The universality of ℓ_1 as a dual space

D. Freeman · E. Odell · Th. Schlumprecht

Received: 12 November 2009 / Revised: 2 June 2010 © Springer-Verlag 2010

Abstract Let *X* be a Banach space with a separable dual. We prove that *X* embeds isomorphically into a \mathcal{L}_{∞} space *Z* whose dual is isomorphic to ℓ_1 . If, moreover, *U* is a space with separable dual, so that *U* and *X* are totally incomparable, then we construct such a *Z*, so that *Z* and *U* are totally incomparable. If *X* is separable and reflexive, we show that *Z* can be made to be somewhat reflexive.

Mathematics Subject Classification (2000) 46B20

1 Introduction

In 1980 Bourgain and Delbaen [\[7\]](#page-36-0) showed the surprising diversity of \mathcal{L}_{∞} Banach spaces whose duals are isomorphic to ℓ_1 by constructing such a space Z not containing an isomorph of *c*0. Moreover, *Z* is *somewhat reflexive*, i.e., every infinite dimensional subspace of *Z* contains an infinite dimensional reflexive subspace. In fact, R. Haydon [\[15](#page-36-1)] proved the reflexive subspaces could be chosen to be isomorphic to ℓ_p spaces.

D. Freeman · Th. Schlumprecht (\boxtimes) Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA e-mail: schlump@math.tamu.edu

D. Freeman e-mail: freeman@math.tamu.edu

E. Odell Department of Mathematics, The University of Texas at Austin, Austin, TX 78712-0257, USA e-mail: odell@math.utexas.edu

E. Odell and Th. Schlumprecht was supported by the National Science Foundation.

The structure of Banach spaces X whose dual is isometric to ℓ_1 is more limited. Such a space *X* must contain c_0 [\[29](#page-37-0)] and in fact be an isometric quotient of $C(\Delta)$ [\[18](#page-36-2)]. Finally it was shown in $[11]$ that such spaces must be c_0 saturated. Nevertheless, such a space need not be an isometric quotient of some $C(\alpha)$, for $\alpha < \omega_1$ [\[1\]](#page-36-4).

The construction developed by Bourgain and Delbaen is quite general and allows for additional modifications. Very recently Argyros and Haydon [\[4\]](#page-36-5) were able to adapt this construction to solve the famous *Scalar plus Compact Problem* by building an infinite dimensional Banach space, with dual isomorphic to ℓ_1 , on which all operators are a compact perturbation of a multiple of the identity. In this paper we will prove three main theorems concerning isomorphic preduals of ℓ_1 .

Theorem A *Let X be a Banach space with separable dual. Then X embeds into a* \mathcal{L}_{∞} *space Y with Y^{*} isomorphic to* ℓ_1 *.*

Moreover, we have the following refinements of Theorem A.

Theorem B *Let X and U be totally incomparable infinite dimensional Banach spaces with separable duals. Then X embeds into a L*[∞] *space Z whose dual is isomorphic* to ℓ_1 , so that Z and U are totally incomparable.

Theorem C *Let X be a separable reflexive Banach space. Then X embeds into a somewhat reflexive* \mathcal{L}_{∞} *space* Z, *whose dual is isomorphic to* ℓ_1 *. Furthermore, if* U *is a Banach space with separable dual such that X and U are totally incomparable, then Z can be chosen to be totally incomparable with U.*

We recall that *X* and *U* are called totally incomparable if no infinite dimensional Banach space embeds into both *X* and *U*.

Since there are reflexive spaces of arbitrarily high countable Szlenk index [\[28](#page-37-1)] Theorem B (with $U = c_0$) as well as Theorem C solve a question of Alspach [\[2](#page-36-6), Question 5.1] who asked whether or not there are \mathcal{L}_{∞} spaces with arbitrarily high Szlenk index not containing *c*0. Moreover Alspach, in conference talks, asked whether Theorem A could be true. Furthermore, Theorem *B* with $U = c_0$ solves the longstanding open problem of showing that if X^* is separable and *X* does not contain an isomorph of c_0 , then *X* embeds into a Banach space with a shrinking basis which does not contain an isomorph of c_0 .

In Sect. [2](#page-2-0) we review the skeletal aspects of the Bourgain–Delbaen construction of \mathcal{L}_{∞} spaces, following more or less, [\[4\]](#page-36-5). Theorem A will be proved in Sect. [4,](#page-17-0) while the proofs of Theorems B and C are presented in Sect. [5.](#page-25-0) The construction used to prove Theorem A will also be useful in the case where X^* is not separable. The construction proving Theorems B and C will be an *augmentation* of that used to prove Theorem A.

Section [3](#page-9-0) contains background material necessary for our proof. We review some embedding theorems from [\[12](#page-36-7)[,26](#page-37-2)] that play a role in the subsequent constructions. Terminology and definitions are given along with some propositions that facilitate their use. In particular, we define the notion of a *c*-decomposition and relate it to an FDD being shrinking (Proposition [3.11\)](#page-14-0). This will be used to show that our \mathcal{L}_{∞} constructs have dual isomorphic to ℓ_1 . We also show how Theorem [3.11](#page-14-0) leads to an alternate and self contained proof of a less precise version of embedding Theorems [3.8](#page-13-0) and [3.9,](#page-13-1) which is sufficient for their use in this paper.

We use standard Banach space terminology as may be found in $[16]$ $[16]$ or $[23]$ $[23]$. We recall that *X* is \mathcal{L}_{∞} if there exist $\lambda < \infty$ and finite dimensional subspaces $E_1 \subseteq E_2 \subseteq$ \cdots of *X* so that $X = \overline{\bigcup_{n=1}^{\infty} E_n}$ and the Banach-Mazur distance satisfies

$$
d\left(E_n, \ell_{\infty}^{\dim(E_n)}\right) \leq \lambda, \quad \text{ for all } n \in \mathbb{N}.
$$

In this case we say *X* is $\mathcal{L}_{\infty,\lambda}$. *S_X* and *B_X* denote the unit sphere and unit ball of *X*, respectively. A sequence of finite dimensional subspaces of *X*, $(E_i)_{i=1}^{\infty}$ is an FDD (finite dimensional decomposition) if every $x \in X$ can be uniquely expressed as $x = \sum_{i=1}^{\infty} x_i$ where $x_i \in F_i$ for all $i \in \mathbb{N}$. It is usually required that $E_i \neq \{0\}$ for all *i* ∈ N for $(E_i)_{i=1}^{\infty}$ to be a finite dimensional decomposition, but it will be convenient for us to allow $E_i = \{0\}$ for some *i*'s in Sect. [5.](#page-25-0)

We note that there are deep constructions of *L*[∞] spaces other then the ones in [\[7](#page-36-0)]. For example Bourgain and Pisier [\[8](#page-36-10)] prove that every separable Banach space *X* embeds into a \mathcal{L}_{∞} space *Y* so that *Y*/*X* is a Schur space with the Radon Nikodym Property. Dodos [\[10\]](#page-36-11) used the Bourgain–Pisier construction to prove that for every $\lambda > 1$ there exists a class $(Y_{\lambda}^{\xi})_{\xi < \omega_1}$ of separable $\mathcal{L}_{\infty,\lambda}$ spaces with the following properties. Each Y_{λ}^{ξ} is non-universal (i.e. *C*[0, 1] does not embed into Y_{λ}^{ξ}) and if *X* is separable with $\phi_{NU}(X) \leq \xi$, then *X* embeds into Y_{ξ}^{λ} . Here ϕ_{NU} is Bourgain's ordinal index based on the Schauder basis for *C*[0, 1]. Now *C*[0, 1] is a \mathcal{L}_{∞} -space and is universal for the class of separable Banach spaces. Theorem A yields that the class of *L*∞-spaces with separable dual is universal for the class of all Banach spaces with separable dual. We thank the second referee for promptly reviewing our paper.

2 Framework of the Bourgain–Delbaen construction

As promised, this section contains the general framework of the construction of *Bourgain–Delbaen spaces*. This framework is general enough to include the original space of Bourgain and Delbaen [\[7\]](#page-36-0), the spaces constructed in [\[4\]](#page-36-5), as well as the spaces constructed in this paper. We follow, with slight changes and some notational differences, the presentation in [\[4](#page-36-5)] and start by introducing *Bourgain–Delbaen sets*.

Definition 2.1 (Bourgain–Delbaen-sets) A sequence of finite sets $(\Delta_n : n \in \mathbb{N})$ is called a *Sequence of Bourgain–Delbaen Sets* if it satisfies the following recursive conditions:

 Δ_1 is any finite set, and assuming that for some $n \in \mathbb{N}$ the sets $\Delta_1, \Delta_2, \ldots, \Delta_n$ have been chosen, we let $\Gamma_n = \bigcup_{j=1}^n \Delta_j$. We denote the unit vector basis of $\ell_1(\Gamma_n)$ by $(e^*_{\gamma}: \gamma \in \Gamma_n)$, and consider the spaces $\ell_1(\Gamma_j)$ and $\ell_1(\Gamma_n \backslash \Gamma_j)$, $j < n$, to be, in the natural way, embedded into $\ell_1(\Gamma_n)$.

For $n \ge 1$, Δ_{n+1} will be the union of two sets $\Delta_{n+1}^{(0)}$ and $\Delta_{n+1}^{(1)}$, where $\Delta_{n+1}^{(0)}$ and $\Delta_{n+1}^{(1)}$ satisfy the following conditions.

The set $\Delta_{n+1}^{(0)}$ is finite and

$$
\Delta_{n+1}^{(0)} \subset \{(n+1, \beta, b^*, f) : \beta \in [0, 1], b^* \in B_{\ell_1(\Gamma_n)},\
$$

and $f \in V_{(n+1, \beta, b^*)}\},$ (2.1)

where $V_{(n+1,\beta,b^*)}$ is a finite set for $\beta \in [0, 1]$ and $b^* \in B_{\ell_1(\Gamma_n)}$.

 $\Delta_{n+1}^{(1)}$ is finite and

$$
\Delta_{n+1}^{(1)} \subset \left\{ (n+1, \alpha, k, \xi, \beta, b^*, f) : \begin{matrix} \alpha, \beta \in [0, 1], \\ k \in \{1, 2, \dots n-1\}, \\ \xi \in \Delta_k, b^* \in B_{\ell_1(\Gamma_n \setminus \Gamma_k)} \\ \text{and } f \in V_{(n+1, \alpha, k, \xi, \beta, b^*)} \end{matrix} \right\}, \tag{2.2}
$$

where $V_{(n+1,\alpha,k,\xi,\beta,b^*)}$ is a finite set for $\alpha \in [0,1]$, $k \in \{1,2,\ldots,n-1\}$, $\xi \in \Delta_k$, $\beta \in [0, 1]$, and $b^* \in B_{\ell_1(\Gamma_n \setminus \Gamma_k)}$.

Moreover, we assume that $\Delta_{n+1}^{(0)}$ and $\Delta_{n+1}^{(1)}$ cannot both be empty.

If (Δ_n) is a sequence of Bourgain–Delbaen sets we put $\Gamma = \bigcup_{j=1}^{\infty} \Gamma_n$. For $n \in \mathbb{N}$, and $\gamma \in \Delta_n$ we call *n* the *rank of* γ and denote it by rk(γ). If $n \geq 2$ and $\gamma =$ $(n, \beta, b^*, f) \in \Delta_n^{(0)}$, we say that γ is *of type* 0, and if $\gamma = (n, \alpha, k, \xi, \beta, b^*, f) \in \Delta_n^{(1)}$, we say that γ is *of type* 1. In both cases we call β *the weight of* γ and denote it by $w(\gamma)$ and call *f* the *free variable* and denote it by $f(\gamma)$.

In case that $V_{(n+1,\beta,b^*)}$ or $V_{(n+1,\alpha,k,\xi,\beta,b^*)}$ is a singleton (which will be often he case) we sometimes suppress the dependency in the free variable and write $(n + 1)$, $β, b^*$) instead of $(n+1, β, b^*, f)$ and $(n+1, α, k, ξ, β, b^*)$ instead of $(n+1, α, k, ξ,$ β, b^*, f).

Referring to a sequence of sets (Δ_n : $n \in \mathbb{N}$) as Bourgain–Delbaen sets we will always mean that the sets $\Delta_n^{(0)}$, $\Delta_n^{(1)}$, Γ_n and Γ have been defined satisfying the conditions above. We consider the spaces $\ell_{\infty}(\bigcup_{j\in A}\Delta_j)$ and $\ell_1(\bigcup_{j\in A}\Delta_j)$, for $A\subset\mathbb{N}$, to be naturally embedded into $\ell_{\infty}(\Gamma)$ and $\ell_1(\Gamma)$, respectively.

We denote by $c_{00}(\Gamma)$ the real vector space of families $x = (x(\gamma) : \gamma \in \Gamma) \subset \mathbb{R}$ for which the *support*, $supp(x) = \{ \gamma \in \Gamma : x(\gamma) \neq 0 \}$, is finite. The unit vector basis of $c_{00}(\Gamma)$ is denoted by $(e_{\gamma}: \gamma \in \Gamma)$, or, if we regard $c_{00}(\Gamma)$ to be a subspace of a dual space, such as $\ell_1(\Gamma)$, by $(e^*_{\gamma} : \gamma \in \Gamma)$. If $\Gamma = \mathbb{N}$ we write c_{00} instead of $c_{00}(\mathbb{N})$.

Definition 2.2 (Bourgain–Delbaen families of functionals) Assume that $(\Delta_n : n \in \mathbb{N})$ is a sequence of Bourgain–Delbaen sets. By induction on *n* we will define for all $\gamma \in \Delta_n$, elements $c^*_{\gamma} \in \ell_1(\Gamma_{n-1})$ and $d^*_{\gamma} \in \ell_1(\Gamma_n)$, with $d^*_{\gamma} = e^*_{\gamma} - c^*_{\gamma}$.

For $\gamma \in \Delta_1$ we define $c^*_{\gamma} = 0$, and thus $d^*_{\gamma} = e^*_{\gamma}$.

Assume that for some $n \in \mathbb{N}$ we have defined $(c^*_{\gamma} : \gamma \in \Gamma_n)$, with $c^*_{\gamma} \in \ell_1(\Gamma_{j-1})$, if *j* \leq *n* and $\text{rk}(\gamma) = j$. It follows therefore that $(d_{\gamma}^{*'} : \gamma \in \Gamma_n) = (e_{\gamma}^{*} - c_{\gamma}^{*} : \gamma \in \Gamma_n)$ is a basis for $\ell_1(\Gamma_n)$ and thus for $k \leq n$ we have projections:

$$
P_{(k,n]}^* : \ell_1(\Gamma_n) \to \ell_1(\Gamma_n), \quad \sum_{\gamma \in \Gamma_n} a_{\gamma} d_{\gamma}^* \to \sum_{\gamma \in \Gamma_n \backslash \Gamma_k} a_{\gamma} d_{\gamma}^*.
$$
 (2.3)

For $\gamma \in \Delta_{n+1}$ we define

$$
c_{\gamma}^{*} = \begin{cases} \beta b^{*} & \text{if } \gamma = (n+1, \beta, b^{*}, f) \in \Delta_{n+1}^{(0)}, \\ \alpha e_{\xi}^{*} + \beta P_{(k,n]}^{*}(b^{*}) & \text{if } \gamma = (n+1, \alpha, k, \xi, \beta, b^{*}, f) \in \Delta_{n+1}^{(1)}. \end{cases}
$$
(2.4)

We call $(c^*_{\gamma} : \gamma \in \Gamma)$, the *Bourgain–Delbaen family of functionals associated to* $(\Delta_n : n \in \mathbb{N})$. We will, in this case, consider the projections $P^*_{(k,n]}$ to be defined on all of $c_{00}(\Gamma)$, which is possible since $(d_{\gamma}^* : \gamma \in \Gamma)$ forms a vector basis of $c_{00}(\Gamma)$ and, (as we will observe later) under further assumptions, a Schauder basis of $\ell_1(\Gamma)$.

Remark 2.3 The reason for using $*$ in the notation for $P^*_{(k,m]}$ is that later we will show (with additional assumptions) that the $P^*_{(k,m)}$'s are the adjoints of coordinate projections $P_{(k,m]}$ on a space *Y* with an FDD $\mathbf{F} = (F_j)$ onto $\oplus_{j \in (k,m]} F_j$.

Of course we could, in the definition of $\Delta_{n+1}^{(0)}$ and $\Delta_{n+1}^{(1)}$, assume $\beta = 1$, rescale *b*[∗] accordingly, possibly increasing the number of free variables, then simply define $c^*_{\gamma} = b^*$, if γ is of type 0, or $c^*_{\gamma} = \alpha e^*_{\xi} + P^*_{(k,n]}(b^*)$, if γ is of type 1. Nevertheless, it will prove later more convenient to have this redundant representation which will allow us to change the weights of the elements of Γ and rescale the b^* 's, without changing the c^*_{γ} 's. Moreover, it will be useful for recognizing that our framework is a generalization of the constructions in [\[4](#page-36-5),[7\]](#page-36-0).

The next observation is a slight generalization of a result in $[4]$ $[4]$, the main idea tracing back to [\[7\]](#page-36-0).

Proposition 2.4 *Let* $(\Delta_n : n \in \mathbb{N})$ *be a sequence of Bourgain–Delbaen sets and let* $(c_{\gamma}^{*} : \gamma \in \Gamma)$ *be the corresponding family of associated functionals. Let* $(P_{(k,m)}^{*} : k$ < *m*) and $(d_{\gamma}^* : \gamma \in \Gamma)$ *be defined as in Definition* [2.2](#page-3-0)*. Thus*

$$
P_{(k,n]}^*: c_{00}(\Gamma) \to c_{00}(\Gamma), \quad \sum_{\gamma \in \Gamma} a_{\gamma} d_{\gamma}^* \to \sum_{\gamma \in \Gamma_n \backslash \Gamma_k} a_{\gamma} d_{\gamma}^*.
$$

For $n \in \mathbb{N}$, *let* $F_n^* = \text{span}(d_\gamma^* : \gamma \in \Delta_n)$ *and for* $\theta \in [0, 1/2)$ *let* $C_1(\theta) = C_1 = 0$ *and if* $n \geq 2$ *,*

$$
C_n(\theta) = \sup \left\{ \beta \| P^*_{(k,m]}(b^*) \| : \gamma = (\tilde{n}, \alpha, k, \xi, \beta, b^*, f) \in \Delta_{\tilde{n}}^{(1)}, \right\}
$$

$$
k < m < \tilde{n} \le n, \beta > \theta \right\},
$$

with $\sup(\emptyset) = 0$ *, and*

$$
C_n = C_n(0) = \sup \left\{ \beta \| P^*_{(k,m]}(b^*) \| : \gamma = (\tilde{n}, \alpha, k, \xi, \beta, b^*, f) \in \Delta_{\tilde{n}}^{(1)}, k < m < \tilde{n} \le n \right\}.
$$

Then

$$
\oplus_{j=1}^{n} F_{j}^{*} = \text{span}(e_{\gamma}^{*} : \gamma \in \Gamma_{n}) = \ell_{1}(\Gamma_{n}), \tag{2.5}
$$

 \mathcal{D} Springer

and if $C = \sup_n C_n < \infty$, then $\mathbf{F}^* = (F_n^*)$ *is an FDD for* $\ell_1(\Gamma)$ *whose decomposition constant M is not larger than* $1 + C$ *. Moreover, for n* $\in \mathbb{N}$ *and* $\theta < 1/2$ *,*

$$
C_n \le \max(2\theta/(1-2\theta), C_n(\theta)).\tag{2.6}
$$

Proof As already noted, since $d_{\gamma}^* = e_{\gamma}^* - c_{\gamma}^*$, and $c_{\gamma}^* \in \ell_1(\Gamma_{n-1})$, for $n \in \mathbb{N}$ and $\gamma \in \Delta_n$, [\(2.5\)](#page-4-0) holds. By induction on $n \in \mathbb{N}$ we will show that for all $0 \leq m < n$, $||P_{[1,m]}^*||_{\ell_1(\Gamma_n)}|| \leq 1 + C_n$, and that [\(2.6\)](#page-5-0) holds, whenever $\theta < 1/2$. For $n = 1$, and thus $m = 0$ and $C_1 = 0$, the claim follows trivially ($||P_{\emptyset}^*|| \equiv 0$). Assume the claim is true for some $n \in \mathbb{N}$. Using the induction hypothesis and the fact that every element of $B_{\ell_1(\Gamma_{n+1})}$ is a convex combination of $\{\pm e^*_\gamma : \gamma \in \Gamma_{n+1}\}\$ and $C_n(\theta) \leq C_{n+1}(\theta)$, it is enough to show that for all $\gamma \in \Delta_{n+1}$ and all $m \leq n$

$$
||P_{[1,m]}^*(e^*_\gamma)|| \le 1 + C_{n+1} \quad \text{and} \tag{2.7}
$$

$$
\|\beta P_{(k,m]}^*(b^*)\| \le \frac{2\theta}{1 - 2\theta} \vee C_n(\theta), \quad \text{if } \beta \le \theta < 1/2 \quad \text{and} \quad (2.8)
$$
\n
$$
\gamma = (n + 1, \alpha, k, \xi, \beta, b^*, f) \in \Delta_{n+1}^{(1)}.
$$

According to (2.4) we can write

$$
e_{\gamma}^* = d_{\gamma}^* + c_{\gamma}^* = d_{\gamma}^* + \alpha e_{\xi}^* + \beta P_{(k,n]}^*(b^*),
$$

with $\alpha, \beta \in [0, 1], 0 \leq k < n, \xi \in \Delta_k$ (put $k = 0$ and $\alpha = 0$ if γ is of type 0), and $b^* \in B_{\ell_1(\Gamma_n \setminus \Gamma_k)}$.

