .
For n ∈ N we consider the map

g(n) : ρBd → Rd, ξ 7→ f−1 ◦ f (n)(ξ).

The sequence (g(n))∞n=1 converges in C1
0(ρBd,Rd) to the identity. After possibly decreasing

ρ and passing to a subsequence of the (g(n)) we may assume that for all n ∈ N

‖Dg(n)(x)− Id ‖2 ≤
1

2
and ‖(Dg(n)(x))−1 − Id ‖2 ≤

1

2
, for all x ∈ ρBd,(3.1) ∥∥g(n)(z)−(g(n)(x)+ 〈Dg(n)(x), z−x〉)

∥∥
2
<

1

8
‖z − x‖2, for all x, z∈ρBd.(3.2)

(3.1) can be achieved since Dg(n)(·) uniformly converges to the identity matrix, and (3.2)
can be achieved using the Taylor formula and the equicontinuity of the sequence

(
Dg(n)(·)

)
.

We claim that the image of ρBd under g = g(n), n ∈ N contains ρ
4
Bd.

Indeed, assume y ∈ ρ
4
Bd. Choose x1 = y and note that

‖g(n)(x1)− y‖2 ≤ ‖g(n)(y)−Dg(n)(0)(y)‖2 + ‖Dg(n)(0)(y)− y‖2

≤ 1

8
‖y‖2 +

1

2
‖y‖2 ≤

ρ

4
. by (3.2) and (3.1).
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Assume that we have chosen x1, x2, . . . , xm ∈ ρBd satisfying the following conditions for
all j = 1, 2, . . . ,m.

‖xj − xj−1‖2 ≤
3

2

(1

4

)j−1
ρ (if j > 1) and thus(3.3)

‖xj‖2 ≤
ρ

4
+ ρ

j∑
i=2

3

2

(1

4

)i−1
< ρ,

‖g(xj)− y‖2 ≤
(1

4

)j
ρ.(3.4)

Then we let
xm+1 = xm +

(
Dg(xm)

)−1(
y − g(xm)

)
.

It follows from (3.1) and the induction hypothesis (3.4) that

‖xm+1 − xm‖2 ≤
∥∥(Dg(xm))−1

∥∥
2
· ‖y − g(xm)‖2 ≤

3

2

(1

4

)m
ρ.(3.5)

We now have that

‖g(xm+1)− y‖2 =
∥∥g(xm+1)− (g(xm) +Dg(xm)(xm+1 − xm)

∥∥
2

≤ 1

8
‖xm+1 − xm‖2 by (3.2)

≤ 1

8

3

2

(1

4

)m
ρ <

(1

4

)(m+1)

ρ by (3.5).

which finishes the induction step.
Letting x = limm→∞ xm = x1 +

∑∞
j=1(xj+1 − xj) it follows that

‖x‖2 ≤
ρ

4
+

3ρ

2

∞∑
j=1

1

4j
≤ ρ

4
+

3

2

1

3
ρ < ρ,

and by (3.4) we have g(x) = y. Hence, the image of ρBd under g = g(n), n ∈ N contains
ρ
4
Bd.

Finally we can find a positive ρ′ > 0 so that ρ′Bd ⊂ f(ρ
4
Bd), and thus

ρ′Bd ⊂ f
(ρ

4
Bd
)
⊂ f ◦ g(n)(ρBd) = f (n)(ρBd) ⊂ f (n)(U),

which contradicts 1
n
Bd 6⊂ f (n)(U), for all n ∈ N, and hence our proof is complete. �

4. Constructing an equilateral set

Given an infinite dimensional uniformly smooth Banach space X, our goal is to construct
an equilateral sequence (xn)∞n=1 ⊂ X. This will be done by first constructing a sequence
(zn)∞n=1 ⊂ X which is “close” to being equilateral as in Section 2. We will then choose
εn ↘ 0 and perturb (zn)∞n=1 by a triangular array of constants (ai,n)1≤i≤n<∞ (with |ai,n| < εn
for all 1 ≤ i ≤ n) such that if we set xn = (1+an,n)zn+

∑n−1
i=1 ai,nzi then (xn)∞n=1 is equilateral.

The sequence εn ↘ 0 will be determined by the following lemma.
For N ∈ N, (εi)

N
i=2 ⊂ [0, 1), and 1 > C > 0 we define AN×N(C, (εi)

N
i=2) to be the set of

N ×N matrices [ai,j]1≤i,j≤N ∈ RN×N which satisfy the following three properties.
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(1) |ai,j| ≤ 2 for all 1 ≤ i, j ≤ N ,
(2) |ai,i| ≥ C for all 1 ≤ i ≤ N ,
(3) |ai,j| ≤ εj for all 1 ≤ i < j ≤ N .

