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Abstract Let X be a Banach space with a separable dual. We prove that X embeds
isomorphically into a L∞ space Z whose dual is isomorphic to �1. If, moreover, U is a
space with separable dual, so that U and X are totally incomparable, then we construct
such a Z , so that Z and U are totally incomparable. If X is separable and reflexive,
we show that Z can be made to be somewhat reflexive.
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1 Introduction

In 1980 Bourgain and Delbaen [7] showed the surprising diversity of L∞ Banach
spaces whose duals are isomorphic to �1 by constructing such a space Z not containing
an isomorph of c0. Moreover, Z is somewhat reflexive, i.e., every infinite dimensional
subspace of Z contains an infinite dimensional reflexive subspace. In fact, R. Haydon
[15] proved the reflexive subspaces could be chosen to be isomorphic to �p spaces.
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The structure of Banach spaces X whose dual is isometric to �1 is more limited.
Such a space X must contain c0 [29] and in fact be an isometric quotient of C(Δ) [18].
Finally it was shown in [11] that such spaces must be c0 saturated. Nevertheless, such
a space need not be an isometric quotient of some C(α), for α < ω1 [1].

The construction developed by Bourgain and Delbaen is quite general and allows
for additional modifications. Very recently Argyros and Haydon [4] were able to adapt
this construction to solve the famous Scalar plus Compact Problem by building an
infinite dimensional Banach space, with dual isomorphic to �1, on which all operators
are a compact perturbation of a multiple of the identity. In this paper we will prove
three main theorems concerning isomorphic preduals of �1.

Theorem A Let X be a Banach space with separable dual. Then X embeds into a
L∞ space Y with Y ∗ isomorphic to �1.

Moreover, we have the following refinements of Theorem A.

Theorem B Let X and U be totally incomparable infinite dimensional Banach spaces
with separable duals. Then X embeds into a L∞ space Z whose dual is isomorphic
to �1, so that Z and U are totally incomparable.

Theorem C Let X be a separable reflexive Banach space. Then X embeds into a
somewhat reflexive L∞ space Z, whose dual is isomorphic to �1. Furthermore, if U
is a Banach space with separable dual such that X and U are totally incomparable,
then Z can be chosen to be totally incomparable with U.

We recall that X and U are called totally incomparable if no infinite dimensional
Banach space embeds into both X and U .

Since there are reflexive spaces of arbitrarily high countable Szlenk index [28] The-
orem B (with U = c0) as well as Theorem C solve a question of Alspach [2, Question
5.1] who asked whether or not there are L∞ spaces with arbitrarily high Szlenk index
not containing c0. Moreover Alspach, in conference talks, asked whether Theorem A
could be true. Furthermore, Theorem B with U = c0 solves the longstanding open
problem of showing that if X∗ is separable and X does not contain an isomorph of c0,
then X embeds into a Banach space with a shrinking basis which does not contain an
isomorph of c0.

In Sect. 2 we review the skeletal aspects of the Bourgain–Delbaen construction of
L∞ spaces, following more or less, [4]. Theorem A will be proved in Sect. 4, while the
proofs of Theorems B and C are presented in Sect. 5. The construction used to prove
Theorem A will also be useful in the case where X∗ is not separable. The construction
proving Theorems B and C will be an augmentation of that used to prove Theorem A.

Section 3 contains background material necessary for our proof. We review some
embedding theorems from [12,26] that play a role in the subsequent constructions.
Terminology and definitions are given along with some propositions that facilitate
their use. In particular, we define the notion of a c-decomposition and relate it to
an FDD being shrinking (Proposition 3.11). This will be used to show that our L∞
constructs have dual isomorphic to �1. We also show how Theorem 3.11 leads to an
alternate and self contained proof of a less precise version of embedding Theorems 3.8
and 3.9, which is sufficient for their use in this paper.

123



The universality of �1 as a dual space

We use standard Banach space terminology as may be found in [16] or [23]. We
recall that X is L∞ if there exist λ <∞ and finite dimensional subspaces E1 ⊆ E2 ⊆
· · · of X so that X =⋃∞

n=1 En and the Banach-Mazur distance satisfies

d
(

En, �
dim(En)∞

)
≤ λ, for all n ∈ N.

In this case we say X is L∞,λ. SX and BX denote the unit sphere and unit ball of
X , respectively. A sequence of finite dimensional subspaces of X , (Ei )

∞
i=1 is an FDD

(finite dimensional decomposition) if every x ∈ X can be uniquely expressed as
x =∑∞

i=1 xi where xi ∈ Fi for all i ∈ N. It is usually required that Ei �= {0} for all
i ∈ N for (Ei )

∞
i=1 to be a finite dimensional decomposition, but it will be convenient

for us to allow Ei = {0} for some i’s in Sect. 5.
We note that there are deep constructions of L∞ spaces other then the ones in

[7]. For example Bourgain and Pisier [8] prove that every separable Banach space X
embeds into a L∞ space Y so that Y/X is a Schur space with the Radon Nikodym
Property. Dodos [10] used the Bourgain–Pisier construction to prove that for every
λ > 1 there exists a class (Y ξλ )ξ<ω1 of separable L∞,λ spaces with the following

properties. Each Y ξλ is non-universal (i.e. C[0, 1] does not embed into Y ξλ ) and if X
is separable with φNU (X) ≤ ξ , then X embeds into Y λξ . Here φNU is Bourgain’s
ordinal index based on the Schauder basis for C[0, 1]. Now C[0, 1] is a L∞-space
and is universal for the class of separable Banach spaces. Theorem A yields that
the class of L∞-spaces with separable dual is universal for the class of all Banach
spaces with separable dual. We thank the second referee for promptly reviewing our
paper.

2 Framework of the Bourgain–Delbaen construction

As promised, this section contains the general framework of the construction of
Bourgain–Delbaen spaces. This framework is general enough to include the origi-
nal space of Bourgain and Delbaen [7], the spaces constructed in [4], as well as the
spaces constructed in this paper. We follow, with slight changes and some notational
differences, the presentation in [4] and start by introducing Bourgain–Delbaen sets.

Definition 2.1 (Bourgain–Delbaen-sets) A sequence of finite sets (Δn : n ∈ N) is
called a Sequence of Bourgain–Delbaen Sets if it satisfies the following recursive
conditions:
Δ1 is any finite set, and assuming that for some n∈N the setsΔ1,Δ2,. . .,Δn have

been chosen, we let Γn = ⋃n
j=1Δ j . We denote the unit vector basis of �1(Γn) by

(e∗γ : γ ∈ Γn), and consider the spaces �1(Γ j ) and �1(Γn\Γ j ), j < n, to be, in the
natural way, embedded into �1(Γn).

For n ≥ 1, Δn+1 will be the union of two sets Δ(0)n+1 and Δ(1)n+1, where Δ(0)n+1 and

Δ
(1)
n+1 satisfy the following conditions.
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The set Δ(0)n+1 is finite and

Δ
(0)
n+1 ⊂

{
(n + 1, β, b∗, f ) : β∈[0, 1], b∗ ∈ B�1(Γn),

and f ∈V(n+1,β,b∗)
}
, (2.1)

where V(n+1,β,b∗) is a finite set for β∈[0, 1] and b∗ ∈ B�1(Γn).

Δ
(1)
n+1 is finite and

Δ
(1)
n+1 ⊂

⎧
⎪⎪⎨

⎪⎪⎩

(n + 1, α, k, ξ, β, b∗, f ) :
α, β∈[0, 1],
k∈{1, 2, . . . n − 1},
ξ ∈Δk, b∗ ∈ B�1(Γn\Γk )

and f ∈V(n+1,α,k,ξ,β,b∗)

⎫
⎪⎪⎬

⎪⎪⎭

, (2.2)

where V(n+1,α,k,ξ,β,b∗) is a finite set for α ∈ [0, 1], k ∈ {1, 2, . . . , n − 1}, ξ ∈ Δk ,
β∈[0, 1], and b∗ ∈ B�1(Γn\Γk ).

Moreover, we assume that Δ(0)n+1 and Δ(1)n+1 cannot both be empty.
If (Δn) is a sequence of Bourgain–Delbaen sets we put Γ = ⋃∞

j=1 Γn . For n∈N,
and γ ∈ Δn we call n the rank of γ and denote it by rk(γ ). If n ≥ 2 and γ =
(n, β, b∗, f )∈Δ(0)n , we say that γ is of type 0, and if γ = (n, α, k, ξ, β, b∗, f )∈Δ(1)n ,
we say that γ is of type 1. In both cases we call β the weight of γ and denote it by
w(γ ) and call f the free variable and denote it by f(γ ).

In case that V(n+1,β,b∗) or V(n+1,α,k,ξ,β,b∗) is a singleton (which will be often he
case) we sometimes suppress the dependency in the free variable and write (n + 1,
β, b∗) instead of (n+1, β, b∗, f ) and (n+1, α, k, ξ, β, b∗) instead of (n+1, α, k, ξ,
β, b∗, f ).

Referring to a sequence of sets (Δn : n ∈ N) as Bourgain–Delbaen sets we will
always mean that the sets Δ(0)n , Δ(1)n , Γn and Γ have been defined satisfying the con-
ditions above. We consider the spaces �∞(

⋃
j∈A Δ j ) and �1(

⋃
j∈A Δ j ), for A ⊂ N, to

be naturally embedded into �∞(Γ ) and �1(Γ ), respectively.
We denote by c00(Γ ) the real vector space of families x = (x(γ ) : γ ∈Γ ) ⊂ R for

which the support, supp(x) = {γ ∈Γ : x(γ ) �= 0}, is finite. The unit vector basis of
c00(Γ ) is denoted by (eγ : γ ∈Γ ), or, if we regard c00(Γ ) to be a subspace of a dual
space, such as �1(Γ ), by (e∗γ : γ ∈Γ ). If Γ = N we write c00 instead of c00(N).

Definition 2.2 (Bourgain–Delbaen families of functionals) Assume that (Δn : n∈N)

is a sequence of Bourgain–Delbaen sets. By induction on n we will define for all
γ ∈Δn , elements c∗γ ∈�1(Γn−1) and d∗γ ∈�1(Γn), with d∗γ = e∗γ − c∗γ .

For γ ∈Δ1 we define c∗γ = 0, and thus d∗γ = e∗γ .
Assume that for some n∈N we have defined (c∗γ : γ ∈Γn), with c∗γ ∈�1(Γ j−1), if

j ≤ n and rk(γ ) = j . It follows therefore that (d∗γ : γ ∈Γn) = (e∗γ − c∗γ : γ ∈Γn) is
a basis for �1(Γn) and thus for k ≤ n we have projections:

P∗(k,n] : �1(Γn)→ �1(Γn),
∑

γ∈Γn

aγ d∗γ →
∑

γ∈Γn\Γk

aγ d∗γ . (2.3)
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For γ ∈Δn+1 we define

c∗γ =
{
βb∗ if γ = (n + 1, β, b∗, f )∈Δ(0)n+1,

αe∗ξ + βP∗(k,n](b∗) if γ = (n + 1, α, k, ξ, β, b∗, f )∈Δ(1)n+1.
(2.4)

We call (c∗γ : γ ∈ Γ ), the Bourgain–Delbaen family of functionals associated to
(Δn : n∈N). We will, in this case, consider the projections P∗(k,n] to be defined on all
of c00(Γ ), which is possible since (d∗γ : γ ∈Γ ) forms a vector basis of c00(Γ ) and,
(as we will observe later) under further assumptions, a Schauder basis of �1(Γ ).

Remark 2.3 The reason for using ∗ in the notation for P∗(k,m] is that later we will
show (with additional assumptions) that the P∗(k,m]’s are the adjoints of coordinate
projections P(k,m] on a space Y with an FDD F = (Fj ) onto ⊕ j∈(k,m]Fj .

Of course we could, in the definition of Δ(0)n+1 and Δ(1)n+1, assume β = 1, rescale
b∗ accordingly, possibly increasing the number of free variables, then simply define
c∗γ = b∗, if γ is of type 0, or c∗γ = αe∗ξ + P∗(k,n](b∗), if γ is of type 1. Nevertheless,
it will prove later more convenient to have this redundant representation which will
allow us to change the weights of the elements of Γ and rescale the b∗’s, without
changing the c∗γ ’s. Moreover, it will be useful for recognizing that our framework is a
generalization of the constructions in [4,7].

The next observation is a slight generalization of a result in [4], the main idea
tracing back to [7].

Proposition 2.4 Let (Δn : n ∈N) be a sequence of Bourgain–Delbaen sets and let
(c∗γ : γ ∈Γ ) be the corresponding family of associated functionals. Let (P∗(k,m] : k <
m) and (d∗γ : γ ∈Γ ) be defined as in Definition 2.2. Thus

P∗(k,n] : c00(Γ )→ c00(Γ ),
∑

γ∈Γ
aγ d∗γ →

∑

γ∈Γn\Γk

aγ d∗γ .

For n∈N, let F∗n = span(d∗γ : γ ∈Δn) and for θ ∈[0, 1/2) let C1(θ) = C1 = 0 and
if n ≥ 2,

Cn(θ) = sup
{
β‖P∗(k,m](b

∗)‖ : γ = (ñ, α, k, ξ, β, b∗, f )∈Δ(1)ñ ,

k < m < ñ ≤ n, β > θ
}
,

with sup(∅) = 0, and

Cn = Cn(0) = sup
{
β‖P∗(k,m](b

∗) ‖ : γ = (ñ, α, k, ξ, β, b∗, f )∈Δ(1)ñ ,

k < m < ñ ≤ n
}
.