Thus

$$
P_{[1,m]}^*(e_{\gamma}^*) = \alpha P_{[1,m]}^*(e_{\xi}^*) + \beta P_{(\min(m,k),m]}^*(b^*).
$$

Now, if $k \ge m$, then $P_{[1,m]}^*(e_{\gamma}^*) = \alpha P_{[1,m]}^*(e_{\xi}^*)$ and thus our claim [\(2.7\)](#page-5-1) follows from the induction hypothesis:

$$
\|\alpha P_{[1,m]}^*(e_{\xi}^*)\| \le 1 + C_k \le 1 + C_{n+1}.
$$

If $k < m$ it follows, again using the induction hypothesis in the type 0 case, that

$$
||P_{[1,m]}^*(e_{\gamma}^*)|| \le \alpha ||e_{\xi}^*|| + \beta ||P_{(k,m]}^*(b^*)|| \le 1 + C_{n+1},
$$
 which yields (2.7).

In order to show [\(2.8\)](#page-5-2), let $\gamma = (n+1, \alpha, k, \xi, \beta, b^*, f) \in \Delta_{n+1}^{(1)}$, with $\beta \le \theta < 1/2$. We deduce from the induction hypothesis that

$$
\|\beta P_{(k,m]}^*(b^*)\|
$$

\n
$$
\leq \beta (\|P_{[1,m]}^*\|_{\ell_1(\Gamma_n)} + \|P_{[1,k]}^*\|_{\ell_1(\Gamma_n)} \|)
$$

\n
$$
\leq 2\theta(C_n + 1)
$$

 $\textcircled{2}$ Springer

$$
\leq \begin{cases} 2\theta \ (C_n(\theta) + 1)) \leq 2\theta \ C_n(\theta) + C_n(\theta)(1 - 2\theta) = C_n(\theta) & \text{if } C_n(\theta) > \frac{2\theta}{1 - 2\theta}, \\ 2\theta \left(\frac{2\theta}{1 - 2\theta} + 1\right) = \frac{2\theta}{1 - 2\theta} & \text{otherwise,} \end{cases}
$$
\n
$$
\leq \max\left(\frac{2\theta}{1 - 2\theta}, C_n(\theta)\right).
$$

This finishes the induction step, and hence the proof.

Remark 2.5 Let Γ be linearly ordered as $(\gamma_i : j \in \mathbb{N})$ in such a way that $rk(\gamma_i) \leq$ rk(γ *j*), if *i* \leq *j*. Then the same arguments show that, under the assumption $C < \infty$ stated in Proposition [2.4,](#page-4-2) (d_{γ}^*) is actually a Schauder basis of ℓ_1 [\[4](#page-36-5)]. But, for our purpose, the FDD is the more useful coordinate system.

The spaces constructed in [\[4](#page-36-5)] satisfy the condition that for some θ < 1/2 we have $\beta \leq \theta$, for all $\gamma = (n, \alpha, k, a^*, \beta, b^*, f) \in \Gamma$ of type 1. Thus in that case $C_n(\theta) = 0$, *n* ∈ N, and the conclusion of Proposition [2.4](#page-4-2) is true for $C \leq 2\theta/(1 - 2\theta)$ and, thus $M \leq 1/(1-2\theta)$.

The Bourgain–Delbaen sets we will consider in later sections will satisfy the following condition for some $0 < \theta < 1/2$:

For each $n \in \mathbb{N}$ and $\gamma = (n, \alpha, k, \xi, \beta, b^*, f) \in \Delta_n^{(1)}$, $\binom{11}{n}$, (2.9) either $\beta \le \theta$, or $b^* = e^*_{\eta}$ for some $\eta \in \Delta_m$, $k < m < n$, such that $c^*_{\eta} = 0$.

Note that in the second case it follows that $e^*_{\eta} = d^*_{\eta}$ and so $P^*_{(k,m]}(e^*_{\eta}) = e^*_{\eta}$. Thus, $\beta \| P^*_{(k,m]}(b^*) \| = \beta \| e^*_{\eta} \| \leq 1$, and thus, we deduce that the assumptions of Proposition 2.4 are satisfied, namely that \mathbf{F}^* is an FDD of ℓ_1 whose decomposition constant *M* is not larger than max $(1/(1 - 2\theta), 2)$.

Assume we are given a sequence of Bourgain–Delbaen sets $(\Delta_n : n \in \mathbb{N})$, which satisfy the assumptions of Proposition [2.4](#page-4-2) with $C < \infty$ and let *M* be the decomposition constant of the FDD (F_n^*) in $\ell_1(\Gamma)$. We now define the *Bourgain–Delbaen space associated to* $(\Delta_n : n \in \mathbb{N})$. For a finite or cofinite set $A \subset \mathbb{N}$, we let P_A^* be the projection of $\ell_1(\Gamma)$ onto the subspace $\bigoplus_{j \in A} F_j^*$ given by

$$
P_A^* : \ell_1(\Gamma) \to \ell_1(\Gamma), \quad \sum_{\gamma \in \Gamma} a_{\gamma} d_{\gamma}^* \mapsto \sum_{\gamma \in A} a_{\gamma} d_{\gamma}^*.
$$

If $A = \{m\}$, for some $m \in \mathbb{N}$, we write P_m^* instead of $P_{\{m\}}^*$. For $m \in \mathbb{N}$, we denote by *R_m* the restriction operator from $\ell_1(\Gamma)$ onto $\ell_1(\Gamma_m)$ (in terms of the basis (e_{γ}^*)) as well the usual restriction operator from $\ell_{\infty}(\Gamma)$ onto $\ell_{\infty}(\Gamma_m)$. Since $R_m \circ P_{[1,m]}^*$ is a projection from $\ell_1(\Gamma)$ onto $\ell_1(\Gamma_m)$, for $m \in \mathbb{N}$, it follows that the map

$$
J_m: \ell_\infty(\Gamma_m) \to \ell_\infty(\Gamma), \quad x \mapsto P_{[1,m]}^{**} \circ R_m^*(x),
$$

is an isomorphic embedding $(P_{[1,m]}^{**}$ is the adjoint of $P_{[1,m]}^{*}$ and, thus, defined on $\ell_{\infty}(\Gamma)$). Since R_m^* is the natural embedding of $\ell_{\infty}(\Gamma_m)$ into $\ell_{\infty}(\Gamma)$ it follows, for all $m \in \mathbb{N}$, that

$$
R_m \circ J_m(x) = x
$$
, for $x \in \ell_\infty(\Gamma_m)$, thus J_m is an extension operator, (2.10)

$$
J_n \circ R_n \circ J_m(x) = J_m(x), \text{ whenever } m \le n \text{ and } x \in \ell_\infty(\Gamma_m), \tag{2.11}
$$

and by Proposition [2.4,](#page-4-2)

$$
||J_m|| \le M. \tag{2.12}
$$

Hence the spaces $Y_m = J_m(\ell_\infty(\Gamma_m))$, $m \in \mathbb{N}$, are finite-dimensional nested subspaces of $\ell_{\infty}(\Gamma)$ which (via *J_m*) are *M*-isomorphic images of $\ell_{\infty}(\Gamma_m)$. Therefore $Y = \overline{\bigcup_{m \in \mathbb{N}} Y_n}^{\ell_\infty}$ is a $\mathcal{L}_{\infty,M}$ space. We call *Y* the *Bourgain–Delbaen space associated to* (Δ_n). It follows from the definition of *Y*, and from [2.10,](#page-7-0) that for any $x \in \ell_\infty(\Gamma)$ we have

$$
x \in Y \iff x = \lim_{m \to \infty} \|x - J_m \circ R_m(x)\| = 0. \tag{2.13}
$$

Define for $m \in \mathbb{N}$

$$
P_{[1,m]}: Y \to Y, \quad x \mapsto J_m \circ R_m(x).
$$

We claim that $P_{[1,m]}$ coincides with the restriction of the adjoint $P_{[1,m]}^{**}$ of $P_{[1,m]}^{*}$ to the space *Y*. Indeed, if $n \in \mathbb{N}$, with $n \geq m$, and $x = J_n(\tilde{x}) \in Y_n$, and $b^* \in \ell_1(\tilde{T})$ we have that

$$
\langle P_{[1,m]}^{**}(x), b^* \rangle
$$

= $\langle x, P_{[1,m]}^{*}(b^*) \rangle$
= $\langle R_m(x), R_m \circ P_{[1,m]}^{*}(b^*) \rangle$ (since $P_{[1,m]}^{*}(b^*) \in \text{span}(e^*_{\gamma} : \gamma \in \Gamma_m)$)
= $\langle P_{[1,m]}^{**} \circ R_m^* \circ R_m(x), b^* \rangle = \langle P_{[1,m]}(x), b^* \rangle$.

Thus our claim follows since $\bigcup_n Y_n$ is dense in *Y*.

We therefore deduce that *Y* has an FDD (F_m) , with $F_m = (P_{[1,m]} - P_{[1,m-1]})(Y)$, and as we observed in [\(2.12\)](#page-7-1), $Y_m = \bigoplus_{j=1}^n F_j$ is, via J_m , M -isomorphic to $\ell_\infty(\Gamma_m)$ for *m* ∈ N. Moreover, denoting by P_A the coordinate projections from *Y* onto $\bigoplus_{j \in A} F_j$, for all finite or cofinite sets $A \subset \mathbb{N}$, it follows that P_A is the adjoint of P_A^* restricted to *Y*, and P_A^* is the adjoint of P_A restricted to the subspace of Y^* generated by the F_n^* 's.

As the next observation shows, $J_m|_{\ell_\infty(\Delta_m)}$ is actually an isometry for $m \in \mathbb{N}$.

Proposition 2.6 *For every* $m \in \mathbb{N}$ *the map* $J_m|_{\ell_\infty(\Delta_m)}$ *is an isometry between* $\ell_\infty(\Delta_m)$ *(which we consider naturally embedded into* $\ell_{\infty}(\Gamma_m)$ *) and* F_m *.*

Proof Since $J_m(\ell_\infty(\Delta_m)) = (J_m - J_{m-1})(\Delta_m) = F_m$, for $m \in \mathbb{N}$, J_m is an isomorphism between $\ell_{\infty}(\Delta_m)$ and F_m . By [2.10,](#page-7-0) for $x \in \ell_{\infty}(\Delta_m)$, $||J_m(x)|| \ge ||x||$. In order to finish the proof we will show by induction on $n \in \mathbb{N}$ that $|e^*_{\gamma}(J_m(x))| \leq 1$ for all $\gamma \in \Delta_n$ and $x \in \ell_\infty(\Delta_m)$, $||x|| \leq 1$.

If $n \le m$ this is clear since $R_m \circ J_m(x) = x$. Let $n > m$ and assume our claim is true for all $\gamma \in \Gamma_n$. Let $\gamma \in \Delta_{n+1}$ and write e^*_{γ} as $e^*_{\gamma} = \alpha e^*_{\xi} + \beta P^*_{(k,n]}(b^*) + d^*_{\gamma}$, with $\alpha \in [0, 1], k < n, e^*_{\xi} \in \Delta_k$, and $b^* \in B_{\ell_1(\Gamma_n \setminus \Gamma_k)}$ ($\alpha = 0, k = 0$, and replace e^*_{ξ} by 0 if γ is of type 0). We have for $x \in \ell_{\infty}(\Delta_m)$, with $||x|| \leq 1$,

$$
\langle e_{\gamma}^{*}, J_{m}(x) \rangle = \langle P_{[1,m]}^{*}(e_{\gamma}^{*}), R_{m}^{*}(x) \rangle = \begin{cases} \beta \langle P_{(1,m]}^{*}(b^{*}), R_{m}^{*}(x) \rangle = \beta \langle P_{[1,m]}^{*}(b^{*}), R_{m}^{*}(x) \rangle = \beta \langle b^{*}, J_{m}(x) \rangle & \text{if } k < m \\ \alpha \langle e_{\xi}^{*}, R_{m}^{*}(x) \rangle = \alpha \langle P_{[1,m]}^{*}(e_{\xi}^{*}), R_{m}^{*}(x) \rangle = \alpha \langle e_{\xi}^{*}, J_{m}(x) \rangle & \text{if } k \geq m. \end{cases}
$$

Where the first equality in the first case holds since $\langle P_{[1,k]}^*(b^*), R_m^*(x) \rangle = 0$. Using our induction hypothesis, this implies our claim. \square

Denote by $\|\cdot\|_*$ the dual norm of Y^* .

Proposition 2.7 *For all* $y^* \in \ell_1(\Gamma)$

$$
||y^*||_* \le ||y^*||_{\ell_1} \le M||y^*||_*.
$$
\n(2.14)

and if $y^* \in \bigoplus_{j=m+1}^n F_j^*$, with $0 < m < n$, then there is a family $(a_\gamma)_{\gamma \in \Gamma_n \setminus \Gamma_m}$ so that

$$
y^* = P_{(m,n]}^* \left(\sum_{\gamma \in \Gamma_n \backslash \Gamma_m} a_{\gamma} e_{\gamma}^* \right) \quad \text{and} \quad \left\| \sum_{\gamma \in \Gamma_n \backslash \Gamma_m} a_{\gamma} e_{\gamma}^* \right\|_{\ell_1} \le M \|y^*\|_*. \tag{2.15}
$$

Proof The first inequality in (2.14) is trivial. To show the second inequality we let $y^* \in \ell_1(\Gamma_n)$ for some $n \in \mathbb{N}$ and choose $x \in S_{\ell_\infty(\Gamma_n)}$ so that $\langle y^*, x \rangle = ||y^*||_{\ell_1}$. Then, from (2.12) and (2.10) ,

$$
||y^*||_* \ge \left\langle y^*, \frac{1}{M} J_n(x) \right\rangle = \frac{1}{M} ||y^*||_{\ell_1}.
$$

If $y^* \in \bigoplus_{j=m+1}^n F_j^*$, we can write y^* as

$$
y^* = \sum_{\gamma \in \Gamma_n} \alpha_{\gamma} e_{\gamma}^*.
$$

Since $P^*_{(m,n]}(e^*_{\gamma}) = 0$, for $\gamma \in \Gamma_m$, we obtain

$$
y^* = P^*_{(m,n]}(y^*) = P^*_{(m,n]} \left(\sum_{\gamma \in \Gamma_n \setminus \Gamma_m} a_{\gamma} e_{\gamma}^* \right).
$$

Moreover we obtain, from (2.14) , that

$$
\left\| \sum_{\gamma \in \Gamma_n \setminus \Gamma_m} a_{\gamma} e_{\gamma}^* \right\|_{\ell_1} \le \left\| \sum_{\gamma \in \Gamma_n} a_{\gamma} e_{\gamma}^* \right\|_{\ell_1} = \|y^* \|_{\ell_1} \le M \|y^* \|_*,
$$

which yields (2.15) .

We now recall some more notation introduced in [\[4\]](#page-36-5). Assume that we are given a Bourgain–Delbaen sequence (Δ_n) and associated Bourgain–Delbaen family of functionals (c^*_{γ} : $\gamma \in \Gamma$), corresponding to the Bourgain–Delbaen space *Y*, which admits a decomposition constant $M < \infty$. As above we denote its FDD by (F_n) . For $n \in \mathbb{N}$ and $\gamma \in \Delta_n$, we have

$$
e_{\gamma}^* = d_{\gamma}^* + c_{\gamma}^* = d_{\gamma}^* + \begin{cases} \beta b^* & \text{if } \gamma = (n, \beta, b^*, f) \in \Delta_n^{(0)},\\ \alpha e_{\xi}^* + \beta P_{(k,n]}^*(b^*) & \text{if } \gamma = (n, \alpha, k, \xi, \beta, b^*, f) \in \Delta_n^{(1)}. \end{cases}
$$

By iterating we eventually arrive (after finitely many steps) to a functional of type 0. By an easy induction argument we therefore obtain

Proposition 2.8 *For all* $n \in \mathbb{N}$ *and* $\gamma \in \Delta_n$ *, there are* $a \in \mathbb{N}$ *,* $\beta_1, \beta_2, \ldots, \beta_a \in [0, 1]$ *,* $\alpha_1, \alpha_2, \ldots, \alpha_a \in [0, 1]$ *and numbers* $0 = p_0 < p_1 < p_2 - 1 < p_2 < p_3 < p_3 - 1, \ldots$ $p_{a-1} < p_a - 1 < p_a = n$ in \mathbb{N}_0 , vectors b_j^* , $j = 1, 2 \dots a$, with $b_j^* \in B_{\ell_1(\Gamma_{p_j-1} \setminus \Gamma_{p_{j-1}})}$, $\int_{j=1}^{a} \sum F_n$, with $\xi_j \in \Delta_{p_j}$, for $j = 1, 2 \ldots a$, and $\xi_a = \gamma$, so that

$$
e_{\gamma}^* = \sum_{j=1}^a \alpha_j d_{\xi_j}^* + \beta_j P_{(p_{j-1}, p_j)}^*(b_j^*).
$$
 (2.16)

Moreover for $1 \leq j_0 < a$

$$
e_{\gamma}^* = \alpha_{j_0} e_{\gamma_{j_0}}^* + \sum_{j=j_0+1}^a \alpha_j d_{\xi_j}^* + \beta_j P_{(p_{j-1}, p_j)}^*(b_j^*).
$$
 (2.17)

We call the representations in (2.16) and (2.17) *the analysis of* γ and *partial analysis of* γ , respectively and let cuts(γ) = { p_1, p_2, \ldots, p_a }, which we call the *set of cuts* $of \gamma$.

3 Embedding background and other preliminaries

Our constructions will depend heavily on some known embedding theorems. We review these in this section and add a bit more to facilitate their use. Zippin [\[30\]](#page-37-3) proved that if *X*[∗] is separable, then *X* embeds into a space with a shrinking basis. So, in proving Theorem A, we could begin with such a space. However, to make our construction work, we need a quantified version of this theorem which appears in [\[12](#page-36-7)]. For Theorem C, we need a quantified reflexive version [\[26](#page-37-2)]. We begin with some notation and terminology.