Lemma 4.1. For all C > 0 there exists a sequence (RN)∞N=1 ⊂ (0,∞) and a sequence
(εi)

∞
i=2 ⊂ (0, 1) such that A is invertible and ‖A−1‖ ≤ RN for all A ∈ AN×N(C, (εi)

N
i=2).

Proof. We will prove the lemma by induction on N ∈ N. For N = 1 the lemma holds
for R1 = 1

C
. We now let N ∈ N and assume that (εi)

N
i=2 has been chosen such that if

A ∈ AN×N(C, (εi)
N
i=2) then A is invertible. We let A′ = AN+1×N+1(C, (ε2, ε3, ..., εN , 0).

If [ai,j]1≤i,j≤N+1 ∈ A′ then [ai,j]1≤i,j≤N ∈ AN×N(C, (εi)
N
i=2) is invertible by the induction

hypothesis, and hence [ai,j]1≤i,j≤N+1 is invertible because the last row of [ai,j]1≤i,j≤N+1 is
linearly independent from the others. Thus, A′ is a compact set of invertible matrices. As
the set of invertible matrices on RN+1 is open, there exists εN+1 such that [ai,j+δi,j]1≤,i,j≤N+1

is invertible for all [ai,j]1≤i,j≤N+1 ∈ A′ with |δi,j| ≤ εN+1 for all 1 ≤ i, j ≤ N + 1. The
map A 7→ A−1 is continuous on the set of invertible matrices, and hence there exists a
constant RN+1 > 0 such that ‖[ai,j + δi,j]

−1
1≤,i,j≤N+1‖ ≤ RN+1 for all [ai,j]1≤i,j≤N+1 ∈ A′ with

|δi,j| ≤ εN+1 for all 1 ≤ i, j ≤ N + 1 as this set is compact. Thus, ‖A−1‖ ≤ RN+1 for all
A ∈ A(N+1)×(N+1)(C, (εi)

N+1
i=2 ). �

We are now ready to prove our main result.

Theorem 4.2. Let X be an infinite dimensional uniformly smooth Banach space. There
exists a sequence (xi)

∞
i=1 ⊂ X and a constant λ > 0 such that ‖xi − xj‖ = λ for all i 6= j.

Proof. For all x ∈ X \ {0}, we let φx ∈ SX∗ be the unique functional such that φx(x) = ‖x‖.
By Lemma 2.3, there exists a weakly null sequence (zi)

∞
i=1 ⊂ X such that limi→∞ ‖zi‖ = 1 and

a constant 2 > λ > 1 such that limi→∞ ‖zk−zi‖ = λ for all k ∈ N and limk→∞ limi→∞ φzk−zi(z`) =
0 for all ` ∈ N. After passing to a subsequence, we may assume that limi→∞ ‖x− zi‖ exists
for all x ∈ X and that ‖zk − zi‖ > (1 + λ)/2 for all i 6= k and ‖zi‖ < (3 + λ)/4 for all i ∈ N.
This gives us the following estimate for all i 6= k.

(4.1) φzk−zi(zk) = φzk−zi(zk − zi) + φzk−zi(zi) ≥ ‖zk − zi‖ − ‖zi‖ >
1 + λ

2
− 3 + λ

4
=
λ− 1

4
.

We set C = λ−1
8

, and thus we have that φzk−zi(zk) > 2C > 0 for all i 6= k. By Lemma
4.1 there exists (RN)∞N=1 ⊂ (0,∞) and (εi)

∞
i=2 ⊂ (0, 1) such that ‖A−1‖ ≤ RN for all

A ∈ AN×N(C, (εi)
N
i=2). By induction on N ∈ N, we shall produce a sequence (xi)

∞
i=1 ⊂ X

and sequences of natural numbers MN = (mN
i )∞i=1 with M0 = N and MN a subsequence of

MN−1, for all N ∈ N, so that for all N ∈ N, the following properties are satisfied.

(1) ‖xi − xj‖ = λ for all 1 ≤ i < j ≤ N ,
(2) limi→∞ ‖xk − zmN

i
‖ = λ for all 1 ≤ k ≤ N ,

(3) ‖xi‖ ≤ 2 for all 1 ≤ i ≤ N ,
(4) lim`→∞ limk→∞ φz

mN
`
−z

mN
k

(xi) = 0 for all 1 ≤ i ≤ N ,

(5) |φzL−xk(xi)| < εk for all 1 ≤ i < k ≤ N and L ∈MN .
(6) |φzL−xk(xk)| > C for all 1 ≤ k ≤ N and L ∈MN .