Then

⊕n
j=1 F∗j = span(e∗γ : γ ∈Γn) = �1(Γn), (2.5)
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and if C = supn Cn <∞, then F∗ = (F∗n ) is an FDD for �1(Γ )whose decomposition
constant M is not larger than 1+ C. Moreover, for n∈N and θ < 1/2,

Cn ≤ max (2θ/(1− 2θ),Cn(θ)). (2.6)

Proof As already noted, since d∗γ = e∗γ − c∗γ , and c∗γ ∈ �1(Γn−1), for n ∈ N and
γ ∈ Δn , (2.5) holds. By induction on n ∈ N we will show that for all 0 ≤ m < n,
‖P∗[1,m]|�1(Γn)‖ ≤ 1 + Cn , and that (2.6) holds, whenever θ < 1/2. For n = 1, and
thus m = 0 and C1 = 0, the claim follows trivially (‖P∗∅ ‖ ≡ 0). Assume the claim is
true for some n ∈N. Using the induction hypothesis and the fact that every element
of B�1(Γn+1) is a convex combination of {±e∗γ : γ ∈Γn+1} and Cn(θ) ≤ Cn+1(θ), it is
enough to show that for all γ ∈Δn+1 and all m ≤ n

‖P∗[1,m](e∗γ )‖ ≤ 1+ Cn+1 and (2.7)

‖βP∗(k,m](b
∗)‖ ≤ 2θ

1− 2θ
∨ Cn(θ), if β ≤ θ < 1/2 and (2.8)

γ = (n + 1, α, k, ξ, β, b∗, f )∈Δ(1)n+1.

According to (2.4) we can write

e∗γ = d∗γ + c∗γ = d∗γ + αe∗ξ + βP∗(k,n](b
∗),

with α, β ∈ [0, 1], 0 ≤ k < n, ξ ∈Δk (put k = 0 and α = 0 if γ is of type 0), and
b∗ ∈ B�1(Γn\Γk ).

Thus

P∗[1,m](e∗γ ) = αP∗[1,m](e∗ξ )+ βP∗(min(m,k),m](b
∗).

Now, if k ≥ m, then P∗[1,m](e∗γ ) = αP∗[1,m](e∗ξ ) and thus our claim (2.7) follows
from the induction hypothesis:

‖αP∗[1,m](e∗ξ )‖ ≤ 1+ Ck ≤ 1+ Cn+1.

If k < m it follows, again using the induction hypothesis in the type 0 case, that

‖P∗[1,m](e∗γ )‖ ≤ α‖e∗ξ‖ + β‖P∗(k,m](b
∗)‖ ≤ 1+ Cn+1, which yields (2.7).

In order to show (2.8), let γ = (n+1, α, k, ξ, β, b∗, f )∈Δ(1)n+1, with β ≤ θ < 1/2.
We deduce from the induction hypothesis that

‖βP∗(k,m](b
∗)‖

≤ β(‖P∗[1,m]|�1(Γn)‖ + ‖P∗[1,k]|�1(Γn)‖)
≤ 2θ(Cn + 1)
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≤
{

2θ (Cn(θ)+ 1)) ≤ 2θCn(θ)+ Cn(θ)(1− 2θ) = Cn(θ) if Cn(θ) >
2θ

1−2θ ,

2θ
(

2θ
1−2θ + 1

)
= 2θ

1−2θ otherwise,

≤ max

(
2θ

1− 2θ
,Cn(θ)

)

.

This finishes the induction step, and hence the proof. ��
Remark 2.5 Let Γ be linearly ordered as (γ j : j ∈ N) in such a way that rk(γi ) ≤
rk(γ j ), if i ≤ j . Then the same arguments show that, under the assumption C < ∞
stated in Proposition 2.4, (d∗γ j

) is actually a Schauder basis of �1 [4]. But, for our
purpose, the FDD is the more useful coordinate system.

The spaces constructed in [4] satisfy the condition that for some θ < 1/2 we have
β ≤ θ , for all γ = (n, α, k, a∗, β, b∗, f )∈Γ of type 1. Thus in that case Cn(θ) = 0,
n ∈N, and the conclusion of Proposition 2.4 is true for C ≤ 2θ/(1 − 2θ) and, thus
M ≤ 1/(1− 2θ).

The Bourgain–Delbaen sets we will consider in later sections will satisfy the fol-
lowing condition for some 0 < θ < 1/2:

For each n ∈ N and γ = (n, α, k, ξ, β, b∗, f ) ∈ Δ(1)n , (2.9)

either β ≤ θ, or b∗ = e∗η for some η ∈ Δm, k < m < n, such that c∗η = 0.

Note that in the second case it follows that e∗η = d∗η and so P∗(k,m](e∗η) = e∗η. Thus,
β‖P∗(k,m](b∗)‖ = β‖e∗η‖ ≤ 1, and thus, we deduce that the assumptions of Proposi-
tion 2.4 are satisfied, namely that F∗ is an FDD of �1 whose decomposition constant
M is not larger than max(1/(1− 2θ), 2).

Assume we are given a sequence of Bourgain–Delbaen sets (Δn : n ∈N), which
satisfy the assumptions of Proposition 2.4 with C <∞ and let M be the decomposi-
tion constant of the FDD (F∗n ) in �1(Γ ). We now define the Bourgain–Delbaen space
associated to (Δn : n ∈ N). For a finite or cofinite set A ⊂ N, we let P∗A be the
projection of �1(Γ ) onto the subspace ⊕ j∈A F∗j given by

P∗A : �1(Γ )→ �1(Γ ),
∑

γ∈Γ
aγ d∗γ �→

∑

γ∈A

aγ d∗γ .

If A = {m}, for some m ∈N, we write P∗m instead of P∗{m}. For m ∈N, we denote by
Rm the restriction operator from �1(Γ ) onto �1(Γm) (in terms of the basis (e∗γ )) as
well the usual restriction operator from �∞(Γ ) onto �∞(Γm). Since Rm ◦ P∗[1,m] is a
projection from �1(Γ ) onto �1(Γm), for m∈N, it follows that the map

Jm : �∞(Γm)→ �∞(Γ ), x �→ P∗∗[1,m] ◦ R∗m(x),

is an isomorphic embedding (P∗∗[1,m] is the adjoint of P∗[1,m] and, thus, defined on
�∞(Γ )). Since R∗m is the natural embedding of �∞(Γm) into �∞(Γ ) it follows, for all
m∈N, that
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Rm ◦ Jm(x) = x, for x ∈ �∞(Γm), thusJm is an extension operator, (2.10)

Jn ◦ Rn ◦ Jm(x) = Jm(x), whenever m ≤ n and x ∈ �∞(Γm), (2.11)

and by Proposition 2.4,

‖Jm‖ ≤ M. (2.12)

Hence the spaces Ym = Jm(�∞(Γm)), m ∈ N, are finite-dimensional nested sub-
spaces of �∞(Γ ) which (via Jm) are M-isomorphic images of �∞(Γm). Therefore

Y = ⋃
m∈N

Yn
�∞

is a L∞,M space. We call Y the Bourgain–Delbaen space associ-
ated to (Δn). It follows from the definition of Y , and from 2.10, that for any x ∈ �∞(Γ )
we have

x ∈ Y ⇐⇒ x = lim
m→∞‖x− Jm ◦ Rm(x)‖ = 0. (2.13)

Define for m∈N

P[1,m] : Y → Y, x �→ Jm ◦ Rm(x).

We claim that P[1,m] coincides with the restriction of the adjoint P∗∗[1,m] of P∗[1,m] to
the space Y. Indeed, if n ∈N, with n ≥ m, and x = Jn(x̃)∈ Yn , and b∗ ∈ �1(Γ ) we
have that

〈P∗∗[1,m](x), b∗〉
= 〈x, P∗[1,m](b∗)〉
= 〈Rm(x), Rm ◦ P∗[1,m](b∗)〉 (since P∗[1,m](b∗) ∈ span(e∗γ : γ ∈ Γm))

= 〈P∗∗[1,m] ◦ R∗m ◦ Rm(x), b∗〉 = 〈P[1,m](x), b∗〉.

Thus our claim follows since
⋃

n Yn is dense in Y.
We therefore deduce that Y has an FDD (Fm), with Fm = (P[1,m] − P[1,m−1])(Y ),

and as we observed in (2.12), Ym = ⊕n
j=1 Fj is, via Jm , M-isomorphic to �∞(Γm) for

m ∈N. Moreover, denoting by PA the coordinate projections from Y onto ⊕ j∈A Fj ,
for all finite or cofinite sets A ⊂ N, it follows that PA is the adjoint of P∗A restricted to
Y , and P∗A is the adjoint of PA restricted to the subspace of Y ∗ generated by the F∗n ’s.

As the next observation shows, Jm |�∞(Δm ) is actually an isometry for m ∈ N.

Proposition 2.6 For every m ∈ N the map Jm |�∞(Δm ) is an isometry between �∞(Δm)

(which we consider naturally embedded into �∞(Γm)) and Fm.

Proof Since Jm(�∞(Δm)) = (Jm − Jm−1)(Δm) = Fm , for m ∈ N, Jm is an isomor-
phism between �∞(Δm) and Fm . By 2.10, for x ∈ �∞(Δm), ‖Jm(x)‖ ≥ ‖x‖. In order
to finish the proof we will show by induction on n ∈ N that |e∗γ (Jm(x))| ≤ 1 for all
γ ∈ Δn and x ∈ �∞(Δm), ‖x‖ ≤ 1.

If n ≤ m this is clear since Rm ◦ Jm(x) = x. Let n > m and assume our claim is
true for all γ ∈ Γn . Let γ ∈ Δn+1 and write e∗γ as e∗γ = αe∗ξ +βP∗(k,n](b∗)+ d∗γ , with

123



The universality of �1 as a dual space

α ∈ [0, 1], k < n, e∗ξ ∈ Δk , and b∗ ∈ B�1(Γn\Γk ) (α = 0, k = 0, and replace e∗ξ by 0 if
γ is of type 0). We have for x ∈ �∞(Δm), with ‖x‖ ≤ 1,

〈e∗γ , Jm(x)〉 = 〈P∗[1,m](e∗γ ), R∗m(x)〉

=
{
β〈P∗(k,m](b∗), R∗m(x)〉 = β〈P∗[1,m](b∗), R∗m(x)〉 = β〈b∗, Jm(x)〉 if k<m
α〈e∗ξ , R∗m(x)〉 = α〈P∗[1,m](e∗ξ ), R∗m(x)〉 = α〈e∗ξ , Jm(x)〉 if k ≥ m.

Where the first equality in the first case holds since 〈P∗[1,k](b∗), R∗m(x)〉 = 0. Using
our induction hypothesis, this implies our claim. ��

Denote by ‖ · ‖∗ the dual norm of Y ∗.

Proposition 2.7 For all y∗ ∈ �1(Γ )

‖y∗‖∗ ≤ ‖y∗‖�1 ≤ M‖y∗‖∗. (2.14)

and if y∗ ∈ ⊕n
j=m+1 F∗j , with 0 < m < n, then there is a family (aγ )γ∈Γn\Γm so that

y∗ = P∗(m,n]

⎛

⎝
∑

γ∈Γn\Γm

aγ e∗γ

⎞

⎠ and

∥
∥
∥
∥
∥
∥

∑

γ∈Γn\Γm

aγ e∗γ

∥
∥
∥
∥
∥
∥
�1

≤ M‖y∗‖∗. (2.15)

Proof The first inequality in (2.14) is trivial. To show the second inequality we let
y∗ ∈ �1(Γn) for some n∈N and choose x ∈ S�∞(Γn) so that 〈y∗,x〉 = ‖y∗‖�1 . Then,
from (2.12) and (2.10),

‖y∗‖∗ ≥
〈

y∗, 1

M
Jn(x)

〉

= 1

M
‖y∗‖�1 .

If y∗ ∈ ⊕n
j=m+1 F∗j , we can write y∗ as

y∗ =
∑

γ∈Γn

αγ e∗γ .

Since P∗(m,n](e∗γ ) = 0, for γ ∈ Γm , we obtain

y∗ = P∗(m,n](y
∗) = P∗(m,n]

⎛

⎝
∑

γ∈Γn\Γm

aγ e∗γ

⎞

⎠.

Moreover we obtain, from (2.14), that

∥
∥
∥
∥
∥
∥

∑

γ∈Γn\Γm

aγ e∗γ

∥
∥
∥
∥
∥
∥
�1

≤
∥
∥
∥
∥
∥
∥

∑

γ∈Γn

aγ e∗γ

∥
∥
∥
∥
∥
∥
�1

= ‖y∗‖�1 ≤ M‖y∗‖∗,

which yields (2.15). ��
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We now recall some more notation introduced in [4]. Assume that we are given a
Bourgain–Delbaen sequence (Δn) and associated Bourgain–Delbaen family of func-
tionals (c∗γ : γ ∈Γ ), corresponding to the Bourgain–Delbaen space Y , which admits
a decomposition constant M < ∞. As above we denote its FDD by (Fn). For n ∈N

and γ ∈ Δn , we have

e∗γ = d∗γ + c∗γ = d∗γ +
{
βb∗ if γ = (n, β, b∗, f ) ∈ Δ(0)n ,

αe∗ξ + βP∗(k,n](b∗) if γ = (n, α, k, ξ, β, b∗, f ) ∈ Δ(1)n .

By iterating we eventually arrive (after finitely many steps) to a functional of type 0.
By an easy induction argument we therefore obtain

Proposition 2.8 For all n ∈N and γ ∈ Δn, there are a ∈ N, β1, β2, . . . βa ∈ [0, 1],
α1, α2, . . . αa ∈[0, 1]and numbers 0 = p0 < p1 < p2−1 < p2 < p3 < p3−1, . . . <
pa−1 < pa−1 < pa = n in N0, vectors b∗j , j = 1, 2 . . . a, with b∗j ∈ B�1(Γp j−1\Γp j−1 )

,

and (ξ j )
a
j=1 ⊂ Γn, with ξ j ∈ Δp j , for j = 1, 2 . . . a, and ξa = γ , so that

e∗γ =
a∑

j=1

α j d
∗
ξ j
+ β j P∗(p j−1,p j )

(b∗j ). (2.16)

Moreover for 1 ≤ j0 < a

e∗γ = α j0 e∗γ j0
+

a∑

j= j0+1

α j d
∗
ξ j
+ β j P∗(p j−1,p j )

(b∗j ). (2.17)

We call the representations in (2.16) and (2.17) the analysis of γ and partial anal-
ysis of γ , respectively and let cuts(γ ) = {p1, p2, . . . pa}, which we call the set of cuts
of γ .