Let $\mathbf{E} = (E_i)_{i=1}^{\infty}$ be an FDD for a Banach space *Z*. $c_{00}(\bigoplus_{i=1}^{\infty} E_i)$ denotes the linear span of the E_i 's and if $B \subseteq \mathbb{N}$, $c_{00}(\bigoplus_{i \in B} E_i)$ is the linear span of the E_i 's for $i \in B$. $P_n = P_n^{\mathbf{E}}$: $Z \to E_n$ *is the n*th coordinate projection for the FDD, i.e., $P_n(z) = z_n$ if $z = \sum_{i=1}^{n} z_i \in Z$ with $z_i \in E_i$ for all *i*. For a finite set or interval $A \subseteq N$, $P_A = P_A^{\mathbf{E}} \equiv \sum_{n \in A} P_n^{\mathbf{E}}$. The *projection constant* of (E_n) in *Z* is

$$
K = K(\mathbf{E}, Z) = \sup \left\{ \left\| P_{[m,n]}^{\mathbf{E}} \right\| : m \leq n \right\}.
$$

E is *bimonotone* if $K(E, Z) = 1$.

The vector space $c_{00}(\bigoplus_{i=1}^{\infty} E_i^*)$, where E_i^* is the dual space of E_i , is naturally identified as a ω^* -dense subspace of Z^* . Note that the embedding of E_i^* into Z^* is not, in general, an isometry unless $K(E, Z) = 1$. Now we will often be dealing with a bimonotone FDD (via renorming) but when not we will consider E_i^* to have the norm it inherits as a subspace of Z^* . We write $Z^{(*)} = [c_{00}(\bigoplus_{i=1}^{\infty} E_i^*)]$. So $Z^{(*)} = Z^*$ if $(E_i)_{i=1}^{\infty}$ is shrinking, and then $\mathbf{E}^* = (E_i^*)_{i=1}^{\infty}$ is a boundedly complete FDD for Z^* .

For $z \in c_{00}(\bigoplus_{i=1}^{\infty} E_i)$ the *support of z*, supp_E(*z*), is given by supp_E(*z*) = {*n* : $P_n^{\mathbf{E}}(z) \neq 0$, and the *range of z*, ran_{**E**}(*z*) is the smallest interval [*m*, *n*] in N containing $supp_{\mathbf{E}}(z)$.

A sequence $(z_i)_{i=1}^{\ell}$, where $\ell \in \mathbb{N}$ or $\ell = \infty$, in $c_{00}(\bigoplus_{i=1}^{\infty} E_i)$ is called a *block sequence* of (E_i) if max $\text{supp}_E(z_n) < \text{min supp}_E(z_{n+1})$ for all $n < \ell$. We write $z_n < m$ to denote max supp $\mathbf{E}(z_n) < m$ and $z_n > m$ is defined by min supp $\mathbf{E}(z_n) > m$.

Definition 3.1 [\[25](#page-37-4)] Let *Z* be a Banach space with an FDD $\mathbf{E} = (E_i)_{i=1}^{\infty}$. Let *V* be a Banach space with a normalized 1-unconditional basis $(v_i)_{i=1}^{\infty}$, and let $1 \leq C < \infty$. We say that $(E_n)_{n=1}^{\infty}$ *satisfies subsequential C-V-upper estimates* if whenever $(z_i)_{i=1}^{\infty}$ is a normalized block sequence of **E** with $m_i = \min_{i} \text{supp}_{\mathbf{E}}(z_i)$, $i \in \mathbb{N}$, then $(z_i)_{i=1}^{\infty}$ *is C*-dominated by $(v_{m_i})_{i=1}^{\infty}$. Precisely, for all $(a_i)_{i=1}^{\infty} \subseteq \mathbb{R}$,

$$
\left\|\sum_{i=1}^{\infty}a_iz_i\right\|\leq C\left\|\sum_{i=1}^{\infty}a_iv_{m_i}\right\|.
$$

Similarly, $(E_n)_{n=1}^{\infty}$ *satisfies subsequential C-V-lower estimates* if every such $(z_i)_{i=1}^{\infty}$ *C*-dominates $(v_{m_i})_{i=1}^{\infty}$.

We say that $(E_n)_{n=1}^{\infty}$ *satisfies subsequential V -upper estimates* or *subsequential V*-lower estimates if there exists a $C \geq 1$ so that $(E_n)_{n=1}^{\infty}$ satisfies subsequential *C*-*V*-upper estimates or subsequential *C*-*V*-lower estimates, respectively.

These are dual properties. If $(v_i^*)_{i=1}^{\infty}$ are the biorthogonal functionals of $(v_i)_{i=1}^{\infty}$ we define subsequential *V*∗-upper/lower estimates to mean as above with respect to $(v_i^*)_{i=1}^{\infty}$.

Proposition 3.2 [\[25](#page-37-4), Proposition 2.14] *Let Z have a bimonotone* FDD $(E_i)_{i=1}^{\infty}$ *and let* \bar{V} *be a Banach space with a normalized 1-unconditional basis* $(v_i)_{i=1}^{\infty}$ *with biorthogonal functionals* $(v_n^*)_{n=1}^{\infty}$ *. Let* $1 \leq C < \infty$ *. The following are equivalent.*

- a) $(E_i)_{i=1}^{\infty}$ *satisfies subsequential C-V-upper estimates in Z.*
- b) $(E_i^*)_{i=1}^{\infty}$ *satisfies subsequential* $C-V^*$ *-lower estimates in* $Z^{(*)}$ *.*

Moreover, the equivalence holds if we interchange "upper" with "lower" in a) *and* b). If the FDD $(E_i)_{i=1}^{\infty}$ *is not bimonotone the proposition still holds but not with the same constants C. These changes depend upon K*(**E**, *Z*)*.*

Recall that *A* ⊆ *B*_{Z[∗]} is *d*-norming for Z (0 < *d* ≤ 1) if for all $z \in Z$,

$$
d||z|| \le \sup\{|z^*(z)| : z^* \in A\}.
$$

We will need a characterization of subsequential *V*-upper estimates obtained from norming sets.

Proposition 3.3 *Let Z have an* FDD $\mathbf{E} = (E_i)_{i=1}^{\infty}$ *and let V be a Banach space with a* normalized 1-unconditional basis $(v_i)_{i=1}^{\infty}$. Let $0 < d \le 1$ and let $A \subseteq B_{Z^*}$ be *d-norming for Z. The following are equivalent.*

- a) $(E_i)_{i=1}^{\infty}$ *satisfies subsequential V -upper estimates.*
- b) *There exists C* < ∞ *so that for all* $z^* \in A$ *and any choice of k and* $1 \le n_1$ < $\cdots < n_{k+1}$ *in* \mathbb{N} *,*

$$
\left\| \sum_{i=1}^k \| z^* \circ P^{\mathbf{E}}_{[n_i,n_{i+1})} \| v^*_{n_i} \right\| \leq C.
$$

Moreover, if $(E_i)_{i=1}^{\infty}$ *is bimonotone, then* a' \Rightarrow b' \Rightarrow b' \Rightarrow a'' \Rightarrow *where*

- a') $(E_i)_{i=1}^{\infty}$ *satisfies subsequential C-V-upper estimates.*
- b') *For every* $x^* \in S_{Z^*}$ *and any choice of k and* $1 \leq n_1 < n_2 < \cdots < n_{k+1}$ *in* N,

$$
\left\| \sum_{i=1}^k \| z^* \circ P^{\mathbf{E}}_{[n_i,n_{i+1})} \| v^*_{n_i} \right\| \leq C.
$$

b'') *For every* $z^* \in A$ *and any choice of k and* $1 \leq n_1 < \cdots < n_{k+1}$ *in* N,

$$
\left\| \sum_{i=1}^k \|z^* \circ P^{\mathbf{E}}_{[n_i,n_{i+1})} \| v^*_{n_i} \right\| \leq C.
$$

a'') $(E_i)_{i=1}^{\infty}$ *satisfies subsequential* Cd^{-1} -*V*-upper estimates.

Proof By renorming, we can assume that $(E_i)_{i=1}^{\infty}$ is bimonotone and thus we need only prove the "moreover" statement.

a') \Rightarrow b') follows from Proposition [3.2.](#page-10-0) Indeed, (z [∗] ◦ $P_{[n_i,n_{i+1})}^{\mathbf{E}}$) $_{i=1}^k$ is a block sequence of (E_i^*) , whose sum has norm at most 1, and min supp_{E*} ($z^* \circ P_{[n_i,n_{i+1})}^E$) can be assumed equal to *ni* by standard perturbation arguments. b') \Rightarrow b'') is trivial.

 b') \Rightarrow a''). Let $(z_i)_{i=1}^n$ be a normalized block sequence of (E_i) with $m_i = \min \text{supp}_{\mathbf{E}}(z_i)$ for $i \leq n$. Let $m_{n+1} = \max \text{supp}_{\mathbf{E}}(z_n) + 1$. Let $(a_i)_1^n \subseteq \mathbb{R}$ and choose $z^* \in A$ with

$$
\left|z^*\left(\sum_{i=1}^n a_i z_i\right)\right| \geq d \left\|\sum_{i=1}^n a_i z_i\right\|.
$$

 \mathcal{L} Springer

Thus,

$$
\left\| \sum_{i=1}^{n} a_i z_i \right\| \leq d^{-1} \left| \sum_{i=1}^{n} a_i z^* (z_i) \right|
$$

= $d^{-1} \left| \sum_{i=1}^{n} a_i z^* \circ P_{[m_i, m_{i+1})}^{\mathbf{E}} (z_i) \right|$
 $\leq d^{-1} \sum_{i=1}^{n} |a_i| \left\| z^* \circ P_{[m_i, m_{i+1})}^{\mathbf{E}} \right\|$
= $d^{-1} \left(\sum_{i=1}^{n} \left\| z^* \circ P_{[m_i, m_{i+1})}^{\mathbf{E}} 1 \right\| v_{m_i}^* \right) \left(\sum_{i=1}^{n} |a_i| v_{m_i} \right)$
 $\leq C d^{-1} \left\| \sum_{i=1}^{n} a_i v_{m_i} \right\|$, by b").

 \Box

We recall some terminology concerning finite subsets of $\mathbb N$ which can be found for example in [\[27](#page-37-5)].

Definition 3.4 $[N] < \omega$ denotes the set of all finite subsets of N under the *pointwise topology*, i.e., the topology it inherits as a subset of $\{0, 1\}^{\mathbb{N}}$ with the product topology. Let $A \subseteq [N]^{<\omega}$. We say A is

- i) *compact* if it is compact in the pointwise topology,
- ii) *hereditary* if for all $A \in \mathcal{A}$, if $B \subseteq A$ then $B \in \mathcal{A}$,
- iii) *spreading* if for all $A = (a_1, \ldots, a_n) \in A$ with $a_1 < a_2 < \cdots < a_n$ and all $B = (b_1, ..., b_n) \in [\mathbb{N}]^{< \omega}$ with $b_1 < b_2 < \cdots < b_n$ and $a_i \leq b_i$ for $i \leq n$, $B \in \mathcal{A}$, such a *B* is called a *spread* of *A*,
- iv) *regular* if $\{n\} \in \mathcal{A}$ for all $n \in \mathbb{N}$ and \mathcal{A} is compact, hereditary and spreading.

We note that if $A \subset [N]^{<\omega}$ is relatively compact, or equivalently if *A* does not contain an infinite strictly increasing chain, then there is a regular family, $\mathcal{B} \subset [\mathbb{N}]^{<\omega}$, containing *A*.

Definition 3.5 Let $A \subseteq [N]^{<\omega}$ be a regular family. A sequence of sets in $[N]^{\omega}$, $A_1 < A_2 < \cdots < A_n$ (i.e., max $A_i < \min A_{i+1}$ for $i < n$) is called *A*-*admissible* if $(\min A_i)_{i=1}^n \in A$.

Tsirelson spaces 3.6 Let $A \subseteq [N]^{<\omega}$ be a regular family of sets and let $0 < c < 1$. The Tsirelson space $T_{A,c}$ is the completion of c_{00} under the norm $\|\cdot\|_{A,c}$ which is given, implicitly, by the equation

$$
||x||_{\mathcal{A},c} = ||x||_{\infty} \vee \sup \left\{ \sum_{i=1}^{n} c ||A_i x||_{\mathcal{A},c} : n \in \mathbb{N}, \text{ and}
$$

$$
A_1 < \cdots < A_n \text{ is } \mathcal{A}\text{-admissible} \right\}.
$$

Here $A_i x = x|_{A_i}$. The unit vector basis (t_i) of c_{00} is always a shrinking and 1unconditional basis for $T_{A,c}$. If the Cantor–Bendixson index of A (c.f. [\[27\]](#page-37-5)) is at least $ω$ then $T_{A,c}$ does not contain any isomorphic copy of ℓ_p or c_0 , and hence $T_{A,c}$ must also be reflexive as every Banach space with an unconditional basis which does not contain an isomorphic copy of c_0 or ℓ_1 is reflexive.

If $A = S_\alpha$ is the α^{th} -Schreier family of sets, where $\alpha < \omega_1$, we denote $T_{A,c}$ by $T_{c,\alpha}$. For more on these spaces (see e.g. [\[22](#page-36-12),[26\]](#page-37-2) and the references therein). Let us recall that, for $n \in \mathbb{N}$, the spaces $T_{\alpha,c}$ and T_{α^n,c^n} are naturally isomorphic (via the identity).

Remark 3.7 We will later use the fact that if *X* has an FDD $(E_i)_{i=1}^{\infty}$ satisfying subsequential *T*_{*A*,*c*}-upper estimates for some regular family *A*, then $(E_i)_{i=1}^{\infty}$ is shrinking. Indeed every normalized block sequence of $(E_i)_{i=1}^{\infty}$ must then be weakly null, since it is dominated by a weakly null sequence. This is equivalent to $(E_i)_{i=1}^{\infty}$ being shrinking.

Our embedding theorems, [3.8](#page-13-0) and [3.9](#page-13-1) below, refer to the Szlenk index, $S_z(X)$, [\[28](#page-37-1)]. If *X* is separable then $S_z(X)$ is an ordinal with $S_z(X) < \omega_1$ if and only if X^* is separable. Also $S_z(T_{c,\alpha}) = \omega^{\alpha \cdot \omega}$ [\[26](#page-37-2), Proposition 7]. If $S_z(X) < \omega_1$ then $S_z(X) = \omega^{\beta}$ for some $\beta < \omega_1$. Much has been written on the Szlenk index (e.g., see [\[3](#page-36-13)[,6](#page-36-14)[,12](#page-36-7)[–14](#page-36-15),[20,](#page-36-16) [21,](#page-36-17)[26\]](#page-37-2)).

Theorem 3.8 [\[12](#page-36-7), Theorem 1.3] *Let* $\alpha < \omega_1$ *and let X be a Banach space with separable dual. The following are equivalent.*

- a) $S_z(X) \leq \omega^{\alpha \cdot \omega}$.
- b) *X embeds into a Banach space Z having an* FDD *which satisfies subsequential* $T_{c,\alpha}$ *-upper estimates, for some* $0 < c < 1$ *.*

Theorem 3.9 [\[26](#page-37-2), Theorem A] *Let* $\alpha < \omega_1$ *and let X be a separable reflexive Banach space. The following are equivalent.*

- a) $S_z(X) \leq \omega^{\alpha \cdot \omega}$ and $S_z(X^*) \leq \omega^{\alpha \cdot \omega}$.
- b) *X embeds into a Banach space Z having an* FDD *which satisfies both subsequential T_{c,α}-upper estimates and subsequential T^{*}_{c,α}-lower estimates, for some* $0 < c < 1$.

We note that the upper and lower estimates in both theorems are with respect to the unit vector basis (t_i) of $T_{c,\alpha}$ and its biorthogonal sequence (t_i^*), a basis for $T_{c,\alpha}^*$.

In order to use Theorem [3.8](#page-13-0) in our proof of Theorem A, we need to reformulate what it means for an FDD for *X* to satisfy subsequential $T_{c,\alpha}$ -upper estimates in terms of the functionals in *X*∗. We first need some more terminology.

Definition 3.10 Let $\mathbf{E} = (E_i)_{i=1}^{\infty}$ be an FDD for a space *X* and let $0 < c < 1$. Let *x* ∈ c_{00} ($\bigoplus_{i=1}^{\infty} E_i$). A block sequence of **E**, $(x_1, ..., x_\ell)$, is called a *c-decomposition of x* if

$$
x = \sum_{i=1}^{\ell} x_i \text{ and, for every } i \le \ell, \quad \text{either} \quad |\text{supp}_{\mathbf{E}}(x_i)| = 1
$$

or $||x_i|| \le c.$ (3.1)

Clearly every such *x* has a *c*-decomposition. The *optimal c-decomposition of x* is defined as follows. Set $n_1 = \min \text{supp}_{\mathbf{F}}(x)$ and assume $n_1 < n_2 < \cdots < n_i$ have been defined. Let

$$
n_{j+1} = \begin{cases} n_j + 1, & \text{if } \|P_{n_j}^{\mathbf{E}}(x)\| > c, \\ \min\{n : \|P_{[n_j,n]}^{\mathbf{E}}(x)\| > c\}, & \text{if } \|P_{n_j}^{\mathbf{E}}(x)\| \le c \text{ and the "min" exists,} \\ 1 + \max \text{supp}_{\mathbf{E}}(x), & \text{otherwise.} \end{cases}
$$

There will be a smallest ℓ so that $n_{\ell+1} = 1 + \max \text{supp}_{\mathbf{E}}(x)$. We then set for $i \leq \ell$, $x_i = P_{[n_i,n_{i+1})}^{\mathbf{E}}(x)$. Clearly $(x_i)_{i=1}^{\ell}$ is a *c*-decomposition of *x*. Moreover, and this will be important later, if (E_i) is bimonotone and $j \leq \lfloor \ell/2 \rfloor$, then $||x_{2j-1} + x_{2j}|| > c$.

Let $A \subseteq [N] < \omega$ be regular. We say that the *FDD* $(E_i)_{i=1}^{\infty}$ for *X* is (c, A) *-admissible in X* if every *x* ∈ *S_X* ∩ *c*₀₀(⊕[∞]_{*i*=1}*E_i*) has an *A*-admissible *c*-decomposition, $(x_i)_{i=1}^k$, where $(\text{supp}_{\mathbf{E}}(x_i))^{\ell}$ is *A*-*admissible*, i.e., $(\min \text{supp}_{\mathbf{E}}(x_i))^{\ell}$ _{i=1} $\in \mathcal{A}$.

Theorem 3.11 *Let* $\mathbf{E} = (E_i)_{i=1}^{\infty}$ *be a bimonotone* FDD *for a Banach space X. The following statements are equivalent.*

- a) (*Ei*) *is shrinking.*
- b) *For all* $0 < c < 1$ *there exists a regular family* $A \subset [\mathbb{N}]^{<\omega}$ *so that every* x^* ∈ B_{X^*} ∩ c_{00} ($\bigoplus_{i=1}^{\infty} E_i^*$) *has an optimal A-admissible c-decomposition.*
- c) *There exists* $D \subset B_{X^*} \cap c_{00}(\bigoplus_{i=1}^{\infty} E_i^*), 0 < c < d \le 1$ *and a regular family* $A \subset \mathbb{N}$ ^{$\leq \omega$}, so that *D* is *d*-norming for *X*, and every $x^* \in D$ admits an *A-admissible c-decomposition.*
- d) *There exists* $\alpha < \omega_1$, $0 < c < 1$, $1 \le C$, and a subsequence $(t_{m_i})_{i=1}^{\infty}$ of the unit *vector basis for* $T_{c,\alpha}$ *, so that* $(E_i)_{i=1}^{\infty}$ *satisfies subsequential* $C - (t_m)_{i=1}^{\infty}$ *upper estimates.*

Proof a) \Rightarrow *b*). Assume *b*) fails for some $0 < c < 1$. Then the set

$$
\{(\min \text{supp}_{E^*}(x_i^*))_{i=1}^n : (x_i^*)_{i=1}^n \text{ is the optimal } c\text{-decomposition} \text{ of some } x^* \in B_{X^*} \cap c_{00}(\bigoplus_{i=1}^\infty E_i^*)\}
$$

is not relatively compact in $[\mathbb{N}]^{<\omega}$. This yields a sequence $(n_i)_{i=1}^\infty \in [\mathbb{N}]^\omega$ so that for all *N* ∈ N, there exists $x^*(N)$ ∈ B_{X^*} ∩ c_{00} ($\bigoplus_{i=1}^{\infty} E_i^*$), with an optimal *c*-decomposition $(x_i^*(N))_{i=1}^{\ell(N)}$ so that min supp_{*E*[∗]} ($x_i^*(N)$) = n_i for all $i \leq N$. After passing to a subsequence, we may assume that $\lim_{N\to\infty} x_i^*(N) = x_i^*$ for some $x_i^* \in B_{X^*} \cap c_{00}(\bigoplus_{i=1}^{\infty} E_i^*)$ with $\text{supp}(x_i^*) \subset [n_i, n_{i+1})$ for all $i \in \mathbb{N}$. We have that $||x_i^*(N) + x_{i+1}^*(N)|| \geq c$ for all $N \in \mathbb{N}$ and $1 \leq i < l(N)$, and hence $||x_i^* + x_{i+1}^*|| \geq c$ for all $i \in \mathbb{N}$. Furthermore, $\|\sum_{i=1}^{N} x_i^*(N)\| \leq \|\sum_{i=1}^{\ell(N)} x_i^*(N)\| \leq 1$ for all $N \in \mathbb{N}$, and hence $\sup_{N \in \mathbb{N}} \| \sum_{i=1}^{N} x_i^*(N) \| \leq 1$. We conclude that (x_i^*) is not boundedly complete, and hence $(E_i)_{i=1}^{\infty}$ is not shrinking.