Note that if we are able to construct such a sequence (xi)
∞
i=1 by induction, then (xi)

∞
i=1 would

be equilateral by condition (1). Thus, all we need to do to complete the proof is to prove
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the induction argument. Let N = 1. We let x1 = z1 and M1 = (2, 3, 4, ...). Conditions (1)
and (5) are trivially satisfied. Condition (2), (3), (4), and (6) are satisfied by our choice of
(zi)

∞
i=1.

We now let N ∈ N and assume that we have constructed (xi)
N
i=1 and MN = (mN

i )∞i=1 to
satisfy conditions (1) through (6). For each K ∈ MN , we define a map gK : BRN+1 → X by

gK(a1, ..., aN+1) = (1+aN+1)zK +
∑N

i=1 aixi. Our first goal is to show that there exists δ > 0
and a subsequence M ′

N of MN such that if we set xN+1 = gK(a) for an arbitrary a ∈ δBRN+1

and K ∈M ′
N , and if MN+1 is an arbitrary subsequence of {L ∈M ′

N |L > K}, then properties
(3), (4), (5), and (6) would all hold.

As ‖zK‖ ≤ (3 + λ)/4 < 2 for all K ∈ N, we may choose δ1 > 0 such that ‖gK(a)‖ ≤ 2
for all a ∈ δ1BRN+1 and K ∈ M1. Thus, if xN+1 = gK(a) for an arbitrary a ∈ δ1BRN+1 and
K ∈ MN then ‖xN+1‖ ≤ 2 and hence property (3) in the induction hypothesis would be
satisfied.

For each K ∈ N, we have that

lim
`→∞

lim
k→∞

φz
mN

`
−z

mN
k

(gK(a)) = lim
`→∞

lim
k→∞

(1 + aN+1)φz
mN

`
−z

mN
k

(zK) +
N∑
i=1

aiφz
mN

`
−z

mN
k

(xi) = 0,

as limk→∞ limi→∞ φzk−zi(z`) = 0 for all ` ∈ N and lim`→∞ limk→∞ φz
mN

`
−z

mN
k

(xi) = 0 for all

1 ≤ i ≤ N . Thus, if xN+1 = gK(a) for an arbitrary a ∈ δ1BRN+1 and K ∈MN then property
(4) in the induction hypothesis would be satisfied.

By (4), there exists a subsequence M ′
N = (m′Nj )∞j=1 of MN such that |φzL−zK (xi)| ≤ εN+1/2

for all 1 ≤ i ≤ N and L,K ∈ M ′
N with L > K. The set (gK)K∈M ′N is equicontinuous on

δ1BRN+1 , gK(0) = zK for all K ∈ M ′
N , and the map x 7→ φx is uniformly continuous on

X \εBX for all ε > 0. Thus, there exists δ2 > 0 with δ2 < δ1 such that |φzL−gK(a)(xi)| < εN+1

for all 1 ≤ i ≤ N and K,L ∈ M ′
N with L > K and all a ∈ δ2BRN+1 . Thus, if xN+1 = gK(a)

for an arbitrary a ∈ δ2BRN+1 and K ∈ M ′
N then property (5) in the induction hypothesis

would be satisfied for all L ∈ M ′
N with L > K. Similarly, (recalling that φzk−zi(zk) > 2C

for all i 6= k) after passing to a further subsequence of M ′
N , we may assume that there exists

δ > 0 with δ < δ2 such that if xN+1 = gK(a) for an arbitrary a ∈ δBRN+1 and K ∈M ′
N then

property (6) in the induction hypothesis would be satisfied for all L ∈ M ′
N with L > K.

Thus, if we set xN+1 = gK(a) for an arbitrary a ∈ δBRN+1 and K ∈ M ′
N , and if MN+1 is an

arbitrary subsequence of {L ∈ M ′
N |L > K}, then properties (3), (4), (5), and (6) would all

hold.
Our next step is to show that we may choose a ∈ δBRN+1 , K ∈ M ′

N , and a subsequence
MN+1 of {L ∈ M ′

N |L > K} such that properties (1) and (2) hold for xN+1 = gK(a). For
each K ∈MN we define a map f : RN+1 → RN+1 by

fK(a) =

(
‖gK(a)− x1‖, ..., ‖gK(a)− xN‖, lim

j→∞
‖gK(a)− zm′Nj ‖

)
for all a ∈ RN+1.