3 Embedding background and other preliminaries

Our constructions will depend heavily on some known embedding theorems. We
review these in this section and add a bit more to facilitate their use. Zippin [30]
proved that if X∗ is separable, then X embeds into a space with a shrinking basis.
So, in proving Theorem A, we could begin with such a space. However, to make our
construction work, we need a quantified version of this theorem which appears in
[12]. For Theorem C, we need a quantified reflexive version [26]. We begin with some
notation and terminology.

Let E = (Ei )
∞
i=1 be an FDD for a Banach space Z . c00(⊕∞i=1 Ei ) denotes the linear

span of the Ei ’s and if B ⊆ N, c00(⊕i∈B Ei ) is the linear span of the Ei ’s for i ∈ B.
Pn = PE

n : Z → En is the nth coordinate projection for the FDD, i.e., Pn(z) = zn

if z = ∑∞
i=1 zi ∈ Z with zi ∈ Ei for all i . For a finite set or interval A ⊆ N,
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PA = PE
A ≡

∑
n∈A PE

n . The projection constant of (En) in Z is

K = K (E, Z) = sup
{∥
∥
∥PE[m,n]

∥
∥
∥ : m ≤ n

}
.

E is bimonotone if K (E, Z) = 1.
The vector space c00(⊕∞i=1 E∗i ), where E∗i is the dual space of Ei , is naturally iden-

tified as a ω∗-dense subspace of Z∗. Note that the embedding of E∗i into Z∗ is not,
in general, an isometry unless K (E, Z) = 1. Now we will often be dealing with a
bimonotone FDD (via renorming) but when not we will consider E∗i to have the norm
it inherits as a subspace of Z∗. We write Z (∗) = [c00(⊕∞i=1 E∗i )]. So Z (∗) = Z∗ if
(Ei )

∞
i=1 is shrinking, and then E∗ = (E∗i )∞i=1 is a boundedly complete FDD for Z∗.

For z ∈ c00(⊕∞i=1 Ei ) the support of z, suppE(z), is given by suppE(z) = {n :
PE

n (z) �= 0}, and the range of z, ranE(z) is the smallest interval [m, n] in N containing
suppE(z).

A sequence (zi )
�
i=1, where � ∈ N or � = ∞, in c00(⊕∞i=1 Ei ) is called a block

sequence of (Ei ) if max suppE(zn) < min suppE(zn+1) for all n < �. We write
zn < m to denote max suppE(zn) < m and zn > m is defined by min suppE(zn) > m.

Definition 3.1 [25] Let Z be a Banach space with an FDD E = (Ei )
∞
i=1. Let V be a

Banach space with a normalized 1-unconditional basis (vi )
∞
i=1, and let 1 ≤ C < ∞.

We say that (En)
∞
n=1 satisfies subsequential C-V -upper estimates if whenever (zi )

∞
i=1

is a normalized block sequence of E with mi = min suppE(zi ), i ∈ N, then (zi )
∞
i=1 is

C-dominated by (vmi )
∞
i=1. Precisely, for all (ai )

∞
i=1 ⊆ R,

∥
∥
∥
∥
∥

∞∑

i=1

ai zi

∥
∥
∥
∥
∥
≤ C

∥
∥
∥
∥
∥

∞∑

i=1

aivmi

∥
∥
∥
∥
∥
.

Similarly, (En)
∞
n=1 satisfies subsequential C-V -lower estimates if every such (zi )

∞
i=1

C-dominates (vmi )
∞
i=1.

We say that (En)
∞
n=1 satisfies subsequential V -upper estimates or subsequential

V -lower estimates if there exists a C ≥ 1 so that (En)
∞
n=1 satisfies subsequential

C-V -upper estimates or subsequential C-V -lower estimates, respectively.

These are dual properties. If (v∗i )∞i=1 are the biorthogonal functionals of (vi )
∞
i=1

we define subsequential V ∗-upper/lower estimates to mean as above with respect to
(v∗i )∞i=1.

Proposition 3.2 [25, Proposition 2.14] Let Z have a bimonotone FDD (Ei )
∞
i=1 and

let V be a Banach space with a normalized 1-unconditional basis (vi )
∞
i=1 with bior-

thogonal functionals (v∗n)∞n=1. Let 1 ≤ C <∞. The following are equivalent.

a) (Ei )
∞
i=1 satisfies subsequential C-V -upper estimates in Z.

b) (E∗i )∞i=1 satisfies subsequential C-V ∗-lower estimates in Z (∗).
Moreover, the equivalence holds if we interchange “upper” with “lower” in a) and
b). If the FDD (Ei )

∞
i=1 is not bimonotone the proposition still holds but not with the

same constants C. These changes depend upon K (E, Z).
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Recall that A ⊆ BZ∗ is d-norming for Z (0 < d ≤ 1) if for all z ∈ Z ,

d‖z‖ ≤ sup{|z∗(z)| : z∗ ∈ A}.

We will need a characterization of subsequential V -upper estimates obtained from
norming sets.

Proposition 3.3 Let Z have an FDD E = (Ei )
∞
i=1 and let V be a Banach space with

a normalized 1-unconditional basis (vi )
∞
i=1. Let 0 < d ≤ 1 and let A ⊆ BZ∗ be

d-norming for Z. The following are equivalent.

a) (Ei )
∞
i=1 satisfies subsequential V -upper estimates.

b) There exists C < ∞ so that for all z∗ ∈ A and any choice of k and 1 ≤ n1 <

· · · < nk+1 in N,

∥
∥
∥
∥
∥

k∑

i=1

‖z∗ ◦ PE
[ni ,ni+1)

‖v∗ni

∥
∥
∥
∥
∥
≤ C.

Moreover, if (Ei )
∞
i=1 is bimonotone, then a′)⇒ b′)⇒ b′′)⇒ a′′) where

a′) (Ei )
∞
i=1 satisfies subsequential C-V -upper estimates.

b′) For every x∗ ∈ SZ∗ and any choice of k and 1 ≤ n1 < n2 < · · · < nk+1 in N,

∥
∥
∥
∥
∥

k∑

i=1

‖z∗ ◦ PE
[ni ,ni+1)

‖v∗ni

∥
∥
∥
∥
∥
≤ C.

b′′) For every z∗ ∈ A and any choice of k and 1 ≤ n1 < · · · < nk+1 in N,

∥
∥
∥
∥
∥

k∑

i=1

‖z∗ ◦ PE
[ni ,ni+1)

‖v∗ni

∥
∥
∥
∥
∥
≤ C.

a′′) (Ei )
∞
i=1 satisfies subsequential Cd−1-V -upper estimates.

Proof By renorming, we can assume that (Ei )
∞
i=1 is bimonotone and thus we need

only prove the “moreover” statement.
a′)⇒ b′) follows from Proposition 3.2. Indeed, (z∗◦PE

[ni ,ni+1)
)ki=1 is a block sequence

of (E∗i ), whose sum has norm at most 1, and min suppE∗(z
∗◦PE

[ni ,ni+1)
) can be assumed

equal to ni by standard perturbation arguments.
b′)⇒ b′′) is trivial.
b′′)⇒a′′). Let (zi )

n
i=1 be a normalized block sequence of (Ei )with mi =min suppE(zi )

for i ≤ n. Let mn+1 = max suppE(zn)+ 1. Let (ai )
n
1 ⊆ R and choose z∗ ∈ A with

∣
∣
∣
∣
∣
z∗
(

n∑

i=1

ai zi

)∣
∣
∣
∣
∣
≥ d

∥
∥
∥
∥
∥

n∑

i=1

ai zi

∥
∥
∥
∥
∥
.
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Thus,
∥
∥
∥
∥
∥

n∑

i=1

ai zi

∥
∥
∥
∥
∥
≤ d−1

∣
∣
∣
∣
∣

n∑

i=1

ai z
∗(zi )

∣
∣
∣
∣
∣

= d−1

∣
∣
∣
∣
∣

n∑

i=1

ai z
∗ ◦ PE

[mi ,mi+1)
(zi )

∣
∣
∣
∣
∣

≤ d−1
n∑

i=1

|ai |
∥
∥
∥z∗ ◦ PE

[mi ,mi+1)

∥
∥
∥

= d−1

(
n∑

i=1

∥
∥
∥z∗ ◦ PE

[mi ,mi+1)
]
∥
∥
∥ v∗mi

)(
n∑

i=1

|ai |vmi

)

≤ C d−1

∥
∥
∥
∥
∥

n∑

i=1

aivmi

∥
∥
∥
∥
∥
, by b”).

��
We recall some terminology concerning finite subsets of N which can be found for

example in [27].

Definition 3.4 [N]<ω denotes the set of all finite subsets of N under the pointwise
topology, i.e., the topology it inherits as a subset of {0, 1}N with the product topology.
Let A ⊆ [N]<ω. We say A is

i) compact if it is compact in the pointwise topology,
ii) hereditary if for all A ∈ A, if B ⊆ A then B ∈ A,

iii) spreading if for all A = (a1, . . . , an) ∈ A with a1 < a2 < · · · < an and all
B = (b1, . . . , bn) ∈ [N]<ω with b1 < b2 < · · · < bn and ai ≤ bi for i ≤ n,
B ∈ A, such a B is called a spread of A,

iv) regular if {n} ∈ A for all n ∈ N and A is compact, hereditary and spreading.

We note that if A ⊂ [N]<ω is relatively compact, or equivalently if A does not con-
tain an infinite strictly increasing chain, then there is a regular family, B ⊂ [N]<ω,
containing A.

Definition 3.5 Let A ⊆ [N]<ω be a regular family. A sequence of sets in [N]<ω,
A1 < A2 < · · · < An (i.e., max Ai < min Ai+1 for i < n) is called A-admissible if
(min Ai )

n
i=1 ∈ A.

Tsirelson spaces 3.6 Let A ⊆ [N]<ω be a regular family of sets and let 0 < c < 1.
The Tsirelson space TA,c is the completion of c00 under the norm ‖ · ‖A,c which is
given, implicitly, by the equation

‖x‖A,c = ‖x‖∞ ∨ sup

{
n∑

i=1

c‖Aix‖A,c : n ∈ N, and

A1 < · · · < An is A-admissible

}

.
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Here Aix = x|Ai . The unit vector basis (ti ) of c00 is always a shrinking and 1-
unconditional basis for TA,c. If the Cantor–Bendixson index of A (c.f. [27]) is at least
ω then TA,c does not contain any isomorphic copy of �p or c0, and hence TA,c must
also be reflexive as every Banach space with an unconditional basis which does not
contain an isomorphic copy of c0 or �1 is reflexive.

If A = Sα is the αth-Schreier family of sets, where α < ω1, we denote TA,c by
Tc,α . For more on these spaces (see e.g. [22,26] and the references therein). Let us
recall that, for n ∈ N, the spaces Tα,c and Tαn ,cn are naturally isomorphic (via the
identity).

Remark 3.7 We will later use the fact that if X has an FDD (Ei )
∞
i=1 satisfying subse-

quential TA,c-upper estimates for some regular family A, then (Ei )
∞
i=1 is shrinking.

Indeed every normalized block sequence of (Ei )
∞
i=1 must then be weakly null, since it

is dominated by a weakly null sequence. This is equivalent to (Ei )
∞
i=1 being shrinking.

Our embedding theorems, 3.8 and 3.9 below, refer to the Szlenk index, Sz(X), [28].
If X is separable then Sz(X) is an ordinal with Sz(X) < ω1 if and only if X∗ is sepa-
rable. Also Sz(Tc,α) = ωα·ω [26, Proposition 7]. If Sz(X) < ω1 then Sz(X) = ωβ for
some β < ω1. Much has been written on the Szlenk index (e.g., see [3,6,12–14,20,
21,26]).

Theorem 3.8 [12, Theorem 1.3] Let α < ω1 and let X be a Banach space with
separable dual. The following are equivalent.

a) Sz(X) ≤ ωα·ω.
b) X embeds into a Banach space Z having an FDD which satisfies subsequential

Tc,α-upper estimates, for some 0 < c < 1.

Theorem 3.9 [26, Theorem A] Let α < ω1 and let X be a separable reflexive Banach
space. The following are equivalent.

a) Sz(X) ≤ ωα·ω and Sz(X∗) ≤ ωα·ω.
b) X embeds into a Banach space Z having an FDD which satisfies both subse-

quential Tc,α-upper estimates and subsequential T ∗c,α-lower estimates, for some
0 < c < 1.

We note that the upper and lower estimates in both theorems are with respect to the
unit vector basis (ti ) of Tc,α and its biorthogonal sequence (t∗i ), a basis for T ∗c,α .

In order to use Theorem 3.8 in our proof of Theorem A, we need to reformulate
what it means for an FDD for X to satisfy subsequential Tc,α-upper estimates in terms
of the functionals in X∗. We first need some more terminology.

Definition 3.10 Let E = (Ei )
∞
i=1 be an FDD for a space X and let 0 < c < 1. Let

x ∈ c00(⊕∞i=1 Ei ). A block sequence of E, (x1, . . . ,x�), is called a c-decomposition
of x if

x =
�∑

i=1

xi and, for every i ≤ �, either |suppE(xi )| = 1
or ‖xi‖ ≤ c.

(3.1)
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Clearly every such x has a c-decomposition. The optimal c-decomposition of x is
defined as follows. Set n1 = min suppE(x) and assume n1 < n2 < · · · < n j have
been defined. Let

n j+1 =

⎧
⎪⎨

⎪⎩

n j + 1, if ‖PE
n j
(x)‖ > c,

min{n : ‖PE[n j ,n](x)‖ > c}, if ‖PE
n j
(x)‖ ≤ c and the “ min” exists,

1+max suppE(x), otherwise.

There will be a smallest � so that n�+1 = 1 + max suppE(x). We then set for i ≤ �,
xi = PE

[ni ,ni+1)
(x). Clearly (xi )

�
i=1 is a c-decomposition of x. Moreover, and this will

be important later, if (Ei ) is bimonotone and j ≤ ��/2�, then ‖x2 j−1 + x2 j‖ > c.
Let A ⊆ [N]<ω be regular. We say that the FDD (Ei )

∞
i=1 for X is (c,A)-admissible

in X if every x ∈ SX ∩ c00(⊕∞i=1 Ei ) has an A-admissible c-decomposition, (xi )
k
i=1,

where (suppE(xi ))
�
1 is A-admissible, i.e., (min suppE(xi ))

�
i=1 ∈ A.