 $b) \Rightarrow c$ is trivial.

c) \Rightarrow *d*). Let *D*, 0 < *c* < *d* ≤ 1, and *A* be as in *c*). We define

$$
\mathcal{B} = \{ n \cup B_1 \cup B_2 : n \in \mathbb{N}, B_1, B_2 \in A \} \cup \{ \emptyset \}.
$$

It is easily checked that $B = B_{\mathcal{A}}$ is regular. Let $(t_i)_{i=1}^{\infty}$ be the unit vector basis of $T_{c/d, \mathcal{B}}$. We will prove, by induction on $s \in \mathbb{N}$, that if $(x_i)_{i=1}^k$ is a normalized block sequence of **E** with finite length and $|\text{supp}_{\mathbf{E}}(\sum_{i=1}^{k} x_i)| \leq s$, then for all $(a_i)_1^k \subseteq \mathbb{R}$,

$$
\left\| \sum_{i=1}^{k} a_i x_i \right\| \le c^{-1} \left\| \sum_{i=1}^{k} a_i t_{\min \text{ supp}_{\mathbf{E}}(x_i)} \right\|_{T_{c/d, \mathcal{B}}}.
$$
 (3.2)

This is trivial for $s = 1$ and also clear for $k = 1$, so we may assume $k > 1$. Assume it holds for all $s' \leq s$. Let $(x_i)_{i=1}^k$ be a normalized block sequence of **E** with $|\text{supp}_{\mathbf{E}}(\sum_{i=1}^{k} x_i)| = s + 1$. Let $m_i = \min \text{supp}_{\mathbf{E}}(x_i)$ for $i \leq k$ and set $m_{k+1} =$ 1 + max supp_E (x_k) . Let $(a_i)_{i=1}^k \subseteq \mathbb{R}$ and $c/d < \rho < 1$ be arbitrary. Since *D* is *d*-norming for *X*, there exists $x^* \in D$ with

$$
\left| x^* \left(\sum_{i=1}^k a_i x_i \right) \right| \ge \rho d \left\| \sum_{i=1}^k a_i x_i \right\|.
$$

Let $\tilde{x}^* = P_{[m_1,m_{k+1})}^{\mathbf{E}^*}(x^*)$ where $\mathbf{E}^* = (E_j^*)_{j=1}^{\infty}$ is the FDD for $X^{(*)}$. By the bimonotonicity of **E**, $\|\tilde{x}^*\| \leq 1$ and also $\|\tilde{x}^*(\sum_{i=1}^k a_i x_i)\| \geq \rho d \|\sum_{i=1}^k a_k x_i\|$. Furthermore, since x^* admits an *A*-admissible *c*-decomposition, so does \tilde{x}^* . Let $(x_i^*)_{i=1}^{\ell}$ be an *A*-admissible *c*-decomposition of \tilde{x}^* and let $n_i = \min \text{supp}_{E^*}(x_i^*)$ for $i \leq \ell$. Thus $(n_i)_{i=1}^{\ell} \in \mathcal{A}.$

If $\ell = 1$, then $\tilde{x}^* \in E_j^*$ for some *j* and so

$$
\left\| \sum_{i=1}^{k} a_i x_i \right\| \le (\rho d)^{-1} \left| \tilde{x}^* \left(\sum_{i=1}^{k} a_i x_i \right) \right| \le (\rho d)^{-1} |a_j|
$$

$$
\le (\rho d)^{-1} \left\| \sum_{i=1}^{k} a_i t_{m_i} \right\| \le c^{-1} \left\| \sum_{i=1}^{k} a_i t_{m_i} \right\|, \text{ so (3.2) holds.}
$$

If $\ell > 1$, we proceed as follows. Define

 $B_1 = \{m_i : i \leq k \text{ and there exists } j \leq \ell \text{ with } m_i \leq n_j < m_{i+1}\},\$ $B_2 = \{m_{i+1} : i \leq k \text{ and } m_i \in B_1\},\$

and let $n = \min(B_1)$. Then $B \equiv B_1 \cup B_2 = \{n\} \cup (B_1 \setminus \{n\}) \cup B_2 \in B_A$. Indeed $B_2 \in \mathcal{A}$ since it is a spread of a subset of $(n_j)_{j=1}^{\ell} \in \mathcal{A}$, by the definition of B_1 . Similarly $B_1 \setminus \{n\} \in \mathcal{A}$.

Write $B = \{m_{b_j} : j \leq \ell'\}$ where $b_1 < b_2 < \cdots < b_{\ell'}$. Set $m_{b_{\ell'+1}} = m_{k+1}$. Since $k > 1$, $|\text{supp}_{\mathbf{E}}(\sum_{i=b_j}^{b_{j+1}-1} x_i)| \leq s$, for $j \leq \ell'$, and our induction hypothesis applies to such blocks. Moreover, if $b_{j+1} \neq b_j + 1$ for some $j \leq \ell'$, then there is at most one x_t^* whose support is not disjoint from $\bigoplus_{i=m_{b_j}}^{m_{b_{j+1}-1}} E_i^*$, since no n_i can satisfy

 $m_{b_j} < n_i < m_{b_{j+1}}$. In addition, $|\text{supp}_{\mathbf{E}^*}(x_i^*)| > 1$ in this case, and so $||x_i^*|| \le c$ which yields

$$
\left|\tilde{x}^*\left(\sum_{i=b_j}^{b_{j+1}-1}a_ix_i\right)\right|\leq c\left\|\sum_{i=b_j}^{b_{j+1}-1}a_ix_i\right\|.
$$

We obtain for $I = \{ j \le \ell' : b_{j+1} \ne b_j + 1 \}$ and $J = \{1, ..., \ell'\} \setminus I$,

$$
\rho d \left\| \sum_{i=1}^{k} a_i x_i \right\| \leq \left| \tilde{x}^* \left(\sum_{i=1}^{k} a_i x_i \right) \right|
$$

\n
$$
\leq \left| \sum_{j \in I} \tilde{x}^* \left(\sum_{i=b_j}^{b_{j+1}-1} a_i x_i \right) \right| + \left| \sum_{j \in J} \tilde{x}^* (a_{b_j} x_{b_j}) \right|
$$

\n
$$
\leq \sum_{j \in I} c \left\| \sum_{i=b_j}^{b_{j+1}-1} a_i x_i \right\| + \sum_{j \in J} |a_{b_j}|
$$

\n
$$
\leq \sum_{j \in I} \left\| \sum_{i=b_j}^{b_{j+1}-1} a_i t_{m_i} \right\| + \sum_{j \in J} \|a_{b_j} t_{m_{b_j}}\|,
$$

\nby the induction hypothesis,

$$
= \frac{d}{c}\sum_{j=1}^{l'}\frac{c}{d}\left\|\sum_{i=b_j}^{b_{j+1}-1}a_it_{m_i}\right\| \leq \frac{d}{c}\left\|\sum_{i=1}^{k}a_it_{m_i}\right\|,
$$

by definition of the norm for $T_{c/d, B_A}$. So

$$
\rho c \left\| \sum_{i=1}^k a_i x_i \right\| \leq \left\| \sum_{i=1}^k a_i t_{m_i} \right\|.
$$

Since $\rho < 1$ was arbitrary this proves [\(3.2\)](#page-15-0). Now the set *B* is regular, so its Cantor– Bendixson index $CB(\mathcal{B})$ is less than ω_1 . By Proposition 3.10 in [\[27](#page-37-5)], if $\alpha < \omega_1$ is such that $CB(B) \le \omega^{\alpha}$ then there exists $(m_i)_{i=1}^{\infty} \in [\mathbb{N}]^{\omega}$ such that $\{(m_i)_{i \in F} : F \in \mathcal{B}\} \subset S_{\alpha}$. It follows, from [\(3.2\)](#page-15-0) that (E_i) satisfies subsequential $c^{-1} - (t_{m_i})_{i=1}^{\infty}$ upper estimates, where $(t_i)_{i=1}^{\infty}$ is the unit vector basis of $T_{c/d, \alpha}$.

d) \Rightarrow *a*) is immediate since (t_{m_i}) is weakly null.

Remark 3.12 In Theorem [3.11,](#page-14-0) if the FDD (E_i) for *X* is not bimonotone, then the Proposition holds with slight modification. Let K be the projection constant of (E_i) . The hypothesis " $0 < c < d$ " in *c*) should be changed to " $0 < c < d/K$ ". This is seen by renorming *X*, in the standard way, so that (E_i) is bimonotone:

$$
|||x||| = \sup_{m \le n} ||P^{\mathbf{E}}_{[m,n]}||.
$$

Then *D* becomes d/K -norming for $(X, ||| \cdot |||)$. Furthermore, [\(3.2\)](#page-15-0) becomes valid for $(X, || \cdot ||)$ with c^{-1} replaced by Kc^{-1} .

It is worth noting that Proposition [3.11](#page-14-0) yields, as a corollary, the following less exact version of Theorem [3.8.](#page-13-0) A similar version of Theorem [3.9](#page-13-1) would also follow.

Corollary 3.13 *Let X be a Banach space with X^{*} separable. Then there exists* $\alpha < \omega_1$ and $0 < c < 1$ so that X embeds into a space Y, with an FDD (F_i) satisfying subse*quential Tc*,α*-upper estimates.*

Proof By Zippin's theorem [\[30\]](#page-37-3), we may embed *X* into a space *Z* with a shrinking FDD (E_i) . By Theorem [3.11](#page-14-0) *d*), we obtain the result, except that the estimates are with respect to (t_m) . We expand the FDD by inserting the basis vectors $(t_j)_{j \in (m_{i-1},m_i)}$ between E_{i-1} and E_i to obtain the desired FDD in a subspace of $Z \oplus T_{c,\alpha}$.

Using Proposition [2.8](#page-9-3) we can derive from Theorem [3.11](#page-14-0) the following sufficient and necessary condition for the dual of a Bourgain–Delbaen space to be isomorphic to ℓ_1 .

Corollary 3.14 *Let Y be the Bourgain–Delbaen space associated to a Bourgain– Delbaen sequence* (Δ_n) *satisfying condition* [\(2.9\)](#page-6-0) *for some* θ < 1/2 *(and thus the conclusion of Proposition* [2.4](#page-4-2) *with* $M \leq max(1/(1-2\theta), 2)$ *) and let* $\mathbf{F} = (F_i)$ *be the FDD of Y as introduced in Sect.* [2](#page-2-0) *and* $\mathbf{F}^* = (F_j^*)$ *. Define*

$$
C = \left\{ \text{cuts}(\gamma) : \gamma \in \bigcup_{n=1}^{\infty} \Delta_n \right\}.
$$

Then **F** *is shrinking (and thus Y^{*} <i>is isomorphic to* ℓ_1) *if* C *is compact, or equivalently, if C does not contain an infinite strictly increasing chain.*

Proof Indeed, assuming [\(2.9\)](#page-6-0), in the analysis of $\gamma \in \Gamma$

$$
e_{\gamma}^* = \sum_{j=1}^a \alpha_j d_{\xi_j}^* + \beta_j P_{(p_{j-1},p_j)}^*(b_j^*).
$$

all the β_j 's are at most θ , except the ones for which the support of $P^{\mathbf{F}^*}_{(p_{j-1},p_j)}(b_j^*)$ (with respect to \mathbf{F}^*) is at most a singleton. Therefore the analysis of γ represents a *c*-decomposition of e^*_{γ} and, thus, Theorem [3.11](#page-14-0) yields that **F** is shrinking.

4 The proof of Theorem A

Let *X* be a separable Banach space. We will follow the generalized BD construction in Sect. [2](#page-2-0) to embed *X* into a \mathcal{L}_{∞} space *Y*. Since *X* can be embedded into a space with basis (for example $C[0, 1]$), we can assume that *X* has an FDD, which we denote by $$ If X^* is separable then we can assume that **E** is shrinking by [\[30](#page-37-3)].

The Bourgain–Delbaen space *Y*, which we construct to contain *X*, will have Y^* isomorphic to ℓ_1 , in the case that X^* is separable.

To begin we fix $0 < c \le 1/16$ and choose $0 < \varepsilon < c$, and $(\varepsilon_i)_{i=1}^{\infty} \subset (0, \varepsilon)$ with $\varepsilon_i \downarrow 0$ so that

$$
\sum_{i=1}^{\infty} \varepsilon_i < \frac{\varepsilon}{8} \quad \text{and} \quad \sum_{i > n} \varepsilon_i < \frac{\varepsilon_n}{2} \quad \text{for all } n \in \mathbb{N}.\tag{4.1}
$$

Next, for *i* ∈ $\mathbb N$, we choose $R_i \subset (0, 1]$ and $\tilde{A}_i^* \subseteq S_{E_i^*}$ to be $\varepsilon_i/8$, dense in their respective supersets, with $1 \in R_i$ for all $i \in \mathbb{N}$. We then choose an appropriate countable subset, $D \subset B_{X^*} \cap c_{00}(\oplus E_i^*)$, which norms *X*.

Lemma 4.1 *There exists a set* $D \subset (B_{X^*} \setminus \frac{1}{2} B_{X^*}) \cap c_{00}(\bigoplus E_i^*)$ *with the following properties.*

- a) $A_m^* := D \cap E_m^* = \frac{1}{1 + \varepsilon/4} \tilde{A}_m^*$, for $m \in \mathbb{N}$.
- b) $D \cap (\bigoplus_{j=m}^{n} E^{*}_j)$ is finite, and $(1-\varepsilon)$ -norms the elements of $\bigoplus_{j=m}^{n} E_j$, for all $m < n$ *in* N*.*
- c) *Every* $x^* \in D$ can be written as $x^* = \sum_{i=1}^{\ell} r_i x_i^*$, where $(r_1 x_1^*, \ldots, r_{\ell} x_{\ell}^*)$, is *a c*-decomposition of x^* and $x_i^* \in D$, and $r_i \in R_{\max \text{supp}(x_i^*)}$, for $i = 1, \ldots, \ell$. *Moreover*

$$
(\text{supp}(x_i^*))_{i=1}^{\ell}
$$

\n
$$
\in \left\{ (\text{supp}(z_i^*))_{i=1}^{\ell} : \begin{array}{l} (z_i^*)_{i=1}^{\ell} \text{ is the optimal } \frac{c}{1+\varepsilon/4} \text{-decomposition} \\ \text{of some } z^* \in B_{X^*} \cap c_{00} \left(\bigoplus_{j=1}^{\infty} E_j^* \right) \end{array} \right\}.
$$

If (*Ei*) *is 1-uncondtional in X then (a) and (b) can be replaced by*

- a') $A_m^* := D \cap E_m = \tilde{A}_m^*$, for $m \in \mathbb{N}$.
- b') $D \cap (\bigoplus_{j \in B} E_j^*)$ is finite, and (1ε) -norms the elements of $\bigoplus_{j \in B} E_j$, for all *finite* $B \subset \mathbb{N}$ *.*

For *D* as in Lemma [4.1](#page-18-0) and each $x^* \in D$ we pick such a *c*-decomposition $(r_1x^*, r_2x_2^*, \ldots r_\ell x^*)$ and call it the *special c-decomposition of* x^* . If $x^* \in A_j^*$ $D \cap E_j^*$, we let (x^*) be its own special *c*-decomposition.

Proof We abbreviate supp_E∗ (·) by supp(·), and we abbreviate ran_E∗ (·) by ran(·). Define

$$
H = \frac{1}{1 + \varepsilon/4} \left\{ \frac{\sum_{i=m}^{n} a_i x_i^*}{\|\sum_{i=m}^{n} a_i x_i^*\|} : m \le n, a_i \in R_i \text{ and } x_i^* \in \tilde{A}_i^* \text{ for } i \in [m, n] \right\}.
$$

We note the following properties of *H*.

H is countable. (4.2)

$$
H \cap \bigoplus_{i=1}^{n} E_i^* \text{ is finite for all } n \in \mathbb{N}.
$$
 (4.3)

$$
H \cap \bigoplus_{i=m}^{n} E_i^*(1-\varepsilon) \text{-norms } \bigoplus_{i=m}^{n} E_i, \text{ for all } m \le n \text{ in } \mathbb{N}. \tag{4.4}
$$

If
$$
x^* \in H
$$
 and $\text{supp}(x^*) \cap [m, n] \neq \phi, m \leq n$, then

$$
\frac{P_{[m,n]}^{\mathbf{E}^*}(x^*)}{\|P_{[m,n]}^{\mathbf{E}^*}(x^*)\|} \in (1+\varepsilon/4)H. \tag{4.5}
$$

Set $H_n = \{h \in H : |\text{ran}(h)| = n\}$ and thus $H = \bigcup_{n=1}^{\infty} H_n$. For each $n \in \mathbb{N}$ we will inductively define for $h \in H_n$, an element $\tilde{h} \in (B_{X^*} \setminus \frac{1}{2} B_{X^*}) \cap c_{00}(\bigoplus_{j=1}^{\infty} E_i^*)$. We then set $D_n = \{\tilde{h}: h \in H_n\}$ and $D = \bigcup_{n \in \mathbb{N}} D_n$.

If $h \in H_1$, let $h = h$. Let $n > 1$ and assume that D_m has been defined for all $m < n$. Let $h \in H_n$ and $(z_1^*, \ldots, z_\ell^*)$ be the optimal $c/(1 + \varepsilon/4)$ -decomposition of *h*. Note that $\ell \geq 2$ since $n > 1$ and $||h|| = 1/(1 + \varepsilon/4)$. We write the decomposition as

$$
(s_i h_i)_{i=1}^{\ell} = \left(\| z_i^* \| (1 + \varepsilon/4) \frac{z_i^*}{(1 + \varepsilon/4) \| z_i^* \|} \right)_{i=1}^{\ell}.
$$

By the definition of *H*, $||z_i^*|| \le 1/(1 + \varepsilon/4)$ and so $0 < s_i = ||z_i^*|| (1 + \varepsilon/4) \le 1$ for $i \leq \ell$. If $h_i \notin H_1$, then $||s_i h_i|| = ||z_i^*|| \leq c/(1 + \varepsilon/4)$ and so $s_i \leq c$.