The derivative of f at 0, is given by DfK(0) =
[
∂fKj
∂an
|a=0

]
1≤j,n≤N+1

. For 1 ≤ j, n ≤ N ,

(4.2)
∂fKj
∂an

∣∣∣∣∣
a=0

=
∂

∂an

∣∣∣∣
a=0

∥∥∥∥∥(1 + aN+1)zK +
N∑
i=1

aixi − xj

∥∥∥∥∥ = φzK−xj(xn).
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For 1 ≤ n ≤ N , we have by Lemma 2.5

(4.3)
∂fKN+1

∂an

∣∣∣∣
a=0

=
∂

∂an

∣∣∣∣
a=0

lim
j→∞

∥∥∥∥∥(1 + aN+1)zK +
N∑
i=1

aixi − zm′Nj

∥∥∥∥∥ = lim
j→∞

φzK−zm′N
j

(xn).

For 1 ≤ j ≤ N , we have

(4.4)
∂fKj
∂aN+1

∣∣∣∣∣
a=0

=
∂

∂aN+1

∣∣∣∣
a=0

∥∥∥∥∥(1 + aN+1)zK +
N∑
i=1

aixi − xj

∥∥∥∥∥ = φzK−xj(zK).

By Lemma 2.5,
(4.5)

∂fKN+1

∂aN+1

∣∣∣∣
a=0

=
∂

∂aN+1

∣∣∣∣
a=0

lim
j→∞

∥∥∥∥∥(1 + aN+1)zK +
N∑
i=1

aixi − zm′Nj

∥∥∥∥∥ = lim
j→∞

φzK−zm′N
j

(zK).

We first note that equations (4.2), (4.3), (4.4), and (4.5) imply that
∣∣∣∂fKj∂an
|a=0

∣∣∣ ≤ 2 for all

1 ≤ j, n ≤ N + 1 and K ∈MN as ‖xn‖ ≤ 2 for all 1 ≤ n ≤ N and ‖zK‖ ≤ 2 for all K ∈M ′
N .

By equation (4.2) and property (5), we have that
∣∣∣∂fKj∂an
|a=0

∣∣∣ =
∣∣φzK−xj(xn)

∣∣ < εj for all K ∈

MN and 1 ≤ n < j ≤ N . By equation (4.3) we have that
∂fKN+1

∂an
|a=0 = limj→∞ φzK−zm′N

j

(xn).

Thus, by property (4), there exists K1 ∈ M ′
N such that

∣∣∣∂fKN+1

∂an
|a=0

∣∣∣ < εN+1 for all 1 ≤
n ≤ N and all K ∈ M ′

N with K ≥ K1. By equation (4.2) and property (6), we have

that
∣∣∣∂fKj∂aj |a=0

∣∣∣ = |φzK−xj(xj)| > C for all K ∈ M ′
N and all 1 ≤ j ≤ N . By equation

(4.5), we have that
∣∣∣ ∂fKN+1

∂aN=1
|a=0

∣∣∣ =
∣∣limj→∞ φzK−zj(zK)

∣∣ ≥ λ−1
4

> C. Thus, we have that

DfK(0) ∈ A(N+1)×(N+1)(C, (εi)
N+1
i=2 ) and hence ‖(DfK(0))−1‖ ≤ RN+1 for all K ∈ M ′

N with
K ≥ K1.

Due to property (2) and limi→∞ ‖zk−zi‖ = λ for all k ∈ N, we have that limj→∞ f
m′Nj (0) =

(λ, ..., λ). As ‖(DfK(0))−1‖ ≤ RN+1 for all K ∈M ′
N with K ≥ K1, we may apply Corollary

3.2 to obtain an integer K ∈ M ′
N with K ≥ K1 such that (λ, ..., λ) ∈ fK(δBN+1). Thus,

there exists a ∈ δBRN+1 such that fK(a) = (λ, ..., λ). We set xN+1 = gK(a) and MN+1 =
{L ∈ M ′

N |L > K}. As noted earlier, this choice of xN+1 and MN+1 satisfies properties (3),
(4), (5), and (6) in the induction hypothesis. Furthermore, we have that

‖xN+1 − xj‖ =

∥∥∥∥∥(1 + aN+1)zK +
N∑
i=1

aixi − xj

∥∥∥∥∥ = λ for all 1 ≤ i ≤ N,

thus satisfying property (1). We have that

lim
j→∞
‖xN+1 − zmN+1

j
‖ = lim

j→∞

∥∥∥∥∥(1 + aN+1)zK +
N∑
i=1

aixi − zmN+1
j

∥∥∥∥∥ = λ,

thus satisfying property (2) in the induction hypothesis. We have satisfied all properties in
our induction hypothesis, and hence we obtain a sequence (xi)

∞
i=1 ⊂ X by induction which

satisfies ‖xi − xj‖ = λ > 0 for all i 6= j. �
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