Theorem 3.11 Let E = (Ei )
∞
i=1 be a bimonotone FDD for a Banach space X. The

following statements are equivalent.

a) (Ei ) is shrinking.
b) For all 0 < c < 1 there exists a regular family A ⊂ [N]<ω so that every

x∗ ∈ BX∗ ∩ c00(⊕∞i=1 E∗i ) has an optimal A-admissible c-decomposition.
c) There exists D ⊂ BX∗ ∩ c00(⊕∞i=1 E∗i ), 0 < c < d ≤ 1 and a regular fam-

ily A ⊂ [N]<ω, so that D is d-norming for X, and every x∗ ∈ D admits an
A-admissible c-decomposition.

d) There exists α < ω1, 0 < c < 1, 1 ≤ C, and a subsequence (tmi )
∞
i=1 of the unit

vector basis for Tc,α , so that (Ei )
∞
i=1 satisfies subsequential C − (tmi )

∞
i=1 upper

estimates.

Proof a)⇒ b). Assume b) fails for some 0 < c < 1. Then the set

{(min suppE∗(x
∗
i ))

n
i=1 : (x∗i )ni=1 is the optimal c-decomposition

of some x∗ ∈ BX∗ ∩ c00(⊕∞i=1 E∗i )}

is not relatively compact in [N]<ω. This yields a sequence (ni )
∞
i=1 ∈ [N]ω so that for all

N ∈ N, there exists x∗(N ) ∈ BX∗ ∩ c00(⊕∞i=1 E∗i ), with an optimal c-decomposition

(x∗i (N ))
�(N )
i=1 so that min suppE∗(x

∗
i (N )) = ni for all i ≤ N . After passing to a subse-

quence, we may assume that limN→∞ x∗i (N ) = x∗i for some x∗i ∈ BX∗ ∩c00(⊕∞i=1 E∗i )
with supp(x∗i ) ⊂ [ni , ni+1) for all i ∈ N. We have that ‖x∗i (N ) + x∗i+1(N )‖ ≥ c
for all N ∈ N and 1 ≤ i < �(N ), and hence ‖x∗i + x∗i+1‖ ≥ c for all i ∈ N.

Furthermore, ‖∑N
i=1 x∗i (N )‖ ≤ ‖∑�(N )

i=1 x∗i (N )‖ ≤ 1 for all N ∈ N, and hence

supN∈N ‖
∑N

i=1 x∗i (N )‖ ≤ 1. We conclude that (x∗i ) is not boundedly complete, and
hence (Ei )

∞
i=1 is not shrinking.

b)⇒ c) is trivial.
c)⇒ d). Let D, 0 < c < d ≤ 1, and A be as in c). We define

B = {n ∪ B1 ∪ B2 : n ∈ N, B1, B2 ∈ A} ∪ {∅}.
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It is easily checked that B = BA is regular. Let (ti )∞i=1 be the unit vector basis of
Tc/d,B. We will prove, by induction on s ∈ N, that if (xi )

k
i=1 is a normalized block

sequence of E with finite length and |suppE(
∑k

i=1 xi )| ≤ s, then for all (ai )
k
1 ⊆ R,

∥
∥
∥
∥
∥

k∑

i=1

aixi

∥
∥
∥
∥
∥
≤ c−1

∥
∥
∥
∥
∥

k∑

i=1

ai tmin suppE(xi )

∥
∥
∥
∥
∥

Tc/d,B

. (3.2)

This is trivial for s = 1 and also clear for k = 1, so we may assume k > 1.
Assume it holds for all s′ ≤ s. Let (xi )

k
i=1 be a normalized block sequence of E

with |suppE(
∑k

i=1 xi )| = s + 1. Let mi = min suppE(xi ) for i ≤ k and set mk+1 =
1 + max suppE(xk). Let (ai )

k
i=1 ⊆ R and c/d < ρ < 1 be arbitrary. Since D is

d-norming for X , there exists x∗ ∈ D with

∣
∣
∣
∣
∣
x∗
(

k∑

i=1

aixi

)∣
∣
∣
∣
∣
≥ ρd

∥
∥
∥
∥
∥

k∑

i=1

aixi

∥
∥
∥
∥
∥
.

Let x̃∗ = PE∗
[m1,mk+1)

(x∗) where E∗ = (E∗j )∞j=1 is the FDD for X (∗). By the bimonot-

onicity of E, ‖x̃∗‖ ≤ 1 and also ‖x̃∗(∑k
i=1 aixi )‖ ≥ ρd‖∑k

i=1 akxi‖. Furthermore,
since x∗ admits an A-admissible c-decomposition, so does x̃∗. Let (x∗i )�i=1 be an
A-admissible c-decomposition of x̃∗ and let ni = min suppE∗(x

∗
i ) for i ≤ �. Thus

(ni )
�
i=1 ∈ A.

If � = 1, then x̃∗ ∈ E∗j for some j and so

∥
∥
∥
∥
∥

k∑

i=1

aixi

∥
∥
∥
∥
∥
≤ (ρd)−1

∣
∣
∣
∣
∣
x̃∗
(

k∑

i=1

aixi

)∣
∣
∣
∣
∣
≤ (ρd)−1|a j |

≤ (ρd)−1

∥
∥
∥
∥
∥

k∑

i=1

ai tmi

∥
∥
∥
∥
∥
≤ c−1

∥
∥
∥
∥
∥

k∑

i=1

ai tmi

∥
∥
∥
∥
∥
, so (3.2) holds.

If � > 1, we proceed as follows. Define

B1 = {mi : i ≤ k and there exists j ≤ � with mi ≤ n j < mi+1},
B2 = {mi+1 : i ≤ k and mi ∈ B1},

and let n = min(B1). Then B ≡ B1 ∪ B2 = {n} ∪ (B1\{n}) ∪ B2 ∈ BA. Indeed
B2 ∈ A since it is a spread of a subset of (n j )

�
j=1 ∈ A, by the definition of B1.

Similarly B1\{n} ∈ A.
Write B = {mb j : j ≤ �′} where b1 < b2 < · · · < b�′ . Set mb�′+1

= mk+1.

Since k > 1, |suppE(
∑b j+1−1

i=b j
xi )| ≤ s, for j ≤ �′, and our induction hypothesis

applies to such blocks. Moreover, if b j+1 �= b j + 1 for some j ≤ �′, then there is at

most one x∗t whose support is not disjoint from ⊕mb j+1−1

i=mb j
E∗i , since no ni can satisfy
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mb j < ni < mb j+1 . In addition, |suppE∗(x
∗
t )| > 1 in this case, and so ‖x∗t ‖ ≤ c which

yields

∣
∣
∣
∣
∣
∣
x̃∗
⎛

⎝
b j+1−1∑

i=b j

aixi

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ c

∥
∥
∥
∥
∥
∥

b j+1−1∑

i=b j

aixi

∥
∥
∥
∥
∥
∥
.

We obtain for I = { j ≤ �′ : b j+1 �= b j + 1} and J = {1, . . . , �′}\I ,

ρ d

∥
∥
∥
∥
∥

k∑

i=1

aixi

∥
∥
∥
∥
∥
≤
∣
∣
∣
∣
∣
x̃∗
(

k∑

i=1

aixi

)∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∑

j∈I

x̃∗
⎛

⎝
b j+1−1∑

i=b j

aixi

⎞

⎠

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

∑

j∈J

x̃∗(ab j xb j )

∣
∣
∣
∣
∣
∣

≤
∑

j∈I

c

∥
∥
∥
∥
∥
∥

b j+1−1∑

i=b j

aixi

∥
∥
∥
∥
∥
∥
+
∑

j∈J

|ab j |

≤
∑

j∈I

∥
∥
∥
∥
∥
∥

b j+1−1∑

i=b j

ai tmi

∥
∥
∥
∥
∥
∥
+
∑

j∈J

‖ab j tmb j
‖,

by the induction hypothesis,

= d

c

�′∑

j=1

c

d

∥
∥
∥
∥
∥
∥

b j+1−1∑

i=b j

ai tmi

∥
∥
∥
∥
∥
∥
≤ d

c

∥
∥
∥
∥
∥

k∑

i=1

ai tmi

∥
∥
∥
∥
∥
,

by definition of the norm for Tc/d,BA . So

ρ c

∥
∥
∥
∥
∥

k∑

i=1

aixi

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥

k∑

i=1

ai tmi

∥
∥
∥
∥
∥
.

Since ρ < 1 was arbitrary this proves (3.2). Now the set B is regular, so its Cantor–
Bendixson index C B(B) is less thanω1. By Proposition 3.10 in [27], if α < ω1 is such
that C B(B) ≤ ωα then there exists (mi )

∞
i=1 ∈ [N]ω such that {(mi )i∈F : F ∈ B} ⊂ Sα .

It follows, from (3.2) that (Ei ) satisfies subsequential c−1− (tmi )
∞
i=1 upper estimates,

where (ti )∞i=1 is the unit vector basis of Tc/d,α .
d)⇒ a) is immediate since (tmi ) is weakly null. ��

Remark 3.12 In Theorem 3.11, if the FDD (Ei ) for X is not bimonotone, then the
Proposition holds with slight modification. Let K be the projection constant of (Ei ).
The hypothesis “0 < c < d” in c) should be changed to “0 < c < d/K ”. This is seen
by renorming X , in the standard way, so that (Ei ) is bimonotone:

|||x||| = sup
m≤n

∥
∥
∥PE[m,n]

∥
∥
∥.
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Then D becomes d/K -norming for (X, ||| · |||). Furthermore, (3.2) becomes valid for
(X, || · ||) with c−1 replaced by K c−1.

It is worth noting that Proposition 3.11 yields, as a corollary, the following less
exact version of Theorem 3.8. A similar version of Theorem 3.9 would also follow.

Corollary 3.13 Let X be a Banach space with X∗ separable. Then there existsα < ω1
and 0 < c < 1 so that X embeds into a space Y , with an FDD (Fi ) satisfying subse-
quential Tc,α-upper estimates.

Proof By Zippin’s theorem [30], we may embed X into a space Z with a shrinking
FDD (Ei ). By Theorem 3.11 d), we obtain the result, except that the estimates are
with respect to (tmi ). We expand the FDD by inserting the basis vectors (t j ) j∈(mi−1,mi )

between Ei−1 and Ei to obtain the desired FDD in a subspace of Z ⊕ Tc,α . ��
Using Proposition 2.8 we can derive from Theorem 3.11 the following sufficient

and necessary condition for the dual of a Bourgain–Delbaen space to be isomorphic
to �1.

Corollary 3.14 Let Y be the Bourgain–Delbaen space associated to a Bourgain–
Delbaen sequence (Δn) satisfying condition (2.9) for some θ < 1/2 (and thus the
conclusion of Proposition 2.4 with M ≤ max(1/(1− 2θ), 2)) and let F = (Fj ) be the
FDD of Y as introduced in Sect. 2 and F∗ = (F∗j ). Define

C =
{

cuts(γ ) : γ ∈
∞⋃

n=1

Δn

}

.

Then F is shrinking (and thus Y ∗ is isomorphic to �1) if C is compact, or equivalently,
if C does not contain an infinite strictly increasing chain.

Proof Indeed, assuming (2.9), in the analysis of γ ∈ Γ

e∗γ =
a∑

j=1

α j d
∗
ξ j
+ β j P∗(p j−1,p j )

(b∗j ).

all the β j ’s are at most θ , except the ones for which the support of PF∗
(p j−1,p j )

(b∗j )
(with respect to F∗) is at most a singleton. Therefore the analysis of γ represents a
c-decomposition of e∗γ and, thus, Theorem 3.11 yields that F is shrinking. ��

4 The proof of Theorem A

Let X be a separable Banach space. We will follow the generalized BD construction
in Sect. 2 to embed X into a L∞ space Y . Since X can be embedded into a space with
basis (for example C[0, 1]), we can assume that X has an FDD, which we denote by
E = (Ei ), and after a renorming, if necessary, we can assume that E is bimonotone.
If X∗ is separable then we can assume that E is shrinking by [30].
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The Bourgain–Delbaen space Y , which we construct to contain X , will have Y ∗
isomorphic to �1, in the case that X∗ is separable.

To begin we fix 0 < c ≤ 1/16 and choose 0 < ε < c, and (εi )
∞
i=1 ⊂ (0, ε) with

εi ↓ 0 so that

∞∑

i=1

εi <
ε

8
and

∑

i>n

εi <
εn

2
for all n ∈ N. (4.1)

Next, for i ∈N, we choose Ri ⊂(0, 1] and Ã∗i ⊆ SE∗i to be εi/8, dense in their respec-
tive supersets, with 1 ∈ Ri for all i ∈ N. We then choose an appropriate countable
subset, D ⊂ BX∗ ∩ c00(⊕E∗i ), which norms X .

Lemma 4.1 There exists a set D ⊂ (
BX∗\ 1

2 BX∗
) ∩ c00(⊕E∗i ) with the following

properties.

a) A∗m := D ∩ E∗m = 1
1+ε/4 Ã∗m, for m ∈ N.

b) D∩(⊕n
j=m E∗j ) is finite, and (1−ε)-norms the elements of⊕n

j=m E j , for all m < n
in N.

c) Every x∗ ∈ D can be written as x∗ = ∑�
i=1 rix

∗
i , where (r1x

∗
1, . . . , r�x

∗
�), is

a c-decomposition of x∗ and x∗i ∈ D, and ri ∈ Rmax supp(x∗i ), for i = 1, . . . �.
Moreover

(supp(x∗i ))�i=1

∈
{

(supp(z∗i ))�i=1 :
(z∗i )�i=1 is the optimal c

1+ε/4 -decomposition

of some z∗ ∈ BX∗ ∩ c00

(
⊕∞j=1 E∗j

)

}

.