For $i \leq \ell$, choose $r_i \in R_{\text{max supp}(h_i)}$ with $|r_i - s_i| \leq \varepsilon_{\text{max supp}(h_i)}/4$ and $r_i \leq c$ if $h \notin H_1$. We define $\tilde{h} = \sum_{i=1}^{\ell} r_i \tilde{h}_i$. By induction, we will verify the following.

$$
supp(\tilde{h}) = supp(h) \tag{4.6}
$$

$$
\|\tilde{h} - h\| \le \sum_{j \in \text{supp}(\tilde{h})} \varepsilon_j \tag{4.7}
$$

$$
(r_1\tilde{h}_1, ..., r_\ell\tilde{h}_\ell)
$$
 is a *c*-decomp of \tilde{h} , with
 $r_i \in R_{\text{max supp}(\tilde{h}_i)}$ and $\tilde{h}_i \in \bigcup_{m < n} D_m$, if $n > 1$. (4.8)

The condition [\(4.6\)](#page-19-0) is clear. To verify [\(4.7\)](#page-19-0) we note that if $h_i \in H_1$, then

$$
||r_i\tilde{h}_i - s_i h_i|| \le |r_i - s_i| < \varepsilon_{\max \text{supp}(\tilde{h}_i)} / 4.
$$

If $h_i \notin H_1$, by the induction hypothesis,

$$
||r_i\tilde{h}_i - s_i h_i|| \leq ||r_i(\tilde{h}_i - h_i)|| + ||(r_i - s_i)h_i||
$$

\n
$$
\leq c \sum_{j \in \text{supp}(\tilde{h}_i)} \varepsilon_j + \varepsilon_{\text{max supp}(h_i)}/4 \leq \sum_{j \in \text{supp}(\tilde{h}_i)} \varepsilon_j.
$$

Thus $||h − \tilde{h}|| ≤ \sum_{i=1}^{\ell} ||r_i\tilde{h}_i - s_ih_i|| < \sum_{j \in \text{supp}(\tilde{h})} ε_j$, which proves [\(4.7\)](#page-19-0). [\(4.8\)](#page-19-0) holds by construction. Equation [\(4.7\)](#page-19-0) now yields,

$$
1/2 \le 1/(1 + \varepsilon/4) - \sum_{j \in \text{supp}(\tilde{h})} \varepsilon_j \le ||h|| - ||h - \tilde{h}||
$$

$$
\le ||\tilde{h}|| \le ||h|| + ||h - \tilde{h}|| \le 1/(1 + \varepsilon/4) + \sum_{j \in \text{supp}(\tilde{h})} \varepsilon_j \le 1.
$$

Thus $D \subset B_{X^*} \setminus \frac{1}{2} B_{X^*}$. Properties *a*), *b*), and *c*) of *D* follow from [\(4.6\)](#page-19-0), [\(4.7\)](#page-19-0), and $(4.8).$ $(4.8).$

If (E_i) is 1-unconditional, as defined, we instead begin with

$$
H = \left\{ \frac{\sum_{i \in B} a_i x_i^*}{\|\sum_{i \in B}^n a_i x_i^*\|} : \emptyset \neq B \subset \mathbb{N}, |B| < \infty, a_i \in R_i \text{ and } x_i^* \in \tilde{A}_i^* \text{ for } i \in B \right\}.
$$

We then follow the above construction, similarly without the $(1 + \varepsilon/4)$ -factors. These were necessary to ensure that the \tilde{h}_j 's were in B_{X^*} .

Next we define Γ and a certain partial order on Γ and use that to define the Δ_n 's.

$$
\Gamma = \left\{ (r_1 x_1^*, \dots, r_j x_j^*) : (r_1 x_1^*, \dots, r_j x_j^*) \text{ are the first } j \text{ elements} \atop \text{of the special } c - \text{ decomposition of } y^* \right\}.
$$

From Theorem [3.11](#page-14-0) and Lemma [4.1](#page-18-0) we deduce for $G = \{ \{\min \text{supp}(x_j^*) : j \le \ell \} : j \le \ell \}$ $(r_1 x_1^*, \ldots r_\ell x_\ell^*) \in \Gamma$

$$
(E_i) \text{ is shrinking in } X \iff \mathcal{G} \text{ is compact.} \tag{4.9}
$$

We first define an order on the bounded intervals in $\mathbb N$ by $[n_1, n_2] < [m_1, m_2]$ if $n_2 < m_2$ or $n_2 = m_2$ and $n_1 > m_1$. It is not hard to see that this is a well ordering. It is instructive to list the first few elements in increasing order (we let $[n, n] = n$):

$$
(I_n)_{n=1}^{\infty} = (1, 2, [1, 2], 3, [2, 3], [1, 3], 4, [3, 4], [2, 4], [1, 4], 5...)
$$

If $\gamma = (x_1^*, \ldots, x_\ell^*) \in \Gamma$ we let

$$
\operatorname{ran}_{\mathbf{E}^*} \left(\sum_{i=1}^{\ell} x_i^* \right) \equiv \operatorname{ran}_{\mathbf{E}^*} (\gamma) \quad \text{and} \quad \operatorname{supp}_{\mathbf{E}^*} \left(\sum_{i=1}^{\ell} x_i^* \right) \equiv \operatorname{supp}_{\mathbf{E}^*} (\gamma).
$$

For $\gamma \in \Gamma$ we define *the rank of* γ by $rk(\gamma) = n$ if ran supp $_{\mathbb{E}^*}(\gamma) = I_n$. We then define a partial order "≤" on Γ by $\gamma < \eta$ if $rk(\gamma) < rk_{E^*}(\eta)$. If $rk(\gamma) = rk(\xi)$ and $\gamma \neq \eta$ we say that γ and η are incomparable. We next define an important subsequence $(m_j)_{j=1}^{\infty}$ of *N*. For *j* ∈ *N* let $m_j =$ rk(*x*[∗]) for x [∗] ∈ A_j^* . Thus $m_1 = 1, m_2 = 2$, $m_3 = 4$ and more generally $m_{j+1} = m_j + j$. Note that

for
$$
\gamma \in \Gamma
$$
, $i_0 = \max \text{supp}_{\mathbf{E}^*}(\gamma)$
if and only if $m_{i_0} \le \text{rk}(\gamma) < m_{i_0+1}$. (4.10)

The following proposition is easily verified.

Proposition 4.2 *"*≤*" is a partial order on* Γ *. Furthermore,*

a) *Every natural number is the rank of some element of* Γ *and the set of all such elements is finite.*

b) *If* $j \in \mathbb{N}$ *and* $(z^*) \in \{ \gamma : \text{rk}(\gamma) = m_j \} = \{ (rx^*) \in \Gamma : r \in R_j, x^* \in A_j^* \}$, then

$$
\{\gamma \in \Gamma : \gamma < z^*\} = \{\gamma \in \Gamma : \max \text{supp}_{E^*}(\gamma) < j\} \text{ and}
$$
\n
$$
\{\gamma \in \Gamma : \gamma > (z^*)\} = \{\gamma \in \Gamma : \max \text{supp}_{E^*}(\gamma) \geq j \text{ and } \text{supp}_{E^*}(\gamma) \neq \{j\}\}.
$$

Proof Lemma [4.1](#page-18-0) (b) implies that for any *n* there must be some $\gamma \in \Gamma$ of rank *n*, and if we let $s < t$, so that $I_n = (s, t]$, then

$$
\# \{ \gamma \in \Gamma : \text{rk}(\gamma) = n \} \leq \sum_{\ell=1}^{t-s} \sum_{s=t_0 < t_1 < \dots t_\ell = t} \prod_{j=1}^\ell \# R_{t_j} \cdot \# D \cap (\bigoplus_{j=t_{j-1}}^{t_j} E_j^*),
$$

which yields (a). (b) follows easily from the definition of our partial order. \Box

For $n \in \mathbb{N}$, set $\Delta_n = \{ \gamma \in \Gamma : \text{rk}(\gamma) = n \}$. We will next define c^*_{γ} for $\gamma \in \Gamma$ (thus also defining $e^*_{\gamma} = c^*_{\gamma} + d^*_{\gamma}$). Following this we will show how the Δ'_n 's can be recoded to fit into the framework of Sect. [2.](#page-2-0) To begin,

i) we let $c^*_{\gamma} = 0$ if $\text{rk}(\gamma) \in \{m_j : j \in \mathbb{N}\}\$ (thus, in particular, $c^*_{\gamma} = 0$ if $\gamma \in \Delta_1$).

We proceed by induction and assume that c^*_{γ} has been defined for all $\gamma \in \Gamma_n$ $\bigcup_{j=1}^{n} \Delta_n$. Assume that $\gamma \in \Delta_{n+1}$ with $n+1 \notin \{m_j : j \in \mathbb{N}\}$. Let $\gamma = (r_1 x_1^*, r_2 x_2^*,$ \ldots , $r_{\ell}x_{\ell}^{*}$). There are several cases.

- ii) $\ell = 1$, so $\gamma = (r_1 x_1^*)$, where $|\text{supp}_{\mathbf{E}^*}(x_1^*)| > 1$. Let $(s_1 y_1^*, s_2 y_2^*, \dots, s_m y_m^*)$ be the special *c*-decomposition of x_1^* and note that $m \ge 2$, since $||x_1^*|| \ge 1/2 > c$. Put $\xi = (s_1 y_1^*, s_2 y_2^*, \dots, s_{m-1} y_{m-1}^*)$ and let η be the special *c*-decomposition of y_m^* . Define $c^*_{\gamma} = r_1 e^*_{\xi} + r_1 s_m e^*_{\eta}$.
- iii) $\ell = 2$ and $|\text{supp}_{E^*}(x_1^*)| = 1$. Let $\xi = (x_1^*)$ and let η be the special *c*-decomposition of x_2^* and set $c_y^* = r_1 e_{\xi}^* + r_2 e_{\eta}^*$.
- iv) $\ell > 2$ or $\ell = 2$ and $|\text{supp}_{\mathbf{E}^*}(x_1^*)| > 1$. Let $\xi = (r_1 x_1^*, r_2 x_2^*, \dots r_{\ell-1} x_{\ell-1}^*)$ and let η be the special *c*-decomposition of x^*_{ℓ} . Define $c^*_{\gamma} = e^*_{\xi} + r_{\ell}e^*_{\eta}$.

Note that in the cases (ii), (iii) and (iv) $k := \text{rk}(\xi) < \text{rk}(\eta) \le n$ and, furthermore, as can be shown inductively

$$
\min \text{supp}_{\mathbf{F}^*}(e_{\gamma}^*) \ge m_{\min \text{ran}_{\mathbf{E}^*}(\gamma)} \quad \text{for all } \gamma \in \Delta_n. \tag{4.11}
$$

For the recoding we proceed as follows. We will identify Δ_n with new sets $\tilde{\Delta}$ con-forming to Definition [2.1.](#page-2-1) Set $\tilde{\Delta}_1 = \Delta_1 = \{(rx^*) : r \in R_1, x^* \in A_1^*\}$. For $n \ge 2$ we will identify Δ_n with $\tilde{\Delta}_n = \tilde{\Delta}_j^{(0)} \cup \tilde{\Delta}_j^{(1)}$. Assume this has be done for $j \le n$. We let $\gamma \in \Delta_{n+1}$ and define $\tilde{\gamma}$ in the four cases above.

i) If $\gamma = (rx^*)$ with $r \in R_j$ and $x^* \in A_j^*$ for some $j \in \mathbb{N}$, and thus $rk(\gamma) = m_j$, we let $\tilde{\gamma} = (m_i, 0, 0, r x^*)$, i.e. we choose $\beta = 0, b^* = 0$ and $(r x^*)$ to be the free variable.

In the next three cases let ξ , η and $k = \text{rk}(\xi)$, ℓ, m, r_j , $j \leq \ell$, and s_j , $j \leq m$, be as above in (ii), (iii) and (iv), and let $\tilde{\xi}$ and $\tilde{\eta}$ be the recodings of ξ and η .

- ii) If $\gamma = (r_1 x_1^*)$, with $|\text{supp}_{\mathbf{E}^*}| > 1$, we let $\tilde{\gamma} = (n + 1, 2r_1, \frac{1}{2}(e_{\tilde{\xi}}^* + s_m e_{\tilde{\eta}}^*)$.
- iii) If $\gamma = (r_1 x_1^*, r_2 x_2^*)$, with $|\text{supp}_{\mathbf{E}^*}(x_1^*)| = 1$, let $\tilde{\gamma} = (n + 1, r_1, k, \tilde{\xi}, r_2, e_{\tilde{\eta}}^*)$.
- iv) If $\gamma = (r_1 x_1^*, r_2 x_2^*, \dots, r_\ell x_\ell^*)$, with $\ell > 2$ or $|\text{supp}_{\mathbf{E}^*}(x_1^*)| > 1$, let $\tilde{\gamma} = (n + \ell)$ $1, 1, k, \tilde{\xi}, r_{\ell}, e^*_{\tilde{\eta}}.$

In cases (i) and (ii), $\tilde{\gamma}$ is of type 0, while in the other cases it is of type 1. In cases (ii),(iii) and (iv) the set of free variables is a singleton and we have thus suppressed it. Definition [2.2](#page-3-0) yields that the Bourgain–Delbaen space corresponding to the Δ_n 's is exactly the same as the one obtained from the Δ_n 's above. Indeed, in (ii), (iii) and (iv) the definition of $c^*_{\tilde{Y}}$ involves the projections $P_{(k,n]}^{\mathbf{F}^*}$. But $P_{(k,n]}^{\mathbf{F}^*}(e^*) = e^*_{\eta}$ by Propositions [4.2](#page-21-0) and [4.11.](#page-21-1) Also, from our construction, we note that [\(2.9\)](#page-6-0) is satisfied for the $\tilde{\Delta}_n$'s since the factors *r* involved are all at most $2c \leq \frac{1}{8}$, unless the relevant $b^* = e^*_{\eta}$ and $c^*_{\eta} = 0$, for some $\eta \in \Gamma$. It follows as in Remark [2.5,](#page-6-1) that $\mathbf{F}^* = (F^*_j)$ is an FDD for ℓ_1 , whose decomposition constant *M* does not exceed 2.

Let $\gamma = (r_1 x_1^*, \ldots, r_\ell x_\ell^*) \in \Gamma$, $\ell \geq 2$. Then by iterating case (iv) we can compute the analysis of e^*_γ . Namely $e^*_\gamma = \sum_{j=3}^\ell (d^*_{\gamma_j} + r_j e^*_{\eta_j}) + e^*_{\gamma_2}$, where $\gamma_j =$ $(r_1 x_1^*, \ldots, r_\ell x_\ell^*)$, for $2 \le j \le \ell$, and η_j is the special *c*-decomposition of x_j^* , for 3 ≤ *j* ≤ ℓ . By considering the different cases where $|\text{supp}_{E^*}(x_1^*)|$ has one or more elements we have

$$
e_{\gamma}^{*} = \begin{cases} \sum_{j=1}^{\ell} d_{\gamma_{j}}^{*} + r_{j} e_{\eta_{j}}^{*} & \text{if } |\text{supp}_{\mathbf{E}^{*}}(x_{1}^{*})| = 1\\ \sum_{j=2}^{\ell} (d_{\gamma_{j}}^{*} + r_{j} e_{\eta_{j}}^{*}) + d_{\gamma_{1}}^{*} + r_{1} e_{\xi'}^{*} + r_{1} s_{m} e_{\eta'}^{*} & \text{if } |\text{supp}_{\mathbf{E}^{*}}(x_{1}^{*})| > 1, \end{cases}
$$
(4.12)

where in the bottom displayed formula, using case (ii), $\xi'_1 = (s_1 y_1^*, \ldots, s_{m-1} y_{m-1}^*)$, where $(s_1y_1^*, \ldots, s_{m-1}y_{m-1}^*, s_my_m^*)$ is the special *c*-decomposi-tion of x_1^* and η' is the special *c*-decomposition of y_m^* .

From [4.12,](#page-22-0) Corollary [3.14](#page-17-1) and our construction using special *c*-decom-positions of elements of *D*, it follows that (F_i) is a shrinking FDD, if (E_i) is a shrinking FDD. Indeed, then the set $\{(\min \text{supp}_{\mathbf{E}^*} x_i^*)_{i=1}^{\ell}: (r_1 x_1^*, \dots, r_{\ell} x_{\ell}^*) \in \Gamma\}$ is compact. From the analysis [\(4.12\)](#page-22-0) we see that $C = {\text{cuts}(\gamma) : \gamma \in \Gamma}$ is also compact.

To complete the proof of Theorem A it remains only to show that *X* embeds into *Y* , the Bourgain–Delbaen space associated to (Δ_n) . As in Sect. [2](#page-2-0) we let $J_m: \ell_\infty(\Gamma_m) \to$ $Y \subset \ell_{\infty}(\Gamma)$ be the extension operator, for $m \in \mathbb{N}$.

Definition 4.3 For $i \in \mathbb{N}$, define $\phi_i : E_i \to \ell_\infty(\Delta_{m_i})$ by $\phi_i(x)(rx^*) = rx^*(x)$. Define ϕ : $c_{00}(\bigoplus_{i=1}^{\infty} E_i) \to Y = \overline{\bigcup_m Y_m} \subseteq \ell_\infty(\Gamma)$ by $\phi(x) = \sum_i J_{m_i} \circ \phi_i(P_i^{\mathbf{E}}x) \in$ $c_{00}(\bigoplus_{i=1}^{\infty} F_{m_i}).$

In proving that *X* embeds into *Y* we will use the following connection between the functionals e^*_{γ} and the elements $\gamma \in \Gamma$ deriving from the elements of *D*.

If
$$
n \notin \{m_j : j \in \mathbb{N}\}
$$
 and $\gamma = (r_1 x_1^*, \dots, r_\ell x_\ell^*) \in \Delta_n$, then $c_\gamma^* = \alpha e_\xi^* + \beta e_\eta^*$,
(4.13)

where
$$
\xi = (s_1 y_1^*, s_2 y_2^*, \dots, s_k y_k^*)
$$
 and $\eta = (t_1 z_1^*, \dots, t_m z_m^*)$ are in Δ_{n-1} ,
such that
$$
\sum_{i=1}^{\ell} r_i x_i^* = \alpha \sum_{i=1}^{\ell} s_i y_i^* + \beta \sum_{i=1}^{\ell} t_i z_i^*.
$$

This is easily verified using (ii), (iii) and (iv). Note that, since $A_i^* \subset B_{E_i^*}$ is $(1 - \varepsilon/4)$ norming E_i , $(1 - \varepsilon/4) ||x|| \le ||\phi_i(x)|| \le ||x||$ for all $x \in E_i$.

Proposition 4.4 *The map* φ *extends to an isomorphism of X into Y , and*

$$
(1 - \varepsilon) \|x\| \le \|\phi(x)\| \le \|x\| \text{ for all } x \in X.
$$

Proof Using [\(4.13\)](#page-23-0) and the definition of ϕ_j , $j \in \mathbb{N}$, we deduce, by induction on the rank of $\gamma \in \Gamma$, that for all $\gamma = (r_1 x_1^*, \ldots, r_\ell x_\ell^*) \in \Gamma$ and all $x \in c_{00}(\bigoplus_{j=1}^\infty E_j)$,

$$
e_{\gamma}^*(\phi(x)) = \sum_{j=1}^{\ell} r_j x_j^*(x).
$$

Using the bimonotonicity of **E** in *X*, and the properties of the set $D \subset B_{X^*}$ as listed in Lemma [4.1](#page-18-0) we obtain for $x \in c_{00}(\bigoplus_{j=1}^{\infty} E_j)$

$$
(1 - \varepsilon) \|x\| \le \sup_{x^* \in D} |x^*(x)| = \sup_{\substack{\gamma = (r_1 x_1^*, \dots, r_\ell x_\ell^*) \in \Gamma \\ \gamma \in \Gamma}} \left| \sum_{i=1}^\ell r_j x_j^*(x) \right|
$$

$$
= \sup_{\gamma \in \Gamma} \left| e_\gamma^*(\phi(x)) \right| \le \|x\|,
$$

which implies our claim.

We will be using the construction of *Y* and all the terminology and notation of that construction in the next two sections. In the proof of Theorems B and C we will also be using the construction for *V* replacing *X* where *V* has a normalized bimonotone basis $(v_i)_{i=1}^{\infty}$. In this case the v_i 's play the role of the E_i 's, more precisely E_i is replaced by span(v_i). To help distinguish things we will write BD_X and BD_V for the respective *L*[∞] spaces containing isomorphs of *X* and *V*.