If (Ei ) is 1-uncondtional in X then (a) and (b) can be replaced by

a’) A∗m := D ∩ Em = Ã∗m, for m ∈ N.

b’) D ∩
(
⊕ j∈B E∗j

)
is finite, and (1 − ε)-norms the elements of ⊕ j∈B E j , for all

finite B ⊂ N.

For D as in Lemma 4.1 and each x∗ ∈ D we pick such a c-decomposition
(r1x

∗, r2x
∗
2, . . . r�x

∗) and call it the special c-decomposition of x∗. If x∗ ∈ A∗j =
D ∩ E∗j , we let (x∗) be its own special c-decomposition.

Proof We abbreviate suppE∗(·) by supp(·), and we abbreviate ranE∗(·) by ran(·).
Define

H = 1

1+ ε/4
{ ∑n

i=m aix
∗
i

‖∑n
i=m aix

∗
i ‖
: m ≤ n, ai ∈ Ri and x∗i ∈ Ã∗i for i ∈ [m, n]

}

.

We note the following properties of H .

H is countable. (4.2)
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H ∩ ⊕n
i=1 E∗i is finite for all n ∈ N. (4.3)

H ∩ ⊕n
i=m E∗i (1− ε)-norms ⊕n

i=m Ei , for all m ≤ n in N. (4.4)

If x∗ ∈ H and supp(x∗) ∩ [m, n] �= φ,m ≤ n, then

PE∗[m,n](x∗)
‖PE∗[m,n](x∗)‖

∈ (1+ ε/4)H. (4.5)

Set Hn = {h ∈ H : | ran(h)| = n} and thus H = ⋃∞
n=1 Hn . For each n ∈ N we

will inductively define for h ∈ Hn , an element h̃ ∈ (BX∗\ 1
2 BX∗

)∩ c00(⊕∞j=1 E∗i ). We

then set Dn = {h̃ : h ∈ Hn} and D = ∪n∈N Dn .
If h ∈ H1, let h̃ = h. Let n > 1 and assume that Dm has been defined for all m < n.

Let h ∈ Hn and (z∗1, . . . , z∗�) be the optimal c/(1 + ε/4)-decomposition of h. Note
that � ≥ 2 since n > 1 and ‖h‖ = 1/(1+ ε/4). We write the decomposition as

(si hi )
�
i=1 =

(

‖z∗i ‖(1+ ε/4)
z∗i

(1+ ε/4)‖z∗i ‖
)�

i=1

.

By the definition of H , ‖z∗i ‖ ≤ 1/(1+ ε/4) and so 0 < si = ‖z∗i ‖(1+ ε/4) ≤ 1 for
i ≤ �. If hi �∈ H1, then ‖si hi‖ = ‖z∗i ‖ ≤ c/(1+ ε/4) and so si ≤ c.

For i ≤ �, choose ri ∈ Rmax supp(hi ) with |ri − si | ≤ εmax supp(hi )/4 and ri ≤ c if
h �∈ H1. We define h̃ =∑�

i=1 ri h̃i . By induction, we will verify the following.

supp(h̃) = supp(h) (4.6)

‖h̃ − h‖ ≤
∑

j∈supp(h̃)

ε j (4.7)

(r1h̃1, .., r�h̃�) is a c−decomp of h̃, with

ri ∈ Rmax supp(h̃i )
and h̃i ∈

⋃

m<n

Dm , if n > 1. (4.8)

The condition (4.6) is clear. To verify (4.7) we note that if hi ∈ H1, then

‖ri h̃i − si hi‖ ≤ |ri − si | < εmax supp(h̃i )
/4.

If hi �∈ H1, by the induction hypothesis,

‖ri h̃i − si hi‖ ≤ ‖ri (h̃i − hi )‖ + ‖(ri − si )hi‖
≤ c

∑

j∈supp(h̃i )

ε j + εmax supp(hi )/4 ≤
∑

j∈supp(h̃i )

ε j .

Thus ‖h− h̃‖ ≤∑�
i=1 ‖ri h̃i − si hi‖ <∑

j∈supp(h̃) ε j , which proves (4.7). (4.8) holds
by construction. Equation (4.7) now yields,
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1/2 ≤ 1/(1+ ε/4)−
∑

j∈supp(h̃)

ε j ≤ ‖h‖ − ‖h − h̃‖

≤ ‖h̃‖ ≤ ‖h‖ + ‖h − h̃‖ ≤ 1/(1+ ε/4)+
∑

j∈supp(h̃)

ε j ≤ 1.

Thus D ⊂ BX∗\ 1
2 BX∗ . Properties a), b), and c) of D follow from (4.6), (4.7), and

(4.8).
If (Ei ) is 1-unconditional, as defined, we instead begin with

H =
{ ∑

i∈B aix
∗
i

‖∑n
i∈B aix

∗
i ‖
: ∅ �= B ⊂ N, |B| <∞, ai ∈ Ri and x∗i ∈ Ã∗i for i ∈ B

}

.

We then follow the above construction, similarly without the (1+ ε/4)-factors. These
were necessary to ensure that the h̃ j ’s were in BX∗ . ��

Next we define Γ and a certain partial order on Γ and use that to define the Δn’s.

Γ =
⎧
⎨

⎩
(r1x

∗
1, . . . , r jx

∗
j ) :

j ≥ 1 and there exists y∗ ∈ D so that
(r1x

∗
1, . . . , r jx

∗
j ) are the first j elements

of the special c − decomposition of y∗

⎫
⎬

⎭
.

From Theorem 3.11 and Lemma 4.1 we deduce for G = {{min supp(x∗j ) : j ≤ �} :
(r1x

∗
1, . . . r�x

∗
�) ∈ Γ }

(Ei ) is shrinking in X ⇐⇒ G is compact. (4.9)

We first define an order on the bounded intervals in N by [n1, n2] < [m1,m2] if
n2 < m2 or n2 = m2 and n1 > m1. It is not hard to see that this is a well ordering. It
is instructive to list the first few elements in increasing order (we let [n, n] = n):

(In)
∞
n=1 = (1, 2, [1, 2], 3, [2, 3], [1, 3], 4, [3, 4], [2, 4], [1, 4], 5 . . .)

If γ = (x∗1, . . . ,x∗�) ∈ Γ we let

ranE∗

(
�∑

i=1

x∗i

)

≡ ranE∗(γ ) and suppE∗

(
�∑

i=1

x∗i

)

≡ suppE∗(γ ).

For γ ∈ Γ we define the rank of γ by rk(γ ) = n if ran suppE∗(γ ) = In . We then
define a partial order “≤” on Γ by γ < η if rk(γ ) < rkE∗(η). If rk(γ ) = rk(ξ) and
γ �= η we say that γ and η are incomparable. We next define an important subse-
quence (m j )

∞
j=1 of N. For j ∈ N let m j = rk(x∗) for x∗ ∈ A∗j . Thus m1 = 1, m2 = 2,

m3 = 4 and more generally m j+1 = m j + j . Note that

for γ ∈ Γ, i0 = max suppE∗(γ )

if and only if mi0 ≤ rk(γ ) < mi0+1.
(4.10)

The following proposition is easily verified.
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Proposition 4.2 “≤” is a partial order on Γ . Furthermore,

a) Every natural number is the rank of some element of Γ and the set of all such
elements is finite.

b) If j ∈ N and (z∗) ∈ {γ : rk(γ ) = m j } = {(rx∗) ∈ Γ : r ∈ R j ,x
∗ ∈ A∗j }, then

{γ ∈ Γ : γ < z∗} = {γ ∈ Γ : max suppE∗(γ ) < j} and

{γ ∈ Γ : γ > (z∗)} = {γ ∈ Γ : max suppE∗(γ ) ≥ j and suppE∗(γ ) �= { j}}.

Proof Lemma 4.1 (b) implies that for any n there must be some γ ∈ Γ of rank n, and
if we let s < t , so that In = (s, t], then

#{γ ∈Γ : rk(γ ) = n} ≤
t−s∑

�=1

∑

s=t0<t1<...t�=t

�∏

j=1

#Rt j · #D ∩ (⊕t j
j=t j−1

E∗j ),

which yields (a). (b) follows easily from the definition of our partial order. ��

For n∈N, setΔn={γ ∈ Γ : rk(γ )=n}. We will next define c∗γ for γ ∈Γ (thus also
defining e∗γ = c∗γ + d∗γ ). Following this we will show how theΔn’s can be recoded to
fit into the framework of Sect. 2. To begin,

i) we let c∗γ = 0 if rk(γ ) ∈ {m j : j ∈ N} (thus, in particular, c∗γ = 0 if γ ∈ Δ1).

We proceed by induction and assume that c∗γ has been defined for all γ ∈ Γn =⋃n
j=1Δn . Assume that γ ∈ Δn+1 with n + 1 �∈ {m j : j ∈ N}. Let γ = (r1x

∗
1, r2x

∗
2,

. . . , r�x∗�). There are several cases.

ii) �=1, so γ =(r1x
∗
1), where |suppE∗(x

∗
1)|>1. Let (s1y

∗
1 , s2y

∗
2 , . . . , smy∗m) be the

special c-decomposition of x∗1 and note that m ≥ 2, since ‖x∗1‖ ≥ 1/2 > c. Put
ξ = (s1y

∗
1 , s2y

∗
2 , . . . , sm−1y

∗
m−1) and let η be the special c-decomposition of y∗m .

Define c∗γ = r1e∗ξ + r1sme∗η.
iii) �=2 and |suppE∗(x

∗
1)|=1. Let ξ=(x∗1) and let η be the special c-decomposition

of x∗2 and set c∗γ = r1e∗ξ + r2e∗η.
iv) � > 2 or � = 2 and |suppE∗(x

∗
1)| > 1. Let ξ = (r1x

∗
1, r2x

∗
2, . . . r�−1x

∗
�−1) and

let η be the special c-decomposition of x∗� . Define c∗γ = e∗ξ + r�e∗η.

Note that in the cases (ii), (iii) and (iv) k := rk(ξ) < rk(η) ≤ n and, furthermore,
as can be shown inductively

min suppF∗(e
∗
γ ) ≥ mmin ranE∗ (γ ) for all γ ∈ Δn . (4.11)

For the recoding we proceed as follows. We will identify Δn with new sets Δ̃ con-
forming to Definition 2.1. Set Δ̃1 = Δ1 = {(rx∗) : r ∈ R1,x

∗ ∈ A∗1}. For n ≥ 2 we

will identify Δn with Δ̃n = Δ̃
(0)
j ∪ Δ̃(1)j . Assume this has be done for j ≤ n. We let

γ ∈ Δn+1 and define γ̃ in the four cases above.
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i) If γ = (rx∗) with r ∈ R j and x∗ ∈ A∗j for some j ∈ N, and thus rk(γ ) = m j ,
we let γ̃ = (m j , 0, 0, rx∗), i.e. we choose β = 0, b∗ = 0 and (rx∗) to be the
free variable.

In the next three cases let ξ , η and k = rk(ξ), �,m, r j , j ≤ �, and s j , j ≤ m, be as
above in (ii), (iii) and (iv), and let ξ̃ and η̃ be the recodings of ξ and η.

ii) If γ = (r1x
∗
1), with |suppE∗ | > 1, we let γ̃ = (n + 1, 2r1,

1
2 (e

∗
ξ̃
+ sme∗

η̃
)).

iii) If γ = (r1x
∗
1, r2x

∗
2), with |suppE∗(x

∗
1)| = 1, let γ̃ = (n + 1, r1, k, ξ̃ , r2, e∗

η̃
).

iv) If γ = (r1x
∗
1, r2x

∗
2, . . . , r�x

∗
�), with � > 2 or |suppE∗(x

∗
1)| > 1, let γ̃ = (n +

1, 1, k, ξ̃ , r�, e∗
η̃
).

In cases (i) and (ii), γ̃ is of type 0, while in the other cases it is of type 1. In cases
(ii),(iii) and (iv) the set of free variables is a singleton and we have thus suppressed
it. Definition 2.2 yields that the Bourgain–Delbaen space corresponding to the Δ̃n’s
is exactly the same as the one obtained from the Δn’s above. Indeed, in (ii), (iii) and
(iv) the definition of c∗

γ̃
involves the projections PF∗

(k,n]. But PF∗
(k,n](e∗η) = e∗η by Propo-

sitions 4.2 and 4.11. Also, from our construction, we note that (2.9) is satisfied for the
Δ̃n’s since the factors r involved are all at most 2c ≤ 1/8, unless the relevant b∗ = e∗η
and c∗η = 0, for some η∈Γ . It follows as in Remark 2.5, that F∗ = (F∗j ) is an FDD
for �1, whose decomposition constant M does not exceed 2.

Let γ = (r1x
∗
1, . . . , r�x

∗
�) ∈ Γ , � ≥ 2. Then by iterating case (iv) we can

compute the analysis of e∗γ . Namely e∗γ =
∑�

j=3(d
∗
γ j
+ r j e∗η j

) + e∗γ2
, where γ j =

(r1x
∗
1, . . . , r�x

∗
�), for 2 ≤ j ≤ �, and η j is the special c-decomposition of x∗j , for

3 ≤ j ≤ �. By considering the different cases where |suppE∗(x
∗
1)| has one or more

elements we have

e∗γ =
{∑�

j=1 d∗γ j
+ r j e∗η j

if |suppE∗(x
∗
1)| = 1

∑�
j=2(d

∗
γ j
+ r j e∗η j

)+ d∗γ1
+ r1e∗

ξ ′ + r1sme∗
η′ if |suppE∗(x

∗
1)| > 1,

(4.12)

where in the bottom displayed formula, using case (ii), ξ ′1 = (s1y
∗
1 , . . ., sm−1y

∗
m−1),

where (s1y
∗
1 , . . . , sm−1y

∗
m−1, smy∗m) is the special c-decomposi-tion of x∗1) and η′ is

the special c-decomposition of y∗m .
From 4.12, Corollary 3.14 and our construction using special c-decom-positions

of elements of D, it follows that (Fi ) is a shrinking FDD, if (Ei ) is a shrinking FDD.
Indeed, then the set {(min suppE∗x

∗
i )
�
i=1 : (r1x

∗
1, . . . , r�x

∗
�) ∈ Γ } is compact. From

the analysis (4.12) we see that C = {cuts(γ ) : γ ∈ Γ } is also compact.
To complete the proof of Theorem A it remains only to show that X embeds into Y ,

the Bourgain–Delbaen space associated to (Δn). As in Sect. 2 we let Jm : �∞(Γm)→
Y ⊂ �∞(Γ ) be the extension operator, for m ∈ N.
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Definition 4.3 For i ∈ N, define φi : Ei → �∞(Δmi ) by φi (x)(rx∗) = rx∗(x).
Define φ : c00(

⊕∞
i=1 Ei )→ Y =⋃

m Ym ⊆ �∞(Γ ) by φ(x) =∑
i Jmi ◦φi (PE

i x) ∈
c00(

⊕∞
i=1 Fmi ).