Finally, it is perhaps worth noting that, in the *V* case we could alter the proof slightly by allowing the scalars R_i to be negative and $\varepsilon_i/8$ -dense in $[-1, 1]\setminus\{0\}$ and take $A_j^* = \{\frac{1}{1+\epsilon/4}v_j^*\}$. In the case that (v_i) is also 1-unconditional we can use $A_j^* = \{v_j^*\}$ (see the second part of Lemma [4.1\)](#page-18-0). We would then obtain

Corollary 4.5 *Let V be a Banach space with a normalized bimonotone shrinking basis* $(v_i)_{i=1}^{\infty}$. Then W embeds into a \mathcal{L}_{∞} space Z, with a shrinking basis $(z_i)_{i=1}^{\infty}$ so *that* $(v_i)_{i=1}^{\infty}$ *is equivalent to some subsequence of* $(z_i)_{i=1}^{\infty}$ *.*

In case that *V* is the Tsirelson space $T_{c\alpha}$ the construction of a Bourgain–Delbaen space containing *V* becomes simpler.

Remark 4.6 Let *X* be the Tsirelson space $T_{c,\alpha}$, where $\alpha < \omega_1$ and $c \leq \frac{1}{16}$. In $T_{c,\alpha}^*$ there is a natural choice for the set *D* satisfying the conditions of Lemma [4.1](#page-18-0) (1-unconditional case). Indeed, we let $D = \bigcup_{n=0}^{\infty} D_n$, where D_n , $n \ge 0$ is defined by induction

$$
D_0 = \{ \pm e_j^* : j \in \mathbb{N} \} \text{ and assuming } D_0, D_1 \dots D_n \text{ have been defined we let}
$$

\n
$$
D_{n+1} = \begin{cases} k & k \ge 2, x_i^* \in \bigcup_{j=0}^n D_j, \text{ for } i \le k, \\ c \sum_{i=1}^k x_i^* : \{ \min \text{supp}(x_i^*) : i \le k \} \in S_\alpha, \text{ and } \\ \max \text{supp}(x_i^*) < \min \text{supp}(x_{i+1}^*), \text{ if } i < k. \end{cases} \tag{4.14}
$$

In that case *D* 1-norms $T_{c,\alpha}$ and Γ also has a simple form in this case:

$$
\Gamma_{\alpha,c} = \left\{ (cx_1^*, cx_2^*, \dots, cx_\ell^*) : \{ \min \text{supp}(x_i^*) : i \le \ell \} \in S_\alpha, \text{ and } \max \text{supp}(x_i^*) < \min \text{supp}(x_{i+1}^*), \text{ if } i < \ell, \} \cup D_0.
$$

Our construction in Theorem A leads then to a Bourgain–Delbaen space containing isometrically $T_{c,\alpha}$ and it is very similar (but simpler) than the construction in [\[4\]](#page-36-5) where a *mixed Tsirelson space* was used instead of *Tc*,α.

In summary, our proof of Theorem A, then yields the following theorem.

Theorem 4.7 *Let X be a Banach space with a bimonotone FDD* $\mathbf{E} = (E_i)$ *and let* $\varepsilon > 0$. Then X embeds into a Bourgain–Delbaen space Z having an FDD **F** = (F_j) , *such that*

a) *For* $n \in \mathbb{N}$, there are embeddings $\phi_n : E_n \to F_{m_n}$, so that

$$
\phi: c_{00} \left(\bigoplus_{n=1}^{\infty} E_n \right) \to Z, \quad \sum x_n \mapsto \sum \phi_n(x_n)
$$

extends to an isomorphism from X into Z with $(1 - \varepsilon) ||x|| \le ||\phi(x)|| \le ||x||$ *for x* ∈ *X.*

b) **F** *is shrinking (in Z) if* **E** *is shrinking (in X).*

From Theorem [4.7](#page-24-0) and [\[12](#page-36-7), Corollary 3.5] we obtain

Corollary 4.8 *There exists a collection* $\{Y_\alpha : \alpha < \omega_1\}$ *of* $\mathcal{L}_{\infty,2}$ *spaces such that* Y_α^* *is* 2-*isomorphic to* ℓ_1 *, and* Y_α *is universal for the class* $\mathcal{D}_\alpha = \{X : X \text{ separable and } X_\alpha\}$ $S_z(X) \leq \alpha$, *for all* $\alpha < \omega_1$ *.*

5 The proof of Theorems B and C

The constructions which will be used to prove Theorems B and C are *augmentations* of sequences of Bourgain–Delbaen sets as introduced in Sect. [2.](#page-2-0)

Definition 5.1 Assume that (Δ_n) is a sequence of Bourgain–Delbaen sets, and assume that (Δ_n) satisfies the assumptions of Proposition [2.4](#page-4-2) with $C < \infty$, and hence $M < \infty$. We denote the Bourgain–Delbaen space associated with (Δ_n) by *Y* and its FDD by $$ now on the projections P_A of *Y* onto $\bigoplus_{j \in A} F_j$, $A \subset \mathbb{N}$ finite or cofinite, by $P_A^{\mathbf{F}}$.

An *augmentation of* (Δ_n) , is then a sequence of finite, possibly empty, sets (Θ_n) having the property that $(\overline{\Delta}_n) := (\Delta_n \cup \Theta_n)$ is again a sequence of Bourgain–Delbaen sets. More concretely, this means the following. Θ_1 is a finite set and assuming that for some $n \in \mathbb{N}$, $(\Theta_j)_{j=1}^n$ have been chosen, we let $\overline{\Delta}_j = \Delta_j \cup \Theta_j$, $\Lambda_j = \bigcup_{i=1}^j \Theta_i$, and $\overline{\Gamma}_j = \bigcup_{i=1}^j \overline{\Delta}_i$, for $j \leq n$, where Θ_{n+1} is the union of two sets, $\Theta_{n+1}^{(0)}$ and $\Theta_{n+1}^{(1)}$, which satisfy the following conditions.

 $\Theta_{n+1}^{(0)}$ is finite and

$$
\Theta_{n+1}^{(0)} \subset \left\{ (n+1, \beta, b^*, f) : \beta \in [0, 1], b^* \in B_{\ell_1(\overline{\Gamma}_n)}, \text{ and } f \in W_{(n+1, \beta, b^*)} \right\},\tag{5.1}
$$

where $W_{(n+1,\beta,b^*)}$ is a finite set for $\beta \in [0, 1]$ and $b^* \in B_{\ell_1(\overline{T}_n)}$.

 $\Theta_{n+1}^{(1)}$ is finite and

$$
\Theta_{n+1}^{(1)} \subset \left\{ (n+1, \alpha, k, \overline{\xi}, \beta, b^*, f) : \frac{k \in \{1, 2, \dots n-1\}}{\overline{\xi} \in \overline{\Delta}_k, b^* \in B_{\ell_1(\overline{\Gamma}_n \setminus \overline{\Gamma}_k)}} \right\},\qquad(5.2)
$$

and $f \in W_{(n+1, \alpha, k, \overline{\xi}, \beta, b^*)}$

where $W_{(n+1,\alpha,k,\overline{\xi},\beta,b^*)}$ is a finite set for $\alpha \in [0,1], k \in \{1,2,\ldots,n-1\}, \overline{\xi} \in \overline{\Delta}_k$, $\beta \in [0, 1]$, and $b^* \in B_{\ell_1(\overline{\Gamma}_n \setminus \overline{\Gamma}_k)}$.

We denote the corresponding functionals (see Definition [2.2\)](#page-3-0) by $c^*_{\overline{\gamma}}$ for $\overline{\gamma} \in \overline{\Gamma}$. We require also that $(\overline{\Delta}_n)$ satisfies the conditions of Proposition [2.4,](#page-4-2) so that $\overline{\mathbf{F}}^* = (\overline{F}_n^*)$, with $\overline{F}_n^* = \text{span}(e_{\overline{Y}}^* : \overline{Y} \in \overline{\Delta}_n)$ is an FDD of $\ell_1(\overline{\Gamma})$ whose decomposition constant \overline{M} can be estimated as in Proposition [2.4.](#page-4-2) We denote then the associated Bourgain– Delbaen space by *Z*, and its FDD by $\overline{\mathbf{F}} = (\overline{F}_n)$. As in Sect. [2,](#page-2-0) we denote the projections from *Z* onto $\bigoplus_{i=k}^{m} \overline{F}_i$, by $P_{[k,m]}^{\mathbf{F}}$, if $k < m$, or by $P_k^{\mathbf{F}}$, if $k = m$. The restriction operator from $\ell_{\infty}(\Gamma)$ onto $\ell_{\infty}(\Gamma_n)$ or $\ell_1(\Gamma)$ onto $\ell_1(\Gamma_n)$ is denoted by R_n and the extension operator from $\ell_{\infty}(\overline{\Gamma}_n)$ to $\bigoplus_{j=1}^m \overline{F}_j \subset Z \subset \ell_{\infty}(\overline{\Gamma})$ is denoted by \overline{J}_m .

Note that by Corollary [3.14,](#page-17-1) under assumption [\(2.9\)](#page-6-0), \overline{F} is shrinking in *Z* if {cuts(*γ*) : $\nu \in \Gamma$ is compact.

Remark 5.2 In general *Y* is not a subspace of *Z*. Nevertheless it follows from Prop-osition [2.6](#page-7-2) that F_m is naturally isometrically embedded into \overline{F}_m for $m \in \mathbb{N}$. Indeed, the map

$$
\psi_m: F_m \to \overline{F}_m, \quad x \mapsto \overline{J}_m J_m^{-1}(x) = \overline{J}_m(x|_{\Delta_m}),
$$

is an isometric embedding (where we consider $\ell_{\infty}(\Delta_m)$ to be naturally embedded into $\ell_{\infty}(\Delta_m)$ and $\ell_{\infty}(\Delta_m)$ naturally embedded into $\ell_{\infty}(\Gamma_m)$). We put

$$
\psi : c_{00} \left(\bigoplus_{j=1}^{\infty} F_j \right) \mapsto c_{00} \left(\bigoplus_{j=1}^{\infty} \overline{F}_j \right), \quad (x_j) \mapsto (\psi_j(x_j)). \tag{5.3}
$$

We define ψ on $(\bigoplus_{j=1}^{\infty} F_j)_{\ell_{\infty}}$ by $\psi((x_j)_{j=1}^{\infty}) = (\psi_j(x_j))_{j=1}^{\infty} \in \prod_{j=1}^{\infty} \overline{F}_j$, a sequence in $(\overline{F}_j)_{j=1}^{\infty}$. Note that if $\overline{\gamma} \in \Lambda_n$ then we can regard, for $x = (x_j) \in (\bigoplus F_j)_{\ell_{\infty}},$ $c^*_{\gamma}(\psi(x)) = c^*_{\gamma}(\sum_{j=1}^n \psi_j(x_j))$. It is worth noting that for $y \in c_{00}(\bigoplus_{j=1}^{\infty} F_j)$, $\psi(y)|_{\Gamma} =$ y' . Thus ψ extends such elements to elements of *Z*. However this extension is not necessarily bounded on *Y*. In any event, if we define $\pi(z) = z \mid \Gamma$ for $z \in Z$ then $\pi: Z \to Y$.

The following provides a sufficient criterium for a subspace of *Y* to also embed into the augmented space *Z*.

Proposition 5.3 *Assume that X is a subspace of the Bourgain–Delbaen space Y with FDD* $\mathbf{F} = (F_i)$ *and which is associated to a Bourgain–Delbaen sequence* (Δ_n) *. Assume moreover that* $c_{00}(\bigoplus_{j=1}^{\infty} F_j) \cap X$ *is dense in* X.

Let (Θ_n) *be an augmentation of* (Δ_n) *with an associated space Z, and assume that* $|c^*_{\overline{\gamma}}(\psi(x))| \leq c_X ||x||$ for all $\overline{\gamma} \in \Lambda = \bigcup_{j \in \mathbb{N}} \Lambda_j$ and all $x \in X$. Then ψ embeds X *into* Z and $||x|| \le ||\psi(x)|| \le \max(1, c_X)||x||$. *Furthermore, for* $x \in X$, $\pi(\psi(x)) = x$. *Thus* $\pi : \psi(X) \to X$ *is the inverse isomorphism of* $\psi|_X$ *.*

Remark 5.4 In [\[17](#page-36-18)[;24,](#page-36-19) Lemma 3.1] it was shown that every separable Banach space *X* can be embedded into a Banach space *W* with FDD $\mathbf{E} = (E_j)$, so that $X \cap c_{00}(\bigoplus_{j=1}^{\infty} E_j)$ is dense in *X*. Moreover, (E_i) can be chosen to be shrinking if X^* is separable. Using the construction of Theorem A, we can therefore embed *W* into a Bourgain–Delbaen space *Y* which has an FDD $\mathbf{F} = (F_j)$ so that E_j embeds into F_{m_j} for some increasing sequence (m_j) . It follows therefore that the image of *X* under the embedding into *Y* has the property needed in Proposition [5.3.](#page-26-0)

Proof of Proposition [5.3](#page-26-0) For $x \in X$ and $\overline{\gamma} \in \overline{\Gamma}$ we first estimate $e^*_{\overline{\gamma}}(\psi(x))$. If $\gamma \in \Gamma$ then $e^*_{\gamma}(\psi(x)) = e^*_{\gamma}(x)$, and thus it follows that $\|\psi(x)\| \ge \|x\|_{\ell_{\infty}(T)} = \|x\|$ for all $x \in X$ and $\pi(\psi(x)) = x$. If $\overline{\gamma} \in \Lambda$ it follows that

$$
\left| e^*_{\overline{\gamma}}(\psi(x)) \right| = \left| c^*_{\overline{\gamma}}(\psi(x)) \right| \leq c_X \|x\|
$$

and therefore the restriction of ψ to *X* is a bounded operator, still denoted by ψ , from *X* to $\ell_{\infty}(\Gamma)$, and $\|\psi\| \leq \max(c_X, 1)$.

We still need to show that the image of *X* under ψ is contained in *Z*. However $\psi(X \cap c_{00}(\bigoplus_{j=1}^{\infty} F_j)) \subset Z$ since $\psi(X \cap F_j) \subset \psi(F_j) \subset \overline{F}_j \subset Z$ for all $j \in \mathbb{N}$. Thus the image of ψ on a dense subspace of *X* is contained in *Z*, and hence $\psi(X) \subset Z$.

Theorem 5.5 *Let Y be the Bourgain–Delbaen space associated to a sequence of sets* (Δ_n) *and let* $\mathbf{F} = (F_n)$ *be the FDD of Y. Let X be a subspace of Y and assume that* c_{00} ($\oplus_{j=1}^{\infty}$ *F_j*) ∩ *X* is dense in *X* and let *V* be a space with a 1-unconditional, and *normalized basis* (v*n*)*.*

Then there is an augmentation (Θ_n) *of* (Δ_n) *with an associated space* Z *and with FDD* $\overline{\mathbf{F}} = (\overline{F}_n)$ *so that the following hold.*

- a) *X embeds isometrically into Z via* ψ*.*
- b) *If* **F** *and* (v*i*) *are shrinking, then* **F** *is also shrinking and, thus, Z*[∗] *is isomorphic* to $\ell_1.$ Furthermore, if (z_n) is a normalized block basis in Z, with the property that

$$
\delta_0 = \inf_{n \in N} \text{dist}(z_n, \psi(X)) > 0
$$

then (z_n) *has a subsequence* (z'_n) *which dominates* (v_{k_n}) *where* $k_n = \max$ supp_F $(z'_n) + 1$ *, for* $n \in \mathbb{N}$ *.*

c) *If* X has an FDD $\mathbf{E} = (E_n)$, with the property that $E_n \subset F_n$, for $n \in \mathbb{N}$, then in *this case we can choose* (Θ_n) *so that*

$$
c^*_{\overline{\gamma}}(\psi(x)) = 0
$$
, whenever, $\overline{\gamma} \in \Lambda = \bigcup_{j=1}^{\infty} \Theta_j$ and $x \in X$.

Moreover every normalized block sequence (*zn*) *satisfying*

$$
\max \text{supp}_{\overline{\mathbf{F}}}(z_n) + n + 2 < \min \text{supp}_{\overline{\mathbf{F}}}(z_{n+1})
$$
\n
$$
\text{and } \delta_0 = \inf_{n \in \mathbb{N}} \text{dist}(z_n, \psi(X)) > 0,\tag{5.4}
$$

dominates (v_{k_n}) *, where* $k_n = \max \text{supp}_{\overline{F}}(z_n) + 1$ *.*

Remark 5.6 In case (c) we allow some E_n to be the nullspace $\{0\}$. As noted in the introduction, this will be convenient. In the case of Theorem A, we actually had $E_i \subset F_{m_i}$, but we choose to simplify the notation in the arguments below.

Proof of Theorem [5.5](#page-27-0) The construction of (Θ_n) will differ slightly depending on whether *X* has an FDD or not.

We use the construction of Sect. [4](#page-17-0) for the space *V* with $c \leq \frac{1}{16}$ using as an FDD for *V* the basis $(v_i)_{i=1}^{\infty}$ and $A_j^* = {\pm v_j^*}$ for all $j \in \mathbb{N}$. We write D^V , Δ_n^V , Γ_n^V , ... to distinguish these sets from Δ_n , Γ_n , ... which came from the construction of *Y*. Thus we obtain a \mathcal{L}_{∞} space Y^V and a $\frac{1}{1-\varepsilon}$ -embedding (see Proposition [4.4\)](#page-23-1) $\phi^V : V \to Y^V$. The numbers $\varepsilon < c$ and $(\varepsilon_n) \subset (0, c)$ satisfy, as in Sect. [4,](#page-17-0) the condition [\(4.1\)](#page-18-1).

Now $D^V = D$ is as defined in the unconditional case of Lemma [4.1](#page-18-0) for the space *V*. We also note that in the case that *V* is the Tsirelson space, $T_{c,\alpha}$ with $\alpha < \omega_1$ and $c \leq 1/16$ we could use D^V and $\Gamma^V = \Gamma_{c,\alpha}$ as defined in Remark [4.6.](#page-24-1)

We define by induction for all $n \in \mathbb{N}$ the sets Θ_n and the sets $\Theta_n^{(0)}$ and $\Theta_n^{(1)}$, if $n \ge 2$, satisfying [\(5.1\)](#page-25-1) and [\(5.2\)](#page-25-2). Moreover, we also define a map $\Theta_n \to \Gamma^V$, $\overline{\gamma} \mapsto \overline{\gamma}^V$ so that

cuts(
$$
\overline{\gamma}
$$
) is a spread of
\n{min supp_{V*}(x_1^*), min supp_{V*}(x_2^*),..., min supp_{V*}(x_ℓ^*)},
\nwhere $\overline{\gamma}^V = (x_1^*, x_2^*, ..., x_\ell^*) \in \Gamma^V$,
\nfor $\overline{\gamma} \in \Theta_n$, and max supp_{V*}($\overline{\gamma}^V$) $\leq n$. (5.5)

The set of free variables will be a singleton, and α will always be chosen to be 1 in [\(5.2\)](#page-25-2), so we suppress the free variable and α , in the definition of the elements of Θ_n .