In proving that X embeds into Y we will use the following connection between the
functionals e∗γ and the elements γ ∈ Γ deriving from the elements of D.

If n �∈ {m j : j ∈ N} and γ = (r1x
∗
1, . . . , r�x

∗
�) ∈ Δn, then c∗γ = αe∗ξ + βe∗η,

(4.13)

where ξ = (s1y
∗
1 , s2y

∗
2 , . . . , sky

∗
k ) and η = (t1z∗1, . . . , tm z∗m) are in Δn−1,

such that
�∑

i=1

rix
∗
i = α

�∑

i=1

siy
∗
i + β

�∑

i=1

ti z
∗
i .

This is easily verified using (ii), (iii) and (iv). Note that, since A∗i ⊂ BE∗i is (1− ε/4)-
norming Ei , (1− ε/4)‖x‖ ≤ ‖φi (x)‖ ≤ ‖x‖ for all x ∈ Ei .

Proposition 4.4 The map φ extends to an isomorphism of X into Y , and

(1− ε)‖x‖ ≤ ‖φ(x)‖ ≤ ‖x‖ for all x∈ X.

Proof Using (4.13) and the definition of φ j , j ∈ N, we deduce, by induction on the
rank of γ ∈ Γ , that for all γ = (r1x

∗
1, . . . , r�x

∗
�) ∈ Γ and all x ∈ c00(⊕∞j=1 E j ),

e∗γ (φ(x)) =
�∑

j=1

r jx
∗
j (x).

Using the bimonotonicity of E in X , and the properties of the set D ⊂ BX∗ as listed
in Lemma 4.1 we obtain for x ∈ c00(⊕∞j=1 E j )

(1− ε)‖x‖ ≤ sup
x∗∈D

|x∗(x)| = sup
γ=(r1x

∗
1,...,r�x

∗
�)∈Γ

∣
∣
∣
∣
∣

�∑

i=1

r jx
∗
j (x)

∣
∣
∣
∣
∣

= sup
γ∈Γ

∣
∣
∣e∗γ (φ(x))

∣
∣
∣ ≤ ‖x‖,

which implies our claim. ��
We will be using the construction of Y and all the terminology and notation of that

construction in the next two sections. In the proof of Theorems B and C we will also be
using the construction for V replacing X where V has a normalized bimonotone basis
(vi )

∞
i=1. In this case the vi ’s play the role of the Ei ’s, more precisely Ei is replaced by

span(vi ). To help distinguish things we will write B DX and B DV for the respective
L∞ spaces containing isomorphs of X and V .
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The universality of �1 as a dual space

Finally, it is perhaps worth noting that, in the V case we could alter the proof
slightly by allowing the scalars Ri to be negative and εi/8-dense in [−1, 1]\{0} and
take A∗j = { 1

1+ε/4v
∗
j }. In the case that (vi ) is also 1-unconditional we can use A∗j = {v∗j }

(see the second part of Lemma 4.1). We would then obtain

Corollary 4.5 Let V be a Banach space with a normalized bimonotone shrinking
basis (vi )

∞
i=1. Then W embeds into a L∞ space Z, with a shrinking basis (zi )

∞
i=1 so

that (vi )
∞
i=1 is equivalent to some subsequence of (zi )

∞
i=1.

In case that V is the Tsirelson space Tc,α the construction of a Bourgain–Delbaen
space containing V becomes simpler.

Remark 4.6 Let X be the Tsirelson space Tc,α , where α < ω1 and c ≤ 1/16. In
T ∗c,α there is a natural choice for the set D satisfying the conditions of Lemma 4.1
(1-unconditional case). Indeed, we let D =⋃∞

n=0 Dn , where Dn , n ≥ 0 is defined by
induction

D0 = {±e∗j : j ∈ N} and assuming D0, D1 . . . Dn have been defined we let
(4.14)

Dn+1 =
⎧
⎨

⎩
c

k∑

i=1

x∗i :
k ≥ 2,x∗i ∈

⋃n
j=0 D j , for i ≤ k,

{min supp(x∗i ) : i ≤ k} ∈ Sα, and
max supp(x∗i ) < min supp(x∗i+1), if i < k.

⎫
⎬

⎭
.

In that case D 1-norms Tc,α and Γ also has a simple form in this case:

Γα,c =
⎧
⎨

⎩

(
cx∗1, cx∗2, . . . , cx∗�

) :
� ≥ 2,x∗i ∈ D, for i ≤ �,
{min supp(x∗i ) : i ≤ �} ∈ Sα, and
max supp(x∗i ) < min supp(x∗i+1), if i < �,

⎫
⎬

⎭
∪ D0.

Our construction in Theorem A leads then to a Bourgain–Delbaen space containing
isometrically Tc,α and it is very similar (but simpler) than the construction in [4] where
a mixed Tsirelson space was used instead of Tc,α .

In summary, our proof of Theorem A, then yields the following theorem.

Theorem 4.7 Let X be a Banach space with a bimonotone FDD E = (E j ) and let
ε > 0. Then X embeds into a Bourgain–Delbaen space Z having an FDD F = (Fj ),
such that

a) For n ∈ N, there are embeddings φn : En → Fmn , so that

φ : c00
(⊕∞n=1 En

)→ Z ,
∑

xn �→
∑

φn(xn)

extends to an isomorphism from X into Z with (1− ε)‖x‖ ≤ ‖φ(x)‖ ≤ ‖x‖ for
x ∈ X.

b) F is shrinking (in Z) if E is shrinking (in X).

From Theorem 4.7 and [12, Corollary 3.5] we obtain
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Corollary 4.8 There exists a collection {Yα : α < ω1} of L∞,2 spaces such that Y ∗α
is 2-isomorphic to �1, and Yα is universal for the class Dα = {X : X separable and
Sz(X) ≤ α}, for all α < ω1.

5 The proof of Theorems B and C

The constructions which will be used to prove Theorems B and C are augmentations
of sequences of Bourgain–Delbaen sets as introduced in Sect. 2.

Definition 5.1 Assume that (Δn) is a sequence of Bourgain–Delbaen sets, and assume
that (Δn) satisfies the assumptions of Proposition 2.4 with C <∞, and hence M <∞.
We denote the Bourgain–Delbaen space associated with (Δn) by Y and its FDD by
F = (Fn). Since we will deal with different Bourgain–Delbaen spaces we denote from
now on the projections PA of Y onto ⊕ j∈A Fj , A ⊂ N finite or cofinite, by PF

A .
An augmentation of (Δn), is then a sequence of finite, possibly empty, sets (Θn)

having the property that (Δn) := (Δn∪Θn) is again a sequence of Bourgain–Delbaen
sets. More concretely, this means the following. Θ1 is a finite set and assuming that
for some n ∈ N, (Θ j )

n
j=1 have been chosen, we let Δ j = Δ j ∪Θ j , Λ j = ⋃ j

i=1Θi ,

and Γ j =⋃ j
i=1Δi , for j ≤ n, whereΘn+1 is the union of two sets,Θ(0)

n+1 andΘ(1)
n+1,

which satisfy the following conditions.
Θ
(0)
n+1 is finite and

Θ
(0)
n+1 ⊂

{
(n + 1, β, b∗, f ) : β∈[0, 1], b∗ ∈ B�1(Γ n)

, and f ∈W(n+1,β,b∗)
}
, (5.1)

where W(n+1,β,b∗) is a finite set for β∈[0, 1] and b∗ ∈ B�1(Γ n)
.

Θ
(1)
n+1 is finite and

Θ
(1)
n+1 ⊂

⎧
⎪⎪⎨

⎪⎪⎩
(n + 1, α, k, ξ , β, b∗, f ) :

α, β∈[0, 1],
k∈{1, 2, . . . n − 1},
ξ ∈Δk, b∗ ∈ B�1(Γ n\Γ k )

and f ∈W(n+1,α,k,ξ ,β,b∗)

⎫
⎪⎪⎬

⎪⎪⎭
, (5.2)

where W(n+1,α,k,ξ ,β,b∗) is a finite set for α ∈ [0, 1], k ∈ {1, 2, . . . , n − 1}, ξ ∈ Δk ,
β∈[0, 1], and b∗ ∈ B�1(Γ n\Γ k )

.

We denote the corresponding functionals (see Definition 2.2) by c∗γ for γ ∈ Γ . We

require also that (Δn) satisfies the conditions of Proposition 2.4, so that F
∗ = (F

∗
n),

with F
∗
n = span(e∗γ : γ ∈ Δn) is an FDD of �1(Γ ) whose decomposition constant

M can be estimated as in Proposition 2.4. We denote then the associated Bourgain–
Delbaen space by Z , and its FDD by F = (Fn). As in Sect. 2, we denote the projec-
tions from Z onto ⊕m

i=k Fi , by PF[k,m], if k < m, or by PF
k , if k = m. The restriction

operator from �∞(Γ ) onto �∞(Γ n) or �1(Γ ) onto �1(Γ n) is denoted by Rn and the
extension operator from �∞(Γ n) to ⊕m

j=1 F j ⊂ Z ⊂ �∞(Γ ) is denoted by J m .
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Note that by Corollary 3.14, under assumption (2.9), F is shrinking in Z if {cuts(γ ) :
γ ∈ Γ } is compact.

Remark 5.2 In general Y is not a subspace of Z . Nevertheless it follows from Prop-
osition 2.6 that Fm is naturally isometrically embedded into Fm for m ∈N. Indeed,
the map

ψm : Fm → Fm, x �→ J m J−1
m (x) = J m(x|Δm ),

is an isometric embedding (where we consider �∞(Δm) to be naturally embedded into
�∞(Δm) and �∞(Δm) naturally embedded into �∞(Γ m)). We put

ψ : c00

(
⊕∞j=1 Fj

)
�→ c00

(
⊕∞j=1 F j

)
, (x j ) �→ (ψ j (x j )). (5.3)

We defineψ on (⊕∞j=1 Fj )�∞ byψ((x j )
∞
j=1) = (ψ j (x j ))

∞
j=1 ∈

∏∞
j=1 F j , a sequence

in (F j )
∞
j=1. Note that if γ ∈ Λn then we can regard, for x = (x j ) ∈ (⊕Fj )�∞ ,

c∗γ (ψ(x)) = c∗γ (
∑n

j=1 ψ j (x j )). It is worth noting that for y∈c00(⊕∞j=1 Fj ),ψ(y)|Γ =
y. Thus ψ extends such elements to elements of Z . However this extension is not
necessarily bounded on Y . In any event, if we define π(z) = z|Γ for z ∈ Z then
π : Z → Y .

The following provides a sufficient criterium for a subspace of Y to also embed
into the augmented space Z .

Proposition 5.3 Assume that X is a subspace of the Bourgain–Delbaen space Y with
FDD F = (Fj ) and which is associated to a Bourgain–Delbaen sequence (Δn).
Assume moreover that c00(⊕∞j=1 Fj ) ∩ X is dense in X.

Let (Θn) be an augmentation of (Δn) with an associated space Z, and assume that
|c∗γ (ψ(x))| ≤ cX‖x‖ for all γ ∈ Λ = ⋃

j∈N
Λ j and all x ∈ X. Then ψ embeds X

into Z and ‖x‖ ≤ ‖ψ(x)‖ ≤ max(1, cX )‖x‖. Furthermore, for x ∈ X, π(ψ(x)) = x.
Thus π : ψ(X)→ X is the inverse isomorphism of ψ |X .

Remark 5.4 In [17;24, Lemma 3.1] it was shown that every separable Banach space X
can be embedded into a Banach space W with FDD E = (E j ), so that X∩c00(⊕∞j=1 E j )

is dense in X . Moreover, (E j ) can be chosen to be shrinking if X∗ is separable. Using
the construction of Theorem A, we can therefore embed W into a Bourgain–Delbaen
space Y which has an FDD F = (Fj ) so that E j embeds into Fm j for some increasing
sequence (m j ). It follows therefore that the image of X under the embedding into Y
has the property needed in Proposition 5.3.

Proof of Proposition 5.3 For x ∈ X and γ ∈ Γ we first estimate e∗γ (ψ(x)). If γ ∈ Γ
then e∗γ (ψ(x)) = e∗γ (x), and thus it follows that ‖ψ(x)‖ ≥ ‖x‖�∞(Γ ) = ‖x‖ for all
x∈ X and π(ψ(x)) = x. If γ ∈Λ it follows that

∣
∣
∣e∗γ (ψ(x))

∣
∣
∣ =

∣
∣
∣c∗γ (ψ(x))

∣
∣
∣ ≤ cX‖x‖
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and therefore the restriction of ψ to X is a bounded operator, still denoted by ψ , from
X to �∞(Γ ), and ‖ψ‖ ≤ max(cX , 1).

We still need to show that the image of X under ψ is contained in Z . However
ψ(X ∩ c00(⊕∞j=1 Fj )) ⊂ Z since ψ(X ∩ Fj ) ⊂ ψ(Fj ) ⊂ F j ⊂ Z for all j ∈ N. Thus
the image of ψ on a dense subspace of X is contained in Z , and hence ψ(X) ⊂ Z .

Theorem 5.5 Let Y be the Bourgain–Delbaen space associated to a sequence of sets
(Δn) and let F = (Fn) be the FDD of Y . Let X be a subspace of Y and assume that
c00(⊕∞j=1 Fj ) ∩ X is dense in X and let V be a space with a 1-unconditional, and
normalized basis (vn).

Then there is an augmentation (Θn) of (Δn) with an associated space Z and with
FDD F = (Fn) so that the following hold.

a) X embeds isometrically into Z via ψ .
b) If F and (vi ) are shrinking, then F is also shrinking and, thus, Z∗ is isomorphic

to �1. Furthermore, if (zn) is a normalized block basis in Z, with the property that

δ0 = inf
n∈N

dist(zn, ψ(X)) > 0

then (zn) has a subsequence (z′n) which dominates (vkn ) where kn = max suppF
(z′n)+ 1, for n ∈ N.

c) If X has an FDD E = (En), with the property that En ⊂ Fn, for n ∈ N, then in
this case we can choose (Θn) so that

c∗γ (ψ(x)) = 0, whenever, γ ∈ Λ =
∞⋃

j=1

Θ j and x∈ X.

Moreover every normalized block sequence (zn) satisfying

max suppF(zn)+ n + 2 < min suppF(zn+1)

and δ0 = inf
n∈N

dist(zn, ψ(X)) > 0, (5.4)

dominates (vkn ), where kn = max suppF(zn)+ 1.

Remark 5.6 In case (c) we allow some En to be the nullspace {0}. As noted in the intro-
duction, this will be convenient. In the case of Theorem A, we actually had E j ⊂ Fm j ,
but we choose to simplify the notation in the arguments below.

Proof of Theorem 5.5 The construction of (Θn) will differ slightly depending on
whether X has an FDD or not.

We use the construction of Sect. 4 for the space V with c ≤ 1/16 using as an FDD for
V the basis (vi )

∞
i=1 and A∗j = {± v∗j } for all j ∈ N. We write DV ,ΔV

n , Γ
V

n , . . . to dis-
tinguish these sets fromΔn, Γn, . . . which came from the construction of Y . Thus we
obtain a L∞ space Y V and a 1

1−ε -embedding (see Proposition 4.4) φV : V → Y V .The
numbers ε < c and (εn) ⊂ (0, c) satisfy, as in Sect. 4, the condition (4.1).
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Now DV = D is as defined in the unconditional case of Lemma 4.1 for the space
V . We also note that in the case that V is the Tsirelson space, Tc,α with α < ω1 and
c ≤ 1/16 we could use DV and Γ V = Γc,α as defined in Remark 4.6.

We define by induction for all n ∈ N the sets Θn and the sets Θ(0)
n and Θ(1)

n , if
n ≥ 2, satisfying (5.1) and (5.2). Moreover, we also define a mapΘn → Γ V , γ �→ γ V

so that
cuts(γ ) is a spread of

{min suppV ∗(x
∗
1),min suppV ∗(x

∗
2), . . . ,min suppV ∗(x

∗
�)},

where γ V = (x∗1,x∗2, . . . ,x∗�)∈Γ V ,

for γ ∈ Θn, and max suppV ∗(γ
V ) ≤ n.

(5.5)

The set of free variables will be a singleton, and α will always be chosen to be 1 in
(5.2), so we suppress the free variable and α, in the definition of the elements of Θn .

To start the recursive construction we put Θ1 = ∅, and assuming Θ(0)
j and Θ(1)

j

have been chosen for all j ≤ n, we proceed as follows. Λ j , and Γ j , j ≤ n, F
∗
j and

PF
∗

(k, j], 0 ≤ k < j ≤ n, are given as in Definition 5.1. Since Y is a subspace of �∞(Γ ),
and since Γn ⊂ Γ n , e∗γ , γ ∈ Γ n , is a well defined functional on Y (and thus on X ).

The map ψ : X → ∏∞
j=1 F j will be defined ultimately as in (5.3). At this point for

x ∈ X , ψ(x)|Γ n
is defined and so e∗γ (ψ(x)) = c∗γ (ψ(x)) is defined for γ ∈ Γ n . Thus

we can choose for 0 ≤ k < n, finite sets

B(k,n] ⊂
{
{b∗ ∈ B�1(Γ n\Γ k )

: PF∗
(k,n](b∗)|ψ(X) ≡ 0}, assuming X has an FDD

B�1(Γ n\Γ k )
, no assumptions on X

which are symmetric and εn+1/(2M + 4) dense in their respective supersets. Then
we put

Θ
(0)
n+1 = Θ

(0,1)
n+1 ∪Θ(0,2)

n+1 with

Θ
(0,1)
n+1 = {(n + 1, rc, b∗) : (rv∗n+1) ∈ Γ V and b∗ ∈ B(0,n]}

Θ
(0,2)
n+1 =

⎧
⎨

⎩
(n + 1, r, e∗η) :

η ∈ Λn, ∃x∗ ∈DV so that
(rx∗) ∈ Γ V with |suppV ∗(x

∗)| > 1 and
ηV is the special c-decomposition of x∗

⎫
⎬

⎭
,

and

Θ
(1)
n+1 = Θ

(1,1)
n+1 ∪Θ(1,2)

n+1 with

Θ
(1,1)
n+1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ = (n + 1, k, ξ , rc, b∗) :

k < n, ξ ∈Θk, b∗ ∈ B(k,n],

(ξ
V
, rv∗n+1) ∈ Γ V

n+1,

with |c∗γ (ψ(x))| ≤ ‖x‖
for all x ∈ X

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
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Θ
(1,2)
n+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ = (n + 1, k, ξ , r, e∗η) :

k < n, ξ ∈Θk, η∈Λn, ∃x∗ ∈DV

with |supp(x∗)| > 1, so that

(ξ
V
, rx∗)∈Γ V

n+1, and ηV is the

special c-decomposition of x∗

with |c∗γ (ψ(x))| ≤ ‖x‖
for all x ∈ X

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that for (n+ 1, r, e∗η) ∈ Θ(0,2)
n+1 or (n+ 1, k, ξ , r, e∗η) ∈ Θ(1,2)

n+1 we have that r ≤ c
since |supp(x∗)| > 1. We define for γ ∈ Λn , n ≥ 2,

γ V =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(rv∗n+1) if γ = (n + 1, rc, b∗) ∈ Θ(0,1)
n+1 ,

(rx∗) if γ = (n + 1, r, e∗η)∈Θ(0,2)
n+1 ,

where ηV is the special c-decomposition of x∗,

(ξ
V
, rv∗n+1) if γ = (n + 1, k, ξ , rc, b∗) ∈ Θ(1,1)

n+1 ,

(ξ
V
, rx∗) if γ = (n + 1, k, ξ , r, e∗η)∈Θ(1,1)

n+1 ,

where ηV is the special c-decomposition of x∗.

Then condition (5.5) follows immediately for the elements ofΘ(0)
n+1, while an easy

induction argument proves it also for the elements of Θ(1)
n+1. It is worth pointing out

that {γ V : γ ∈ Λ} is a proper subset of Γ V , but nevertheless is sufficiently large for
our purposes.

Proposition 2.4 yields that (Δn) admits an associated Bourgain–Delbaen space Z
with FDD F = (F j ) whose decomposition constant M is not larger than max(M, 1/
(1 − 2c)) ≤ max(M, 2), where M is the decomposition constant of (Fj ). If (Fj )

and (vn) are both shrinking in V , and thus, the optimal c-decompositions of elements
of BV ∗ are admissible with respect to some compact subset of [N]<ω, our condition
(5.5) together with Theorem 3.11 and Corollary 3.14 yield that the FDD F = (F)
is shrinking in Z . The definition of Θ(1)

n together with Proposition 5.3 imply that ψ
isomorphically embeds X into Z .

To verify parts (b) and (c) of our Theorem and will need the following

Lemma 5.7 Let (z∗j ) be a block basis in Z∗ with respect to F
∗

and (δ j ) ⊂ [0, 1] with
∑

j∈N
δ j ≤ 1. Assume that |z∗j (ψ(x))| ≤ δ j for all j ∈N and x ∈ BX . Define for n ∈ N

pn = min suppF
∗(z∗n)−1 and qn = max suppF

∗(z∗n)+1 (thus suppF
∗(z∗n) ⊂ (pn, qn))

and assume that

z∗n = PF∗
(pn ,qn)

(z̃∗n) for some z̃∗n ∈ B(qn ,pn), and qn + n < pn+1. (5.6)
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Then for any sequence (β j )
N
j=1 withw∗ =∑N

j=1 β jv
∗
q j
∈ DV there exists γ ∈ ΛN+qN

so that

PF
∗

(pn ,qn)
(e∗γ ) = cβnz∗n, for all n ≤ N , and

PF
∗
(e∗γ )(ψ(x)) =

N∑

n=1

cβnz∗n(ψ(x)) if x ∈ X. (5.7)

Proof We prove our claim by induction on N ∈ N. If N = 1 then w∗ = ± v∗q1
, and

we let γ = (qn, c,± z̃∗1) ∈ Θ(0,1)
q1 . Then e∗γ = d∗γ ± cz̃∗1 and PF

∗
(p1,q1)

(e∗γ ) = ± cz∗1,
depending on whether β1 = ±1. Since d∗γ (ψ(x)) = 0 for x ∈ X we also deduce the
second part of (5.7).

Assume that our claim holds true for N and let w∗=∑N+1
j=1 β jv

∗
q j
∈DV . Then, by

our choice of DV (see Lemma 4.1),w∗ has a special c-decomposition (r1w
∗
1,. . ., r�w

∗
� ),

and we write w∗j as w∗j =
∑N j

i=N j−1+1 β
( j)
i v∗qi

with β( j)
i = βi/r j , for j ≤ � and

N j−1+ 1 ≤ i ≤ N j and N0 = 0 < N1 < . . . N� = N + 1. Since � ≥ 2, we can apply
the induction hypothesis to each w∗j and obtain η j ∈ Λq

N j
+N j−N j−1 , j = 1, 2 . . . �,

so that PF
∗

(pn ,qn)
(e∗η j

) = cβ( j)
n z∗n if N j−1 < n ≤ N j . Now let

γ 1 =
⎧
⎨

⎩

(q1, cr1, sign(β1)z̃∗1)} if |supp(w∗1)| = 1

(pN1+1 , r1, e∗η1
) if |supp(w∗1)| > 1.

Note that, in the second case, by assumption (5.6) qN1
+ N1 < pN1+1 and thus

η1 ∈ ΛpN1+1−1. Assuming we have chosen γ j−1, for 2 ≤ j ≤ � we let

γ j =
⎧
⎨

⎩

(qN j
, γ j−1, cr j , sign(βN j

)z̃∗
N j
) if |supp(w∗1)| = 1

(qN j
+ N j − N j−1 + 1, γ j−1, rk(γ j−1), r j , e∗η j

) if |supp(w∗1)| > 1.

Using the induction hypothesis on the η j ’s, we deduce by induction on j = 1, . . . �
that for x ∈ X

e∗γ j
(ψ(x)) = c∗γ j

(ψ(x)) ≤
N j∑

n=1

|cβnz∗n(ψ(x))| ≤
N j∑

n=1

δn‖x‖ ≤ ‖x‖,

and thus γ 1 ∈ Θ(0,1)
q1 , if |supp(w∗1)| = 1, and γ 1 ∈ Θ(0,2)

pN1+1
, if |supp(w∗1)| > 1, and

γ j ∈ Θ(1,1)
qN j

, if |supp(w∗1)| = 1, and γ j ∈ Θ(1,2)
qN j

+N j−N j−1+1, if |supp(w∗1)| > 1, if

j = 2, 3 . . . �
Finally we choose γ = γ � which in both cases is an element of ΛqN+1+N+1. It

follows for n ≤ N , and 1 ≤ j ≤ � such that N j−1 < n ≤ N j that
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PF
∗

(pn ,qn)
(e∗γ ) = PF

∗
(pn ,qn)

(e∗γ j
)

=
{

cr j sign(β j )z∗n if |supp(w∗j )| = 1

r j PF
∗

(pn ,qn)
(e∗η j

) if |supp(w∗j )| > 1

}

= βncz∗n,

which finishes the verification of the first part of (5.7), while the second part follows
from the induction hypothesis applied to the η j ’s. ��
Continuation of the Proof of Theorem 5.5 To finish the proof we consider a normal-
ized block basis (zn) in Z , with δ0 = infn dist(zn, ψ(X)) > 0 and the additional
property (5.4) in the case where X has an FDD. Let pn = min suppF(zn) − 1 and
qn = max suppF(zn)+1. It follows that qn+n < pn+1, for n ∈ N. In this case (X has
an FDD) we choose z∗n ∈ ⊕ j∈(pn ,qn)F

∗
j , with ‖z∗n‖ ≤ 1, z∗n(zn) ≥ δ0

2M
and z∗n |ψ(X) = 0.

In the case (b) we proceed as follows. We choose y∗n ∈ Z∗, ‖y∗n‖ ≤ 1, so that
y∗n(zn) ≥ δ0 and y∗n |ψ(X) ≡ 0. After passing to subsequence and using the fact that (zk)

is weakly null, we can assume that y∗n is w∗-converging, and after subtracting its w∗
limit and possibly replacing δ0 by a smaller number we can assume that (y∗n) isw∗ null.

After passing again to subsequences, we can assume that there exist pn’s and
qn’s with

∥
∥
∥PF

∗
(pn ,qn)

(y∗n)− y∗n
∥
∥
∥ ≤ εn

and qn + n < pn+1 for n ∈ N. Then we let z∗n = PF
∗

(pn ,qn)
(y∗n)/(1 + ε), and deduce

that ‖z∗n‖ ≤ 1 and z∗n(zn) ≥ δ0/(1+ ε)) =: δ′0.

In both cases we found z∗n ∈ ⊕qn−1
pn+1 F∗j , with‖z∗n‖ ≤ 1, z∗n(zn) ≥ δ′0 and z∗n|ψ(X) = 0

in the first case and ‖z∗n|ψ(X)‖ ≤ εn in the second.
By Proposition 2.7 we find b∗n ∈ �1(Γ qn−1\Γ pn ), for n ∈ N so that ‖b∗n‖�1 ≤ M

and z∗n = PF
∗

(pn ,qn)
(b∗n).