To start the recursive construction we put $\Theta_1 = \emptyset$, and assuming $\Theta_j^{(0)}$ and $\Theta_j^{(1)}$ have been chosen for all $j \le n$, we proceed as follows. Λ_j , and $\overline{\Gamma}_j$, $j \le n$, \overline{F}_j^* and $P_{(k,j)}^{\mathbf{F}^*}$, $0 \le k < j \le n$, are given as in Definition [5.1.](#page-25-3) Since *Y* is a subspace of $\ell_{\infty}(\Gamma)$, and since $\Gamma_n \subset \overline{\Gamma}_n$, $e^*_{\overline{\gamma}}, \overline{\gamma} \in \overline{\Gamma}_n$, is a well defined functional on *Y* (and thus on *X*). The map $\psi: X \to \prod_{j=1}^{\infty} \overline{F}_j$ will be defined ultimately as in [\(5.3\)](#page-26-1). At this point for $x \in X$, $\psi(x)|_{\overline{\Gamma}_n}$ is defined and so $e^*_{\overline{\gamma}}(\psi(x)) = c^*_{\overline{\gamma}}(\psi(x))$ is defined for $\overline{\gamma} \in \overline{\Gamma}_n$. Thus we can choose for $0 \leq k < n$, finite sets

$$
B_{(k,n]} \subset \begin{cases} \{b^* \in B_{\ell_1(\overline{\Gamma}_n \setminus \overline{\Gamma}_k)} : P_{(k,n]}^{\overline{\mathbf{F}}_*}(b^*)|_{\psi(X)} \equiv 0\}, & \text{assuming } X \text{ has an FDD} \\ B_{\ell_1(\overline{\Gamma}_n \setminus \overline{\Gamma}_k)}, & \text{no assumptions on } X \end{cases}
$$

which are symmetric and $\varepsilon_{n+1}/(2M + 4)$ dense in their respective supersets. Then we put

$$
\Theta_{n+1}^{(0)} = \Theta_{n+1}^{(0,1)} \cup \Theta_{n+1}^{(0,2)} \quad \text{with}
$$
\n
$$
\Theta_{n+1}^{(0,1)} = \{ (n+1, rc, b^*) : (rv_{n+1}^*) \in \Gamma^V \text{ and } b^* \in B_{(0,n]} \}
$$
\n
$$
\Theta_{n+1}^{(0,2)} = \begin{cases}\n\overline{\eta} \in \Lambda_n, \exists x^* \in D^V \text{ so that} \\
(n+1, r, e_{\overline{\eta}}^*) : (rx^*) \in \Gamma^V \text{ with } |\text{supp}_{V^*}(x^*)| > 1 \text{ and} \\
\overline{\eta}^V \text{ is the special c-decomposition of } x^* \end{cases},
$$

and

$$
\Theta_{n+1}^{(1)} = \Theta_{n+1}^{(1,1)} \cup \Theta_{n+1}^{(1,2)} \quad \text{with} \quad k < n, \overline{\xi} \in \Theta_k, b^* \in B_{(k,n]},
$$
\n
$$
\Theta_{n+1}^{(1,1)} = \begin{cases}\n\overline{k} & k < n, \overline{\xi} \in \Theta_k, b^* \in B_{(k,n]}, \\
\overline{\gamma} = (n+1, k, \overline{\xi}, rc, b^*) : \frac{(\overline{\xi}^V, rv_{n+1}^*) \in \Gamma_{n+1}^V, \\
\text{with } |c_{\overline{\gamma}}^*(\psi(x))| \leq \|x\| \\
\text{for all } x \in X\n\end{cases}
$$

.

$$
\Theta_{n+1}^{(1,2)} = \begin{cases}\nk < n, \overline{\xi} \in \Theta_k, \eta \in \Lambda_n, \exists x^* \in D^V \\
with \left| \text{supp}(x^*) \right| > 1, \text{ so that} \\
\overline{\gamma} = (n+1, k, \overline{\xi}, r, e_{\overline{\eta}}^*) : \frac{(\overline{\xi}^V, rx^*) \in \Gamma_{n+1}^V, \text{ and } \overline{\eta}^V \text{ is the special } c\text{-decomposition of } x^* \\
with \left| c_{\overline{\gamma}}^*(\psi(x)) \right| \leq \|x\| \\
for all \ x \in X\n\end{cases}
$$

Note that for $(n+1, r, e^*_{\overline{\eta}}) \in \Theta_{n+1}^{(0,2)}$ or $(n+1, k, \overline{\xi}, r, e^*_{\overline{\eta}}) \in \Theta_{n+1}^{(1,2)}$ we have that $r \leq c$ since $|\text{supp}(x^*)| > 1$. We define for $\overline{\gamma} \in \Lambda_n, n \geq 2$,

$$
\overline{\gamma}^V = \begin{cases}\n(rv_{n+1}^*) & \text{if } \overline{\gamma} = (n+1, rc, b^*) \in \Theta_{n+1}^{(0,1)}, \\
(rx^*) & \text{if } \overline{\gamma} = (n+1, r, e_{\overline{\eta}}^*) \in \Theta_{n+1}^{(0,2)}, \\
& \text{where } \overline{\eta}^V \text{ is the special c-decomposition of } x^*, \\
(\overline{\xi}^V, rv_{n+1}^*) & \text{if } \overline{\gamma} = (n+1, k, \overline{\xi}, rc, b^*) \in \Theta_{n+1}^{(1,1)}, \\
(\overline{\xi}^V, rx^*) & \text{if } \overline{\gamma} = (n+1, k, \overline{\xi}, r, e_{\overline{\eta}}^*) \in \Theta_{n+1}^{(1,1)}, \\
& \text{where } \overline{\eta}^V \text{ is the special c-decomposition of } x^*. \n\end{cases}
$$

Then condition [\(5.5\)](#page-28-0) follows immediately for the elements of $\Theta_{n+1}^{(0)}$, while an easy induction argument proves it also for the elements of $\Theta_{n+1}^{(1)}$. It is worth pointing out that ${\{\overline{\nu}}^V : \overline{\nu} \in \Lambda\}$ is a proper subset of Γ^V , but nevertheless is sufficiently large for our purposes.

Proposition [2.4](#page-4-2) yields that $(\overline{\Delta}_n)$ admits an associated Bourgain–Delbaen space *Z* with FDD $\overline{\mathbf{F}} = (\overline{F}_i)$ whose decomposition constant \overline{M} is not larger than max(*M*, 1/ $(1 - 2c)$) < max $(M, 2)$, where *M* is the decomposition constant of (F_i) . If (F_i) and (v_n) are both shrinking in *V*, and thus, the optimal *c*-decompositions of elements of B_{V^*} are admissible with respect to some compact subset of $[N]^{\omega}$, our condition [\(5.5\)](#page-28-0) together with Theorem [3.11](#page-14-0) and Corollary [3.14](#page-17-1) yield that the FDD $\overline{\mathbf{F}} = (\overline{\mathbf{F}})$ is shrinking in *Z*. The definition of $\Theta_n^{(1)}$ together with Proposition [5.3](#page-26-0) imply that ψ isomorphically embeds *X* into *Z*.

To verify parts (b) and (c) of our Theorem and will need the following

Lemma 5.7 *Let* (z_j^*) *be a block basis in* Z^* *with respect to* $\overline{\mathbf{F}}^*$ *and* (δ_j) \subset [0, 1] *with* $\sum_{j\in\mathbb{N}} \delta_j \leq 1$. Assume that $|z_j^*(\psi(x))| \leq \delta_j$ for all $j \in \mathbb{N}$ and $x \in B_X$. Define for $n \in \mathbb{N}$ $p_n = \min \text{supp}_{\overline{\mathbf{F}}^*}(z_n^*) - 1$ *and* $q_n = \max \text{supp}_{\overline{\mathbf{F}}^*}(z_n^*) + 1$ *(thus* supp $_{\overline{\mathbf{F}}^*}(z_n^*) \subset (p_n, q_n)$) *and assume that*

$$
z_n^* = P_{(p_n, q_n)}^{\overline{\mathbf{F}}^*}(\tilde{z}_n^*) \text{ for some } \tilde{z}_n^* \in B_{(q_n, p_n)}, \text{ and } q_n + n < p_{n+1}. \tag{5.6}
$$

 \mathcal{L} Springer

 \textit{Then} for any sequence $(\beta_j)_{j=1}^N$ with $w^* = \sum_{j=1}^N \beta_j v_{q_j}^* \in D^V$ there exists $\overline{\gamma} \in \Lambda_{N+q_N}$ *so that*

$$
P_{(p_n, q_n)}^{\overline{\mathbf{F}}^*} (e_{\overline{\gamma}}^*) = c\beta_n z_n^*, \quad \text{for all } n \le N, \text{ and}
$$

$$
P^{\overline{\mathbf{F}}^*} (e_{\overline{\gamma}}^*) (\psi(x)) = \sum_{n=1}^N c\beta_n z_n^* (\psi(x)) \quad \text{if } x \in X.
$$
 (5.7)

Proof We prove our claim by induction on $N \in \mathbb{N}$. If $N = 1$ then $w^* = \pm v_{q_1}^*$, and we let $\overline{\gamma} = (q_n, c, \pm \tilde{z}_1^*) \in \Theta_{q_1}^{(0,1)}$. Then $e^*_{\overline{\gamma}} = d^*_{\overline{\gamma}} \pm c\tilde{z}_1^*$ and $P_{(p_1, q_1)}^{\overline{\mathbf{F}}^*} (e^*_{\overline{\gamma}}) = \pm c z_1^*$. depending on whether $\beta_1 = \pm 1$. Since $d^*_{\gamma}(\psi(x)) = 0$ for $x \in X$ we also deduce the second part of (5.7) .

Assume that our claim holds true for *N* and let $w^* = \sum_{j=1}^{N+1} \beta_j v_{q_j}^* \in D^V$. Then, by our choice of D^V (see Lemma [4.1\)](#page-18-0), w^* has a special *c*-decomposition $(r_1w_1^*, \ldots, r_\ell w_\ell^*)$, and we write w_j^* as $w_j^* = \sum_{i=N_{j-1}+1}^{N_j} \beta_i^{(j)} v_{q_i}^*$ with $\beta_i^{(j)} = \beta_i/r_j$, for $j \le \ell$ and $N_{j-1} + 1 \le i \le N_j$ and $N_0 = 0 < N_1 < \ldots N_\ell = N + 1$. Since $\ell \ge 2$, we can apply the induction hypothesis to each w_j^* and obtain $\overline{\eta}_j \in A_{q_{N_j}+N_j-N_{j-1}}, j = 1, 2...l$, so that $P_{(p_n, q_n)}^{\mathbf{F}^*}$ $(e_{\overline{\eta}_j}^*) = c\beta_n^{(j)} z_n^*$ if $N_{j-1} < n \le N_j$. Now let

$$
\overline{\gamma}_1 = \begin{cases}\n(q_1, cr_1, \text{sign}(\beta_1)\tilde{z}_1^*) & \text{if } |\text{supp}(w_1^*)| = 1 \\
(p_{N_1+1}, r_1, e_{\overline{\eta}_1}^*) & \text{if } |\text{supp}(w_1^*)| > 1.\n\end{cases}
$$

Note that, in the second case, by assumption [\(5.6\)](#page-29-0) $q_{N_1} + N_1 < p_{N_1+1}$ and thus $\overline{\eta}_1$ ∈ $\Lambda_{p_{N_1+1}-1}$. Assuming we have chosen $\overline{\gamma}_{j-1}$, for $2 \le j \le \ell$ we let

$$
\overline{\gamma}_{j} = \begin{cases}\n(q_{N_{j}}, \overline{\gamma}_{j-1}, cr_{j}, sign(\beta_{N_{j}}) \tilde{z}_{N_{j}}^{*}) & \text{if } |supp(w_{1}^{*})| = 1 \\
(q_{N_{j}} + N_{j} - N_{j-1} + 1, \overline{\gamma}_{j-1}, \text{rk}(\gamma_{j-1}), r_{j}, e_{\overline{\eta}_{j}}^{*}) & \text{if } |supp(w_{1}^{*})| > 1.\n\end{cases}
$$

Using the induction hypothesis on the $\overline{\eta}_j$'s, we deduce by induction on $j = 1, \ldots \ell$ that for $x \in X$

$$
e^*_{\overline{\gamma}_j}(\psi(x)) = c^*_{\overline{\gamma}_j}(\psi(x)) \le \sum_{n=1}^{N_j} |c\beta_n z_n^*(\psi(x))| \le \sum_{n=1}^{N_j} \delta_n \|x\| \le \|x\|,
$$

and thus $\overline{\gamma}_1 \in \Theta_{q_1}^{(0,1)}$, if $|\text{supp}(w_1^*)| = 1$, and $\overline{\gamma}_1 \in \Theta_{p_{N_1+1}}^{(0,2)}$, if $|\text{supp}(w_1^*)| > 1$, and $\overline{\gamma}_j \in \Theta_{q_{N_j}}^{(1,1)}$, if $|\text{supp}(w_1^*)| = 1$, and $\overline{\gamma}_j \in \Theta_{q_{N_j}+N_j-N_{j-1}+1}^{(1,2)}$, if $|\text{supp}(w_1^*)| > 1$, if $j = 2, 3 \ldots \ell$

Finally we choose $\overline{\gamma} = \overline{\gamma}_{\ell}$ which in both cases is an element of $\Lambda_{q_{N+1}+N+1}$. It follows for *n* $\leq N$, and $1 \leq j \leq \ell$ such that $N_{j-1} < n \leq N_j$ that

 \mathcal{L} Springer

$$
P_{(p_n,q_n)}^{\overline{\mathbf{F}}^*}(e_{\gamma}^*) = P_{(p_n,q_n)}^{\overline{\mathbf{F}}^*}(e_{\gamma_j}^*)
$$

=
$$
\begin{cases} cr_j \operatorname{sign}(\beta_j) z_n^* & \text{if } |\operatorname{supp}(w_j^*)| = 1 \\ r_j P_{(p_n,q_n)}^{\overline{\mathbf{F}}^*}(e_{\overline{\eta}_j}^*) & \text{if } |\operatorname{supp}(w_j^*)| > 1 \end{cases} = \beta_n c z_n^*,
$$

which finishes the verification of the first part of (5.7) , while the second part follows from the induction hypothesis applied to the $\overline{\eta}_i$'s.

Continuation of the Proof of Theorem [5.5](#page-27-0) To finish the proof we consider a normalized block basis (z_n) in *Z*, with $\delta_0 = \inf_n \text{dist}(z_n, \psi(X)) > 0$ and the additional property [\(5.4\)](#page-27-1) in the case where *X* has an FDD. Let $p_n = \min \text{supp}_{\overline{k}}(z_n) - 1$ and $q_n = \max \text{supp}_{\overline{R}}(z_n) + 1$. It follows that $q_n + n < p_{n+1}$, for $n \in \mathbb{N}$. In this case (*X* has an FDD) we choose $z_n^* \in \bigoplus_{j \in (p_n, q_n)} \overline{F}_j^*$, with $||z_n^*|| \leq 1, z_n^*(z_n) \geq \frac{\delta_0}{2M}$ and $z_n^*|_{\psi(X)} = 0$.

In the case (b) we proceed as follows. We choose $y_n^* \in Z^*$, $||y_n^*|| \leq 1$, so that $y_n^*(z_n) \ge \delta_0$ and $y_n^*|_{\psi(X)} \equiv 0$. After passing to subsequence and using the fact that (z_k) is weakly null, we can assume that y_n^* is w^* -converging, and after subtracting its w^* limit and possibly replacing δ_0 by a smaller number we can assume that (y_n^*) is w^* null.

After passing again to subsequences, we can assume that there exist p_n 's and *qn*'s with

$$
\left\| P_{(p_n,q_n)}^{\overline{\mathbf{F}}^*}(y_n^*) - y_n^* \right\| \leq \varepsilon_n
$$

and $q_n + n < p_{n+1}$ for $n \in \mathbb{N}$. Then we let $z_n^* = P_{(p_n, q_n)}^{\mathbf{F}^*}(y_n^*)/(1+\varepsilon)$, and deduce that $||z_n^*|| \le 1$ and $z_n^*(z_n) \ge \delta_0/(1+\varepsilon) =: \delta'_0$.

In both cases we found $z_n^* \in \bigoplus_{p_n+1}^{q_n-1} F_j^*$, with $||z_n^*|| \leq 1, z_n^*(z_n) \geq \delta_0'$ and $z_n^*|_{\psi(X)} = 0$ in the first case and $||z_n^*| \psi(X)|| \leq \varepsilon_n$ in the second.

By Proposition [2.7](#page-8-2) we find $b_n^* \in \ell_1(\overline{F}_{q_n-1} \setminus \overline{F}_{p_n})$, for $n \in \mathbb{N}$ so that $||b_n^*||_{\ell_1} \leq \overline{M}$ and $z_n^* = P_{(p_n, q_n)}^{\mathbf{\overline{F}}^*}(b_n^*)$.

Using now the density assumption of $B_{(p_n, q_n)}$ we can choose $\tilde{b}_n^* \in B_{(p,q_n)}$ with $\|\tilde{b}_n^* - \frac{1}{M}b_n^*\| \leq \varepsilon_{q_n}/(2M + 4) \leq \varepsilon_{q_n}/2\overline{M}$, since $\overline{M} \leq M \vee 2$. So if we let $\tilde{z}_n^* =$ $P_{(p_n,q_n)}^{\mathbf{F}^*}(\tilde{b}_n^*)$, we deduce that $||z_n^*/\overline{M} - \tilde{z}_n^*|| \leq 2\overline{M}\varepsilon_{q_n}/2\overline{M} = \varepsilon_{q_n}$ and hence $\tilde{z}_n^*(z_n) \geq 0$ $z_n^*(z_n)/\overline{M} - \|z_n^*/\overline{M} - \tilde{z}_n^*\| \ge \delta'_0/\overline{M} - \varepsilon_n$, for all $n \in \mathbb{N}$.

Let $n_0 \in \mathbb{N}$ be such that $\delta'_0 \ge 2\varepsilon_{n_0}\overline{M}$. It is enough to show that $(z_n)_{n \ge n_0}$ has lower $(v_{q_n})_{n \ge n_0}$ estimates. We can therefore assume without loss of generality that $n_0 = 1$. Let $(\alpha_j)_{j=1}^N \subset \mathbb{R}$ with $\sum_{j=1}^N \alpha_j v_{q_j} \Vert = 1$ and using Lemma [4.1](#page-18-0) (in the unconditional case) we can choose $(\beta_j)_{j=1}^N \subset \mathbb{R}$ with $\sum_{j=1}^N \beta_j v_{q_j}^* \in D^V$ so that

$$
\sum_{j=1}^N \beta_j v_{q_j}^* \left(\sum_{j=1}^N \alpha_j v_{q_j} \right) = \sum_{j=1}^N \alpha_j \beta_j \ge (1 - \varepsilon).
$$

Since (p_n) and (q_n) satisfy the assumptions of Lemma [5.7,](#page-29-1) we can choose $\overline{\gamma} \in \Lambda$ so that

$$
e_{\overline{\gamma}}^* \left(\sum_{j=1}^N \alpha_j z_j \right) = \sum_{j=1}^N \alpha_j \beta_j P_{(p_j, q_j)}^{\overline{\mathbf{F}}^*} (e_{\overline{\gamma}}^*) (z_j)
$$

= $c \sum_{j=1}^N \alpha_j \beta_j z_j^* (z_j) \ge c(1 - \varepsilon) \delta'_0 / 2\overline{M},$

which finishes the proof of (b) and (c) and thus Theorem [5.5](#page-27-0) in full.

We now prove Theorem B.

Proof of Theorem B Let *X* and *U* be totally incomparable spaces with separable duals.

By Theorem [3.8](#page-13-0) *U* embeds into a space *W* with an FDD which satisfies subsequential $T_{c,\alpha}$ -upper estimates for some $\alpha < \omega_1$ and some $0 < c < 1$. As noted before we can assume that, after possibly replacing α by one of its powers, we can assume that $c < 1/16$. We also noted that Proposition 7 in [\[26](#page-37-2)] calculates the Szlenk index of *T*_{α,*c*} to be $Sz(T_{\alpha,c}) = \omega^{\alpha\omega}$. We may thus choose $\beta > \alpha$ so that $Sz(T_{\beta,c}) > Sz(T_{\alpha,c})$. Furthermore, any infinite dimensional subspace of $T_{\alpha,c}$ has the same Szlenk index as $T_{\alpha,c}$. We immediately have that $T_{\alpha,c}$ and $T_{\beta,c}$ are totally incomparable, that is no infinite dimensional subspace of $T_{\alpha,c}$ is isomorphic to a subspace of $T_{\beta,c}$. This idea can be refined further to give that no normalized block sequence in $T_{\alpha,c}$ dominates a normalized block sequence in $T_{\beta,c}$.