Using now the density assumption of B(pn ,qn) we can choose b̃∗n ∈ B(p,qn) with
‖b̃∗n − 1

M
b∗n‖ ≤ εqn/(2M + 4) ≤ εqn/2M , since M ≤ M ∨ 2. So if we let z̃∗n =

PF
∗

(pn ,qn)
(b̃∗n), we deduce that ‖z∗n/M − z̃∗n‖ ≤ 2Mεqn/2M = εqn and hence z̃∗n(zn) ≥

z∗n(zn)/M − ‖z∗n/M − z̃∗n‖ ≥ δ′0/M − εn , for all n ∈ N.
Let n0 ∈ N be such that δ′0 ≥ 2εn0 M . It is enough to show that (zn)n≥n0 has lower

(vqn )n≥n0 estimates. We can therefore assume without loss of generality that n0 = 1.
Let (α j )

N
j=1 ⊂ R with ‖∑N

j=1 α jvq j ‖ = 1 and using Lemma 4.1 (in the unconditional

case) we can choose (β j )
N
j=1 ⊂ R with

∑N
j=1 β jv

∗
q j
∈ DV so that

N∑

j=1

β jv
∗
q j

⎛

⎝
N∑

j=1

α jvq j

⎞

⎠ =
N∑

j=1

α jβ j ≥ (1− ε).

Since (pn) and (qn) satisfy the assumptions of Lemma 5.7, we can choose γ ∈ Λ
so that
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e∗γ

⎛

⎝
N∑

j=1

α j z j

⎞

⎠ =
N∑

j=1

α jβ j PF
∗

(p j ,q j )
(e∗γ )(z j )

= c
N∑

j=1

α jβ j z
∗
j (z j ) ≥ c(1− ε)δ′0/2M,

which finishes the proof of (b) and (c) and thus Theorem 5.5 in full.

We now prove Theorem B.

Proof of Theorem B Let X and U be totally incomparable spaces with separable duals.
By Theorem 3.8 U embeds into a space W with an FDD which satisfies subse-

quential Tc,α-upper estimates for some α < ω1 and some 0 < c < 1. As noted before
we can assume that, after possibly replacing α by one of its powers, we can assume
that c ≤ 1/16. We also noted that Proposition 7 in [26] calculates the Szlenk index of
Tα,c to be Sz(Tα,c) = ωαω. We may thus choose β > α so that Sz(Tβ,c) > Sz(Tα,c).
Furthermore, any infinite dimensional subspace of Tα,c has the same Szlenk index
as Tα,c. We immediately have that Tα,c and Tβ,c are totally incomparable, that is no
infinite dimensional subspace of Tα,c is isomorphic to a subspace of Tβ,c. This idea
can be refined further to give that no normalized block sequence in Tα,c dominates a
normalized block sequence in Tβ,c.

Using Theorem A and Remark 5.4 we can embed X into a Bourgain–Delbaen
space Y with shrinking FDD F = (Fj ) so that X ∩ c00(⊕∞j=1 Fj ) is dense in X . We
apply now Theorem 5.5 to Y , with (v j ) being the unit vector basis of Tc,β , to obtain a
Bourgain–Delbaen space Z , and an embedding ψ of X into Z , so that every normal-
ized block sequence, which has a positive distance to ψ(X), has a subsequence (zi )

which dominates some subsequence of (v j ). If (zi ) is equivalent to a basic sequence
in U , then (zi ) is dominated by a subsequence of the unit vector basis for Tc,α . Thus
a subsequence of the unit vector basis for Tα,c must dominate a subsequence of (vi )

(the unit vector basis for Tβ,c), which is a contradiction. Thus no normalized block
sequence in Z , which has a positive distance to ψ(X), is equivalent to a subsequence
in U .

Now any normalized sequence in Z has a subsequence which is equivalent to a
sequence in X or has a subsequence which has a positive distance to ψ(X). In both
cases it follows that the sequence is not equivalent to a sequence in U . Theorem B
follows.

Proof of Theorem C Assume that X is reflexive. Using Theorem 3.9 we can assume
that X has an FDD (Ei ) which satisfies for some α < ω1 both subsequential Tα,c-
upper and subsequential T ∗α,c-lower estimates. As noted before we can assume that
c ≤ 1/16.

By Theorem 4.7 we can embed X into a Bourgain–Delbaen space Y with a shrink-
ing FDD F = (Fj ), associated to a sequence of Bourgain–Delbaen sets (Δn), via the
mapping ψ given in (5.3).

Now we apply Theorem 5.5 (b) to the unit vector basis (v j ) of T ∗α,c and obtain an
augmentation (Θn) of (Δn) generating a Bourgain–Delbaen space Z having an FDD
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F = (F j ), so that every normalized block basis (zn) in Z has a subsequence which
is either equivalent to a block sequence in X , or which dominates a subsequence of
(v j ). Moreover, the later case holds for all normalized block bases of (zn). In both
cases it follows that this subsequence is boundedly complete, and since it is shrinking
it follows that it must span a reflexive space.

Similarly we can show the following result, whose proof we omit.

Theorem 5.8 Let X be a Banach space with separable dual and let (u j ) be a shrinking
basic sequence, none of whose subsequences is equivalent to a sequence in X. Then X
embeds into a Bourgain–Delbaen space Z whose dual is isomorphic to �1, and which
does not contain any sequence which is equivalent to any subsequence of (u j ).

Using a construction similar to one in the proof of Theorem 5.5 we can show the
following embedding result for spaces with an FDD satisfying subsequential lower
estimates.

Theorem 5.9 Let V be a Banach space with a normalized unconditional basis (vi ),
having the following property.

There is a constant C > 0 so that for

any two sequences (pn) and (qn) in N,

with p1 < q1 < p2 < q2 < . . . , (vpn )

C − dominates (vqn ).

(5.8)

Let X be a Banach space with an FDD (Ei ) which satisfies subsequential V -lower
estimates. Then X embeds into a L∞ space Z with an FDD (Fi )which satisfies skipped
subsequential V ′-lower estimates where V ′ is some subsequence of V . Furthermore,
if (Ei ) and (vi ) are both shrinking, then (Fi ) can be chosen to be shrinking too.

Proof After renorming, we may assume that the FDD E = (Ei ) is bimonotone and
that the basis (vi ) is 1-unconditional. We use the construction of Sect. 4 to define a L∞
space Y with an FDD F = (Fi ) and an embedding φ : X → Y such that φ(Ei ) ⊂ Fmi

for some sequence (mi ) ∈ [N]ω. For convenience, we will refer to the space φ(X) as
X . As the FDD (Ei ) satisfies subsequential V -lower estimates, there exists K ≥ 1,
so that

if (xi ) ⊂ X is a normalized block sequence such

that xi ∈ ⊕mqi
j=m pi

Fj , with 1 = p1 < q1 < p2, . . . ,

then (xi )K − dominates (vqi ).

(5.9)

We now define the Banach space Ṽ ∼= V ⊕ c0 with basis (ṽi ) given by ṽmi = vi

and ṽi = ei if i �∈ {m j }, where (ei ) is the unit vector basis of c0. It is clear that (ṽi )

is a 1-unconditional normalized basic sequence, and that (ṽi ) is shrinking if (vi ) is
shrinking.
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We denote the projection constant of (Fi ) by M . The sets (Δn), Θ(0,1), Θ(0,2),
Θ(1,1), and Θ(1,2) are defined as in Theorem 5.5 for some constant c < 1/K , the
basic sequence (ṽi ), and some inductively chosen εn+1/(2M+4)-dense sets B(k,n] ⊂
B�1(Γ n\Γ k )

(i.e. we are using the case “no assumptions on X”). This construction yields

that (Δn) admits an associated Bourgain–Delbaen space Z with FDD F = (F j )whose
decomposition constant M is not larger than max(M, 1/(1 − 2c)) ≤ max(M, 2). If
(Fj ) and (vn) are both shrinking in V , and thus, the optimal c-decompositions of
elements of BṼ ∗ are admissible with respect to some compact subset of [N]<ω, we
have that the FDD F = (F) is shrinking in Z . Furthermore, we have an isometric
embedding ψ : X → Z .

Before continuing, we need the following lemma which is analogous to Lemma 5.7.
��

Lemma 5.10 Let (z∗j ) be a block basis in Z∗ with respect to F
∗

such that there exist
integers p1 < q1 < p2 < q2 . . .with suppF

∗(z∗n) ⊂ (m pn ,mqn ) for all n ∈ N. Assume
that

z∗n = PF∗
(m pn ,mqn )

(z̃∗n) for some z̃∗n ∈ B(m pn ,mqn )
, for n ∈ N.

Then for any sequence (β j )
N
j=1 with w∗=∑N

j=1 β jv
∗
q j
∈DV , there exists γ ∈ΛN+kN

so that

PF
∗

(m pn ,mqn )
(e∗γ ) = cβnz∗n, if n ≤ N , and

PF
∗
(e∗γ )(ψ(x)) =

N∑

n=1

cβnz∗n(ψ(x)) if x∈ X.
(5.10)

Since parts of the proof are essentially the same as the proof of Lemma 5.7 we will
only sketch it and point out where both proofs differ.

Proof We will prove our claim by induction on N and the case N = 1 is exactly
like in the proof of Lemma 5.7 (with p j and q j being replaced by m p j and mq j ,
respectively). To show the claim for N + 1, assuming the claim to be true for N ,
we let w∗ = ∑N+1

j=1 β j ṽmq j
= ∑N+1

j=1 β jvq j ∈ DṼ , and define � ∈ N, � ≥ 2 and
γ j and η j , j = 1, 2 . . . , �, as in Lemma 5.7. We need only to show by induction
on j = 1, 2 . . . �, that |e∗γ j

(ψ(x))| ≤ ‖x‖ for x ∈ X (without the assumption of

Lemma 5.7 that |z∗j (ψ(x))| ≤ δ j‖x‖, for j ≤ �). Using the induction hypothesis on
the η j ’s, we deduce by induction on j = 1, . . . � that for x ∈ X

|e∗γ j
(ψ(x))| = |c∗γ j

(ψ(x))|

≤
N j∑

n=1

|cβnz∗n(ψ(x))|
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≤
N j∑

n=1

c|βn|
∥
∥
∥PF

(m pn ,mqn )
(ψ(x))

∥
∥
∥

= c

⎛

⎝
N j∑

n=1

βnv
∗
qn

⎞

⎠

⎛

⎝
N j∑

n=1

‖PF
(m pn ,mqn )

(ψ(x))‖vqn

⎞

⎠

≤ c

∥
∥
∥
∥
∥
∥

N j∑

n=1

‖PF
(m pn ,mqn )

(ψ(x))‖ṽmqn

∥
∥
∥
∥
∥
∥

≤ c

∥
∥
∥
∥
∥
∥

N j∑

n=1

(∥
∥
∥PF

(m pn ,mqn )
(ψ(x))

∥
∥
∥ ṽmqn

+
∥
∥
∥PF[mqn ,m pn+1 ](ψ(x))

∥
∥
∥ ṽm pn+1

)
∥
∥
∥
∥
∥
∥

≤ cK‖x‖ ≤ ‖x‖

[in the penultimate line we use the 1-unconditionality of (ṽ j ) and in the case of

j = � we put pN�+1 = mqN�+1
, for the last line we use (5.9)] and thus γ 1 ∈ Θ(0,1)

mq1
,

if |supp(w∗1)| = 1, and γ 1 ∈ Θ
(0,2)
m pN1+1

, if |supp(w∗1)| > 1, and γ j ∈ Θ
(1,1)
mqN j

, if

|supp(w∗1)| = 1, and γ j ∈ Θ(1,2)
mqN j

+N j−N j−1+1, if |supp(w∗1)| > 1, if j = 2, 3 . . . �.

We put then γ = γ �, and the rest of the proof follows again like in Lemma 5.7. ��
Continuation of the Proof of Theorem 5.8 To finish the proof we consider a normal-
ized block basis (zn) in Z such that there exists sequences p1 < q1 < p2 < q2 . . .

with suppF(zn) ⊂ (m pn ,mqn ) for all n ∈ N. We choose z∗n ∈ ⊕ j∈(pn ,qn)F
∗
j , with

‖z∗n‖ ≤ 1, z∗n(zn) ≥ 1
2M

.

By Proposition 2.7 there exists b∗n ∈ �1(Γ qn−1\Γ pn ), for n ∈ N so that ‖b∗n‖�1 ≤ M

and z∗n = PF
∗

(pn ,qn)
(b∗n). Using the density assumption of B(pn ,qn), we choose b̃∗n ∈

B(p,qn) with ‖b̃∗n − 1
M

b∗n‖ ≤ εqn/(2M + 4) ≤ εqn/2M , since M ≤ M ∨ 2. So if we

let z̃∗n = PF
∗

(pn ,qn)
(b̃∗n), we deduce that ‖z∗n/M − z̃∗n‖ ≤ 2Mεqn/2M = εqn and hence

z̃∗n(zn) ≥ z∗n(zn)/M − ‖z∗n/M − z̃∗n‖ ≥ 1/M − εn , for all n ∈ N.
Let (α j )

N
j=1 ⊂ R with ‖∑N

j=1 α jvq j ‖ = 1 and using Lemma 4.1 (in the uncondi-

tional case) we can choose (β j )
N
j=1 ⊂ R with

∑N
j=1 β jv

∗
q j
∈ DV so that

N∑

j=1

β jv
∗
q j

⎛

⎝
N∑

j=1

α jvq j

⎞

⎠ =
N∑

j=1

α jβ j ≥ (1− ε).

Since (pn) and (qn) satisfy the assumptions of Lemma 5.7 (recall that m j+1 =
j + m j ), we can choose γ ∈ Λ so that
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e∗γ

⎛

⎝
N∑

j=1

α j z j

⎞

⎠ =
N∑

j=1

α jβ j PF
∗

(p j ,q j )
(e∗γ )(z j )

= c
N∑

j=1

α jβ j z
∗
j (z j ) ≥ c(1− ε)(1/M − ε),

which gives that (zn) dominates (vqn ). Thus we may block the FDD (Fi ) to achieve
the theorem.
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