Using Theorem A and Remark [5.4](#page-26-2) we can embed *X* into a Bourgain–Delbaen space *Y* with shrinking FDD **F** = (F_j) so that $X \cap c_{00}(\bigoplus_{j=1}^{\infty} F_j)$ is dense in *X*. We apply now Theorem [5.5](#page-27-0) to *Y*, with (v_i) being the unit vector basis of $T_{c,\beta}$, to obtain a Bourgain–Delbaen space Z, and an embedding ψ of X into Z, so that every normalized block sequence, which has a positive distance to $\psi(X)$, has a subsequence (z_i) which dominates some subsequence of (v_i) . If (z_i) is equivalent to a basic sequence in *U*, then (z_i) is dominated by a subsequence of the unit vector basis for $T_{c,\alpha}$. Thus a subsequence of the unit vector basis for $T_{\alpha,c}$ must dominate a subsequence of (v_i) (the unit vector basis for $T_{\beta,c}$), which is a contradiction. Thus no normalized block sequence in *Z*, which has a positive distance to $\psi(X)$, is equivalent to a subsequence in *U*.

Now any normalized sequence in *Z* has a subsequence which is equivalent to a sequence in *X* or has a subsequence which has a positive distance to $\psi(X)$. In both cases it follows that the sequence is not equivalent to a sequence in *U*. Theorem B follows.

Proof of Theorem C Assume that *X* is reflexive. Using Theorem [3.9](#page-13-1) we can assume that *X* has an FDD (*E_i*) which satisfies for some $\alpha < \omega_1$ both subsequential $T_{\alpha,c}$ upper and subsequential $T^*_{\alpha,c}$ -lower estimates. As noted before we can assume that $c < 1/16$.

By Theorem [4.7](#page-24-0) we can embed *X* into a Bourgain–Delbaen space *Y* with a shrinking FDD $\mathbf{F} = (F_i)$, associated to a sequence of Bourgain–Delbaen sets (Δ_n) , via the mapping ψ given in [\(5.3\)](#page-26-1).

Now we apply Theorem [5.5](#page-27-0) (b) to the unit vector basis (v_j) of $T^*_{\alpha,c}$ and obtain an augmentation (Θ_n) of (Δ_n) generating a Bourgain–Delbaen space *Z* having an FDD $\overline{\mathbf{F}} = (\overline{F}_i)$, so that every normalized block basis (z_n) in *Z* has a subsequence which is either equivalent to a block sequence in *X*, or which dominates a subsequence of (v_i) . Moreover, the later case holds for all normalized block bases of (z_n) . In both cases it follows that this subsequence is boundedly complete, and since it is shrinking it follows that it must span a reflexive space.

Similarly we can show the following result, whose proof we omit.

Theorem 5.8 *Let X be a Banach space with separable dual and let*(*u ^j*) *be a shrinking basic sequence, none of whose subsequences is equivalent to a sequence in X. Then X* embeds into a Bourgain–Delbaen space Z whose dual is isomorphic to ℓ_1 , and which *does not contain any sequence which is equivalent to any subsequence of* (*u ^j*)*.*

Using a construction similar to one in the proof of Theorem [5.5](#page-27-0) we can show the following embedding result for spaces with an FDD satisfying subsequential lower estimates.

Theorem 5.9 Let V be a Banach space with a normalized unconditional basis (v_i) , *having the following property.*

There is a constant
$$
C > 0
$$
 so that for
any two sequences (p_n) and (q_n) in N,
with $p_1 < q_1 < p_2 < q_2 < ..., (v_{p_n})$
 C - dominates (v_{q_n}) . (5.8)

Let X be a Banach space with an FDD (*Ei*) *which satisfies subsequential V -lower estimates. Then X embeds into a* \mathcal{L}_{∞} *space Z with an FDD* (\overline{F}_i) which satisfies skipped *subsequential V -lower estimates where V is some subsequence of V . Furthermore, if* (E_i) *and* (v_i) *are both shrinking, then* (\overline{F}_i) *can be chosen to be shrinking too.*

Proof After renorming, we may assume that the FDD $\mathbf{E} = (E_i)$ is bimonotone and that the basis (v_i) is 1-unconditional. We use the construction of Sect. [4](#page-17-0) to define a \mathcal{L}_{∞} space *Y* with an FDD $\mathbf{F} = (F_i)$ and an embedding $\phi : X \to Y$ such that $\phi(E_i) \subset F_{m_i}$ for some sequence $(m_i) \in [\mathbb{N}]^{\omega}$. For convenience, we will refer to the space $\phi(X)$ as *X*. As the FDD (E_i) satisfies subsequential *V*-lower estimates, there exists $K \geq 1$, so that

if
$$
(x_i) \subset X
$$
 is a normalized block sequence such
that $x_i \in \bigoplus_{j=m_{p_i}}^{m_{q_i}} F_j$, with $1 = p_1 < q_1 < p_2, ...,$
then $(x_i)K$ – dominates (v_{q_i}) . (5.9)

We now define the Banach space $\tilde{V} \cong V \oplus c_0$ with basis (\tilde{v}_i) given by $\tilde{v}_{m_i} = v_i$ and $\tilde{v}_i = e_i$ if $i \notin \{m_i\}$, where (e_i) is the unit vector basis of c_0 . It is clear that (\tilde{v}_i) is a 1-unconditional normalized basic sequence, and that (\tilde{v}_i) is shrinking if (v_i) is shrinking.

We denote the projection constant of (F_i) by *M*. The sets $(\overline{\Delta}_n)$, $\Theta^{(0,1)}$, $\Theta^{(0,2)}$, $\Theta^{(1,1)}$, and $\Theta^{(1,2)}$ are defined as in Theorem [5.5](#page-27-0) for some constant $c < 1/K$, the basic sequence (\tilde{v}_i), and some inductively chosen $\varepsilon_{n+1}/(2M+4)$ -dense sets $B_{(k,n)}$ $B_{\ell_1(\overline{T}_n\setminus\overline{T}_k)}$ (i.e. we are using the case "no assumptions on *X*"). This construction yields that $(\overline{\Delta}_n)$ admits an associated Bourgain–Delbaen space *Z* with FDD $\overline{\mathbf{F}} = (\overline{F}_i)$ whose decomposition constant \overline{M} is not larger than max(*M*, 1/(1 – 2*c*)) < max(*M*, 2). If (F_i) and (v_n) are both shrinking in *V*, and thus, the optimal *c*-decompositions of elements of $B_{\tilde{V}*}$ are admissible with respect to some compact subset of $[N]^{\omega}$, we have that the FDD $\overline{\mathbf{F}} = (\overline{\mathbf{F}})$ is shrinking in *Z*. Furthermore, we have an isometric embedding $\psi: X \to Z$.

Before continuing, we need the following lemma which is analogous to Lemma [5.7.](#page-29-1)

 \Box

Lemma 5.10 *Let* (z_j^*) *be a block basis in* Z^* *with respect to* \overline{F}^* *such that there exist integers* $p_1 < q_1 < p_2 < q_2 \ldots$ *with* $\text{supp}_{\mathbf{F}^*}(z_n^*) \subset (m_{p_n}, m_{q_n})$ for all $n \in \mathbb{N}$. Assume *that*

$$
z_n^* = P_{(m_{p_n}, m_{q_n})}^{\overline{\mathbf{F}}^*}(\tilde{z}_n^*) \text{ for some } \tilde{z}_n^* \in B_{(m_{p_n}, m_{q_n})}, \text{ for } n \in \mathbb{N}.
$$

Then for any sequence $(\beta_j)_{j=1}^N$ *with* $w^* = \sum_{j=1}^N \beta_j v_{q_j}^* \in D^V$, there exists $\overline{\gamma} \in \Lambda_{N+k_N}$ *so that*

$$
P_{(m_{p_n}, m_{q_n})}^{\overline{F}^*}(e_{\overline{\gamma}}^*) = c\beta_n z_n^*, \text{ if } n \le N, \text{ and}
$$

$$
P^{\overline{F}^*}(e_{\overline{\gamma}}^*)(\psi(x)) = \sum_{n=1}^N c\beta_n z_n^*(\psi(x)) \text{ if } x \in X.
$$
 (5.10)

Since parts of the proof are essentially the same as the proof of Lemma [5.7](#page-29-1) we will only sketch it and point out where both proofs differ.

Proof We will prove our claim by induction on *N* and the case $N = 1$ is exactly like in the proof of Lemma [5.7](#page-29-1) (with p_i and q_i being replaced by m_p , and m_q , respectively). To show the claim for $N + 1$, assuming the claim to be true for *N*, we let $w^* = \sum_{j=1}^{N+1} \beta_j \tilde{v}_{m_{q_j}} = \sum_{j=1}^{N+1} \beta_j v_{q_j} \in D^{\tilde{V}}$, and define $\ell \in \mathbb{N}, \ell \ge 2$ and $\overline{\gamma}_j$ and $\overline{\eta}_j$, $j = 1, 2, \ldots, \ell$, as in Lemma [5.7.](#page-29-1) We need only to show by induction on $j = 1, 2, \ldots, \ell$, that $|e^*_{\overline{\gamma}_j}(\psi(x))| \le ||x||$ for $x \in X$ (without the assumption of Lemma [5.7](#page-29-1) that $|z_j^*(\psi(x))| \le \delta_j ||x||$, for $j \le \ell$). Using the induction hypothesis on the $\overline{\eta}_j$'s, we deduce by induction on $j = 1, \ldots \ell$ that for $x \in X$

$$
|e^*_{\overline{\gamma}_j}(\psi(x))| = |c^*_{\overline{\gamma}_j}(\psi(x))|
$$

$$
\leq \sum_{n=1}^{N_j} |c\beta_n z_n^*(\psi(x))|
$$

$$
\leq \sum_{n=1}^{N_j} c|\beta_n| \left\| P_{(m_{p_n}, m_{q_n})}^{\overline{\mathbf{F}}}(\psi(x)) \right\| \n= c \left(\sum_{n=1}^{N_j} \beta_n v_{q_n}^* \right) \left(\sum_{n=1}^{N_j} \| P_{(m_{p_n}, m_{q_n})}^{\overline{\mathbf{F}}}(\psi(x)) \| v_{q_n} \right) \n\leq c \left\| \sum_{n=1}^{N_j} \| P_{(m_{p_n}, m_{q_n})}^{\overline{\mathbf{F}}}(\psi(x)) \| \tilde{v}_{m_{q_n}} \right\| \n\leq c \left\| \sum_{n=1}^{N_j} \left(\left\| P_{(m_{p_n}, m_{q_n})}^{\overline{\mathbf{F}}}(\psi(x)) \right\| \tilde{v}_{m_{q_n}} \right. \n+ \left\| P_{[m_{q_n}, m_{p_{n+1}}]}^{\overline{\mathbf{F}}}(\psi(x)) \right\| \tilde{v}_{m_{p_{n+1}}}\right) \right\| \n\leq c K \|x\| \leq \|x\|
$$

[in the penultimate line we use the 1-unconditionality of (\tilde{v}_i) and in the case of $j = \ell$ we put $p_{N_{\ell}+1} = m_{q_{N_{\ell}+1}}$, for the last line we use [\(5.9\)](#page-33-0)] and thus $\overline{\gamma}_1 \in \Theta_{m_{q_1}}^{(0,1)}$, if $|\text{supp}(w_1^*)| = 1$, and $\overline{\gamma}_1 \in \Theta_{m_{p_{N_1}+1}}^{(0,2)}$, if $|\text{supp}(w_1^*)| > 1$, and $\overline{\gamma}_j \in \Theta_{m_{q_{N_j}}}^{(1,1)}$, if $|\text{supp}(w_1^*)| = 1$, and $\overline{\gamma}_j \in \Theta_{m_{q_{N_j}}+N_j-N_{j-1}+1}^{(1,2)},$ if $|\text{supp}(w_1^*)| > 1$, if $j = 2, 3...l$. We put then $\overline{\gamma} = \overline{\gamma}_{\ell}$, and the rest of the proof follows again like in Lemma [5.7.](#page-29-1) \Box

Continuation of the Proof of Theorem [5.8](#page-33-1) To finish the proof we consider a normalized block basis (z_n) in *Z* such that there exists sequences $p_1 < q_1 < p_2 < q_2...$ with $\sup_{\mathbf{F}}(z_n) \subset (m_{p_n}, m_{q_n})$ for all $n \in \mathbb{N}$. We choose $z_n^* \in \bigoplus_{j \in (p_n, q_n)} \overline{F}_j^*$, with $||z_n^*|| \leq 1, z_n^*(z_n) \geq \frac{1}{2M}.$

By Proposition [2.7](#page-8-2) there exists $b_n^* \in \ell_1(\overline{\Gamma}_{q_n-1} \setminus \overline{\Gamma}_{p_n})$, for $n \in \mathbb{N}$ so that $||b_n^*||_{\ell_1} \leq \overline{M}$ and $z_n^* = P_{(p_n, q_n)}^{\overline{\mathbf{F}}^*}(\mathbf{b}_n^*)$. Using the density assumption of $B_{(p_n, q_n)}$, we choose $\tilde{b}_n^* \in$ $B_{(p,q_n)}$ with $\|\tilde{b}_n^* - \frac{1}{M}b_n^*\| \leq \varepsilon_{q_n}/(2M + 4) \leq \varepsilon_{q_n}/2\overline{M}$, since $\overline{M} \leq M \vee 2$. So if we let $\tilde{z}_n^* = P_{(p_n, q_n)}^{\overline{\mathbf{F}}^*}(\tilde{b}_n^*)$, we deduce that $||z_n^*/\overline{M} - \tilde{z}_n^*|| \leq 2\overline{M}\varepsilon_{q_n}/2\overline{M} = \varepsilon_{q_n}$ and hence $\tilde{z}_n^*(z_n) \geq z_n^*(z_n)/\overline{M} - \|z_n^*/\overline{M} - \tilde{z}_n^*\| \geq 1/\overline{M} - \varepsilon_n$, for all $n \in \mathbb{N}$.

Let $(\alpha_j)_{j=1}^N \subset \mathbb{R}$ with $\sum_{j=1}^N \alpha_j v_{q_j} \parallel = 1$ and using Lemma [4.1](#page-18-0) (in the unconditional case) we can choose $(\beta_j)_{j=1}^N \subset \mathbb{R}$ with $\sum_{j=1}^N \beta_j v_{q_j}^* \in D^V$ so that

$$
\sum_{j=1}^N \beta_j v_{q_j}^* \left(\sum_{j=1}^N \alpha_j v_{q_j} \right) = \sum_{j=1}^N \alpha_j \beta_j \ge (1 - \varepsilon).
$$

Since (p_n) and (q_n) satisfy the assumptions of Lemma [5.7](#page-29-1) (recall that $m_{i+1} =$ $j + m_j$, we can choose $\overline{\gamma} \in \Lambda$ so that

 \mathcal{L} Springer

$$
e_{\overline{\gamma}}^* \left(\sum_{j=1}^N \alpha_j z_j \right) = \sum_{j=1}^N \alpha_j \beta_j P_{(p_j, q_j)}^{\overline{\mathbf{F}}^*}(\varepsilon_{\overline{\gamma}}^*)(z_j)
$$

=
$$
c \sum_{j=1}^N \alpha_j \beta_j z_j^*(z_j) \ge c(1-\varepsilon)(1/\overline{M}-\varepsilon),
$$

which gives that (z_n) dominates (v_{q_n}) . Thus we may block the FDD (\overline{F}_i) to achieve the theorem.

References

- 1. Alspach, D.: A l_1 -predual which is not isometric to a quotient of $C(\alpha)$. In: Banach Spaces (Mérida, 1992). Contemp. Math., vol. 144. Am. Math. Soc., pp. 9–14 (1993)
- 2. Alspach, D.: The dual of the Bourgain–Delbaen space. Israel J. Math. **117**, 239–259 (2000)
- 3. Alspach, D., Judd, R., Odell, E.: The Szlenk index and local ℓ_1 -indices. Positivity $9(1)$, 1–44 (2005)
- 4. Argyros, S.A., Haydon, R.: A hereditarily indecomposable *L*∞-space that solves the scalarplus-compact (preprint). arXiv:0903.3921
- 5. Bourgain, J.: On convergent sequences of continuous functions. Bull. Soc. Math. Belg. Sér. B **32**(2), 235–249 (1980)
- 6. Bourgain, J.: The Szlenk index and operators on *C*(*K*)-spaces. Bull. Soc. Math. Belg. Sér. B **31**(1), 87– 117 (1979)
- 7. Bourgain, J., Delbaen, F.: A class of special *L*[∞] spaces. Acta Math. **145**(3-4), 155–176 (1980)
- 8. Bourgain, J., Pisier, G.: A construction of *L*∞-spaces and related Banach spaces. Bol. Soc. Brasil. Mat. **14**(2), 109–123 (1983)
- 9. Casazza, P.G., Johnson, W.B., Tzafriri, L.: On Tsirelson space. Israel J. Math. **47**(2-3), 81–98 (1984)
- 10. Dodos, P.: On classes of Banach spaces admitting small universal spaces. Trans. A.M.S. **361**, 6407– 6428 (2009)
- 11. Fonf, V.: A property of Lindenstrauss Phelps spaces. Funct. Anal. Appl. **13**(1), 66–67 (1979)
- 12. Freeman, D., Odell, E., Schlumprecht, Th., Zsák, A.: Banach spaces of bounded Szlenk index, II. Fund. Math. **205**(2), 161–177 (2009)
- 13. Godefroy, G.: The Szlenk index and its applications. General topology in Banach spaces, pp. 71–79. Nova Sci. Publ., Huntington, NY (2001)
- 14. Godefroy, G., Kalton, N.J., Lancien, G.: Szlenk indices and uniform homeomorphisms. Trans. Am. Math. Soc. **353**(10), 3895–3918 (2001)
- 15. Haydon, R.: Subspaces of the Bourgain–Delbaen space. Studia Math. **139**(3), 275–293 (2000)
- 16. Johnson, W.B., Lindenstrauss, J.: Basic concepts in the geometry of Banach spaces. In: Handbook of the Geometry of Banach Spaces, vol. I, pp. 1–84. North-Holland, Amsterdam (2001)
- 17. Johnson, W.B., Rosenthal, H.P., Zippin, M.: On bases, finite dimensional decompositions, and weaker structures in Banach spaces. Israel J. Math. **9**, 488–506 (1971)
- 18. Johnson, W.B., Zippin, M.: Separable *L*1 preduals are quotients of *C*(Δ). Israel J. Math. **16**, 198– 202 (1973)
- 19. Johnson, W.B., Zippin, M.: Subspaces and quotient spaces of $(\sum G_n)_{\ell_p}$ and $(\sum G_n)_{c_0}$. Israel J. Math. **17**, 50–55 (1974)
- 20. Judd, R., Odell, E.: Concerning Bourgain's ℓ_1 index of a Banach space. Israel J. Math. 108 , $145-$ 171 (1998)
- 21. Lancien, G.: A survey on the Szlenk index and some of its applications. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. **100**(1-2), 209–235 (2006)
- 22. Leung, D.H., Tang, W.-K.: The Bourgain ℓ_1 -index of mixed Tsirelson space. J. Funct. Anal. **199**(2), 301–331 (2003)
- 23. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces, I. In: Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer, Berlin/New York (1977)
- 24. Odell, E., Schlumprecht, Th.: Trees and branches in Banach spaces. Trans. Am. Math. Soc. **354**(10), 4085–4108 (2002)
- 25. Odell, E., Schlumprecht, Th., Zsák, A.: A new infinite game in Banach spaces with applications. In: Banach Spaces and Their Applications in Analysis, pp. 147–182. Walter de Gruyter, Berlin (2007)
- 26. Odell, E., Schlumprecht, Th., Zsák, A.: Banach spaces of bounded Szlenk index. Studia Math. **183**(1), 63–97 (2007)
- 27. Odell, E., Tomczak-Jaegermann, N., Wagner, R.: Proximity to ℓ_1 and distortion in asymptotic ℓ_1 spaces. J. Funct. Anal. **150**(1), 101–145 (1997)
- 28. Szlenk, W.: The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces. Studia Math. **30**, 53–61 (1968)
- 29. Zippin, M.: On some subspaces of Banach spaces whose duals are *L*1 spaces. Proc. Am. Math. Soc. **23**, 378–385 (1969)
- 30. Zippin, M.: Banach spaces with separable duals. Trans. Am. Math. Soc. **310**(1), 371–379 (1988)